Lasso 7.1
Language Guide

PILOT"

Trademarks

Lasso, Lasso Professional, Lasso Studio, LDML, Lasso Service, Lasso Connector, Lasso
Web Data Engine, Blue and OmniPilot are trademarks of OmniPilot Software, Inc.
MySQL™ is a trademark of MySQL AB. All other products mentioned may be trade-
marks of their respective holders. See Appendix C: Copyright Notices in the
Lasso Professional 7 Setup Guide for additional details.

Third Party Links

This guide may contain links to third-party Web sites that are not under the control
of OmniPilot. OmniPilot is not responsible for the content of any linked site. If you
access a third-party Web site mentioned in this guide, then you do so at your own
risk. OmniPilot provides these links only as a convenience, and the inclusion of the
links does not imply that OmniPilot endorses or accepts any responsibility for the
content of those third-party sites.

Copyright

Copyright © 2005 OmniPilot Software, Inc. This manual may not be copied,
photocopied, reproduced, translated or converted to any electronic or machine-
readable form in whole or in part without prior written approval of OmniPilot
Software, Inc.

Eighth Edition: March 1, 2005

OmniPilot Software, Inc.
1815 Griffin Road

Dania Beach, Florida 33004
U.S.A.

Telephone: (954) 874-3100
Email: info@omnipilot.com
Web Site: http://www.omnipilot.com

Contents

Section |
Lasso Overview 19
Chapter 1
Introduction, 21
Lasso 7 Documentationuutirenineanenennanan.. 21
Lasso 7.1 Language Guide 22
Documentation Conventions.uuiitnrenennnn .. 22
Chapter 2
Web Application Fundamentals. 25
Web Browser OVeIviewottt 25
Web Server OVerview.ttt 31
HTML Forms and URL Parameters 32
Web Application Servers.ot 34
Web Application Server Languages 35
Error Reporting 36
Chapter 3
FormatFiles 37
Introduction. 38
Storage TyPeS . . . oo 38

LAsso 7.1 LANGUAGE GUIDE

4 CONTENTS

Naming Format Files. 39
Character Encoding. 40
Editing Format Files 40
Functional Types 41
Action Methods 42

Table 1: Action Methods i .. 42
Securing Format Files 46
Output Formats.t 47
File Management. 48
Specifying Paths. 50
Format File Execution Time Limit................ 54

Chapter 4
LDML 7 Tag Language 55

Introduction. 55
Syntax Types.o 56
Table 1: LDML 7 Syntax Typeso ovov e 56
Tag Types . . oo 60
Table 2: LDML 7 Tag Typeso oo 60
Tag Categories and Namingcooiiiiiein... 67
Table 3: LDML 7 Tag Categories.cuuuuuuunenn .. 67
Table 4: LDML 7 SYRONYMSo oo 70
Table 5: LDML 7 Abbreviations.c...uuuunenon.. 70
Parameter Types. 71
Table 6: Parameter TYPes.o 71
Encoding 72
Table 7: Encoding Keywords iuieno .. 73
DataTypes . . . oo 74
Table 8: Primary LDML 7 Data Typeso .. 74
Expressions and Symbols 79
Table 9: Types of LDML 7 EXPIessionsuuuenon.. 79
Table 10: Member Tag Symbol. 81
Table 11: String Expression Symbols. 82
Table 12: Math Expression Symbols. 83
Table 13: Conditional Expression Symbols 85
Table 14: Logical Expression Symbols. 85
Delimiters.t 87
Table 15: LDML 7 Delimiterscoouuuuunnnnnenon.. 87
Table 16: HTML/HTTP Delimitersoooen.... 88
Illegal Characters. o 88
Table 17: Illegal Characters. e .. 89

LAsso 7.1 LANGUAGE GUIDE

CONTENTS 5

Chapter 5
LDML 7 Reference 91

OVeIVIEW . . ottt e e 91
Figure 1: LDML 7 Reference.o .. 92
Search 93
Figure 2: Basic Search Page iuieio... 93
Figure 3: Advanced Search Page 95
Figure 4: Comments Search Page 96
Figure 5: Examples Search Page 97
Browse 98
Figure 6: Category Tags Page. 98
Figure 7: Legacy Tags Page 99
Detail 100
Figure 8: Tag Detail Page 100
Figure 9: Tag Comments Page. 102
LAt .o 104
Figure 10: Preferred Tags Page.covuiuee. . 104
Figure 11: Legacy Tags Pagec..oieoiin... 105

Section |l
Database Interaction............... 107

Chapter 6
Database Interaction Fundamentals . .109

Inline Database Actions 109
Table 1: Inline Tago 110
Table 2: Inline Database Action Parameters 110
Table 3: Response Parametersc..uuuuenean... 116

Action Parameters i 120
Table 4: Action Parameter Tags, 120
Table 5: [Action_Params] Array Schema 123

Results. 124
Table 6: Results Tags.o oo vt 125

Showing Database Schema. 125
Table 7: -Show Parameter.uiuiuuienenn... 126
Table 8: -Show Action Requirements 126
Table 9: Schema Tags oo i 127
Table 10: [Field_Name| Parameters. 128
Table 11: [Required_Field] Parameters. 129

SQL Statementsot i 129
Table 12: SQL Inline Parameters.c.c..c.ouuiu.... 130

LAsso 7.1 LANGUAGE GUIDE

[CONTENTS

Table 13: -SQL Helper Tags ooi i 131
SQL Transactions.o ittt e 133

Chapter 7
Searching and Displaying Data 135

OVEIVIEW . ..t 135
Table 1: Command Tags oot e 136
Table 2: Security Command Tags.c.cuuenenn... 139

Searching Records i, 139
Table 3: -Search Action Requirements 140
Table 4: Operator Command Tags, 142
Table 5: Field Operatorsouuuuuinaenean.. 143
Table 6: Results Command Tags.couieiein... 147

Finding All Records i 150
Table 7: -FindAll Action Requirements. 151

Finding Random Records 152
Table 8: -Random Action Requirements 152

Displaying Data.ttt 153
Table 9: Field Display Tagso 154

LinkingtoDatao i 156
Table 10: Link Tags. oottt 157
Table 11: Link Tag Parameters.couuuuenean .. 159
Table 12: Link URL TAZS oo oo et 160
Table 13: Link Container Tags.ouuurunenean... 161
Table 14: Link Parameter Tagsccouuuuuenean... 162

Chapter 8
Adding and Updating Records 171

OVEIVIEW o\ttt e e e e e 171
Table 1: Command Tags 172
Table 2: Security Command Tags.o, 174

Adding Records i 174
Table 3: -Add Action Requirements 175

Updating Records i 178
Table 4: -Update Action Requirements 178

Deleting Records 183
Table 5: -Delete Action Requirements. 183

Duplicating Records i 185
Table 6: -Duplicate Action Requirements 185

LAsso 7.1 LANGUAGE GUIDE

CONTENTS 7

Chapter 9
MySQL Data Sources. 187
OVEIVIEW . ..ttt e 187
MySQLTagS . ..o 189
Table 1: Enhanced MySQLTags, 189
Searching Records i, 190
Table 2: MySQL Search Field Operators. 190
Table 3: MySQL Search Command Tags 192
Adding and Updating Records 195
Value Lists. . ..o oo 196
Table 4: MySQL Value List Tagso 197
Creating Database Tables 202
Table 5: Database Creation Tagscoovieenenn... 203
Table 6: [Database_CreateTable] Parameters:. 204
Table 7: [Database_CreateField] and [Database_ChangeField]
Parameters:. 206
Table 8: MySQL Field Types, 207
Chapter 10
FileMaker Data Sources 211
OVeIVIEW . ..o 212
Performance TiPs.ottt 213
Compatibility Tips. 215
FileMaker Tagsottt 215
Table 1: FileMaker Data Source Tags. 215
Primary Key Field and Record ID. 216
Sorting Recordst 218
Displaying Data.ttt 219
Table 2: FileMaker Data Display Tags 219
Value Lists. . ..o ot 227
Table 3: FileMaker Value List Tags.c.coo.... 227
Container Fields 232
Table 4: Container Field Tags i .. 232
FileMaker Scripts 234
Table 7: FileMaker Scripts Tagso vvein . 235
Chapter 11
JDBC Data Sources 237
OVEIVIEW . ..ttt e 237
Using JDBC Data Sources., 238
JDBC Schema Tags.o oottt 239

LAsso 7.1 LANGUAGE GUIDE

8 CONTENTS

Table 1: JDBC Schema Tags 240

Section Il

Programming 241
Chapter 12
Programming Fundamentals 243
OVEIVIEW . . oottt 244
Figure 1: Error Page. 244
Logic vs. Presentationouiiiieineinanaa... 245
Data Output.o 247
Table 1: Output TAgsot e 247
Variables. 249
Table 2: Variable Tags. 250
Table 3: Variable Symbols 250
Data’lypeso 253
Table 4: Data Type Tagso oo oo e e 253
Symbols 258
MemberTags 260
Formsand URLS i, 261
Chapter 13
Conditional Logic. 263
If Else Conditionals.o i i i 264
Table 1: IfElse Tagso e 265
Select Statements.ttt 267
Table 2: Select TAZS o oo o 267
LOOPS e 268
Table 3: [Loop] Tag Parameters.c.couueienn... 269
Table 4: Loop TAZSo oot e e 270
[terationst 272
Table 5: Iteration Tagsu v 273
While LoOpS. . ..o oot 273
Table 6: While Tagso oot 274
ADOTETAg . . oot 274
Table 7: ADOTE TAg o oo 274
Boolean Type.t 275
Table 8: Boolean Tago, 275
Table 9: Boolean Symbols 275

LAsso 7.1 LANGUAGE GUIDE

CONTENTS 9

Chapter 14
String Operations. 279

OVEIVIEW . ..ttt e 280
Table 1: String Tag. . . . o« oo e 281
String Symbols. 282
Table 2: String Symbols. 282
String Manipulation Tags i 285
Table 3: String Manipulation Member Tags 286
Table 4: String Manipulation Tags. 287
String Conversion Tags oo 288
Table 5: String Conversion Member Tags 289
Table 6: String Conversion Tags. 290
String Validation Tags 290
Table 7: String Validation Member Tags. 290
Table 8: String Validation Tags 292
String Information Tagst 292
Table 9: String Information Member Tags 292
Table 10: String Information Tags 293
Table 11: Character Information Member Tags 295
Table 12: Unicode Tags. oo 297
String Casting Tags« 298
Table 13: String Casting Member Tags. 298
Regular EXpressions.iiiiniiin ... 298
Table 14: Regular Expression Tags 299
Table 15: Regular Expression Matching Symbols. 300
Table 16: Regular Expression Combination Symbols 301
Table 17: Regular Expression Replacement Symbols. 301
Table 18: Regular Expression Advanced Symbols. 302

Chapter 15
Math Operations 305

OVEIVIEW ... 305
Table 1: Integer TAgo oot 306
Table 2: Decimal Tago i 307

Mathematical Symbols 308
Table 3: Mathematical Symbols. 308
Table 4: Mathematical Assignment Symbols 309
Table 5: Mathematical Comparison Symbols. 310

Decimal MemberTags. 311
Table 6: Decimal Member Tag. 311
Table 7: [Decimal->SetFormat| Parameters 312

Integer Member Tags.t 313

LAsso 7.1 LANGUAGE GUIDE

10 CONTENTS

Table 8: Integer Member Tags 313
Table 9: [Integer->SetFormat] Parameters 314
Math Tags.o 316
Table 10: Math Tags.o 316
Table 11: [Math_Random| Parameters. 318
Table 12: Trigonmetric and Advanced Math Tags 319
Locale Formatting 320
Table 13: Locale Formatting Tags. 320
Chapter 16
Date and Time Operations. 321
OVEIVIEW . ..t 321
DateTagso oo i 322
Table 1: Date Substitution Tags. 325
Table 2: Date Format Symbols. 327
Table 3: Date Format Member Tags. 329
Table 4: Date Accessor TagS.o oo ei e 330
Duration Tags.o ot 331
Table 5: Duration Tags oo vt 332
Date and Duration Math 333
Table 6: Date Math Tags. 334
Table 7: Date and Duration Math Tags 335
Table 8: Date Math Symbols. 337
Chapter 17
Arraysand Maps 339
OVEIVIEW o\ttt e e e e e 339
ATTAYS .« o ettt e e e e 340
Table 1: Array Tag oo 340
Table 2: Array Member Tags 342
Table 3: [Array->Merge] Parameters 347
MapS . o 351
Table 4: Map Tag.o 352
Table 5: Map Member Tags. 353
Pairs 356
Table 6: Pair Tago 356
Table 7: Pair Member Tags 357
Common Maps and AITays.uiuiiinenen... 358
Table 8: Common Maps and Arrays. 359

LAsso 7.1 LANGUAGE GUIDE

CONTENTS 11

Chapter 18
Encoding. 361
OVEIVIEW . ..ttt e 361
Encoding Keywords.o 365
Table 1: Encoding Keywords 365
Encoding Controls 366
Table 2: Encoding Controls 366
Encoding Tagst 367
Table 3: Encoding Tags oo v v vt 367
EncryptionTagso 368
Table 4: Encryption Tags oot 368
Compression Tagsov i 371
Table 5: Compression Tagscvvui . 371

Chapter 19
SESSIONS. Lt 373
OVeIVIEW . ..o 373
SessionTagst 375
Table 1: Session TAZS oo vt 375
Table 2: [Session_Start] Parameters. 376
Session Example 380

Chapter 20
Filesand Logging 383
Includes 383
Table 1: Include Tags, 386
LOggINg. . .o 388
Table 2: File Log TAZS . . .« . o oottt 389
Table 3: Lasso Error Log Tagso v v 390
Table 4: Log Preference Tag., 391
Table 5: Log Message Levels 391
Table 6: Log Destination Codesc........ 392
File Tags . ..ot 392
Table 7: File TAZS o oot e e 396
Table 8: Line Endings. 401
FileUploads. 402
Table 9: File Upload Tags, 403
Table 10: [File_Uploads] Map Elements. 403
File Streaming Tagsttt 404
Table 11: [File] Tag oo e 404
Table 12: File Open Modes, 405

LAsso 7.1 LANGUAGE GUIDE

12 CONTENTS

Table 13: File Read Modes 405
Table 14: File Streaming Tags 406

Chapter 21
ErrorControl. 409

OVEIVIEW . ..t 409
Error Reporting 411
Figure 1: Built-In None Error Message. 412
Figure 2: Built-In Minimal Error Message 412
Figure 3: Built-In Full Error Message. 412
Table 1: Error Level Tag oot 413
Figure 4: Lasso Service Error Message 414
Figure 5: Authentication Dialog 414
Custom ErrorPage 414
Figure 6: Custom Error Page. 415
Error Pages. 416
Table 2: Error Response Tagso v 416
ErrorTagso 417
Table 3: ETTor TAZS . . . o o oot e e e e e e 417
Table 4: Error Type TAgs o oo v et 418
Error Handling. 420
Table 5: Error Handling Tagsoouiiunnnn. .. 420

Chapter 22
Control Tags o, 425

Authentication Tags.ttt 425
Table 1: Authentication Tags i, 426
Administration Tags 428
Table 2: Administration Tags., 428
Scheduling Events 431
Table 3: Scheduling Tag 432
Table 4: Scheduling Parameters. 432
Process Tagso 435
Table 5: Process Tags. oou it 435
Null Data Type.o 437
Table 6: Null Member Tags. 437
Page Variables 439
Table 7: Page Variable Tags. 439
Table 8: Page Variables., 440
Configuration Tagso ottt 441
Table 9: Configuration Tags.o, 441
Format File Execution Time Limit............................ 442

LAsso 7.1 LANGUAGE GUIDE

CONTENTS 13

Table 10: Time Limit Tags.ot 442

Chapter 23
Miscellaneous Tags 443
Name Server Lookup. 443
Table 1: Name Server Lookup Tagc.coveiei.... 443
Validation Tags.ot 444
Table 2: Valid Tags. oo oo 444
Unique IDTagst 445
Table 3: Unique ID Tag oo 445
ServerTagso 445
Table 4: Server TAgS oo oot 445

Chapter 24
LassoScript 447
LassoScript OVerview.t 447
LassoScript Syntaxot 448
Table 1: LassoScript Delimiters 448

Section IV

Protocols and Media............... 453
Chapter 25
Email ... 455
Sending Email 455
Table 1: Email Tago 456
Table 2: [Email_Send| Parameters. 456
Chapter 26
Images and Multimedia 467
OVEIVIEW . ..ot 401
Table 1: Tested and Certified Image Formats 463
Casting Images as LDML Objects. 464
Table 2: [Image] Tag:., 464
Table 3: [Image] Tag Parameters:c....... 464
Getting Image Information. 465
Table 4: Image Information Tagsccouenen. .. 465
Converting and Saving Images. 467
Table 5: Image Conversion and FileTags 467
Manipulating Images i 468

LAsso 7.1 LANGUAGE GUIDE

14

CONTENTS

Table 6: Image Size and Orientation Tags 469
Table 7: Image Effects Tags, 470
Table 8: Annotate Image Tag. 473
Table 9: Composite Image Tag. 474
Table 10: Composite Image Tag Operators 474
Extended ImageMagick Commands 476
Table 11: ImageMagick Execute Tag. 476
Serving Image and Multimedia Files 477
Table 12: Tmage Serving Tag.t 478
Chapter 27
HTTP/HTML Content and Controls . . .483
Include URLS oot e 484
Table 1: Include URL Tag.o 484
Table 2: [Include_URL] Parameters. 485
Redirect URL e 487
Table 3: Redirect URLTAgo 487
HTTP Tags ... oo e e 488
Table 4: HTTP TAZS . . . o« o oot e e 488
FIPTagso e 489
Table 5: FTP TAZS. . . .« o oottt 489
Cookie Tagst 491
Table 6: Cookie TAZS. oo oot 492
Table 7: [Cookie_Set] Parameters 493
Caching Tagsottt 496
Table 8: [Cache] Tag 497
Table 9: [Cache] Tag Parameters.c.covuiein... 497
Table 10: LDML Object Cache Tags.c.ccvviein... 500
Table 11: Cache Control Tags.o v 501
Server Push....... 502
Table 12: Server Push Tag.o 503
Header Tagsottt 503
Table 13: Header Tagso v 504
RequestTags. 506
Table 14: Request TAZS oo v vt 507
Clent Tagsot 508
Table 15: Client TAgso oottt e 508
Server Tagso 509
Table 16: Server TaZS . . .« oo v oot 509

LAsso 7.1 LANGUAGE GUIDE

CONTENTS 15

Chapter 28
Wireless Devices 511
OVEIVIEW . ..ttt e e 511
Formatting WML 512
WAP Tags . ..o 515
Table 1: WAP TGS . . . o oot e 515
WML Example 516
Chapter 29
XML . 519
OVeIVIEW . ..o 520
XML GlOSSary. . .o ov et 521
XML DataType ... 522
Table 1: XML Data Type Tag.o v 522
Table 2: XML Member Tagsc..uuuuunnuienean... 523
XPath EXtractionot 525
Table 3: [XML_Extract] Tag, 526
Table 4: Simple XPath EXpressions.ouveon... 527
Table 5: Conditional XPath Expressions 529
XSLT Style Sheet Transforms., 530
Table 6: [XML_Transform] Tag.o ... 531
XML Stream DataType 532
Table 7: XML Stream Data Type Tag covvvenenn .. 532
Table 8: XML Stream Node Types 533
Table 9: XML Stream Navigation Member Tags 534
Table 10: XML Stream Member Tags 535
XML-RPC . . 537
Table 11: [XML_RPCCall] Tag, 538
Table 12: XML-RPC Built-In Methods 539
Table 13: XML-RPC and Built-In Data Types. 540
Table 14: XML-RPC Data Type. cvvviiin e 540
Table 15: [XML_RPC] Call Tag 540
Table 16: [XML_RPC] Processing Tags 543
SOAD o 544
Serving XML. 550
Table 17: [XML_Serve] Serving Tags.c.cuuuennn .. 550
Formatting XML. 550
XML Templates 552
Table 18: FileMaker Pro XML Templates 553
Table 19: SQL Server XML Templates 553

LAsso 7.1 LANGUAGE GUIDE

16 CONTENTS

Chapter 30
Portable Document Format 557
OVeIVIEW . . ottt 558
Creating PDF Documents., 559
Table 1: [PDF_Doc| Tag and Parameters. 559
Table 2: [PDF_Doc->Add] Tag and Parameters 562
Table 3: PDFPage Tags oo v vt 563
Table 4: PDF Read Tagso oo 564
Table 5: Page Insertion Tag and Parameters 565
Table 6: PDF Accessor TagS oo oo ot 566
Table 7: [PDF_Doc->Close] Tagccouuuienean... 567
Creating Text Content.c.uiuiiiirneenaenno... 567
Table 8: PDF Font Tag and Parameters 568
Table 9: [PDF_Font] Member Tags 569
Table 10: [PDF_Text] Tag and Parameters 571
Table 11: [PDF_Doc->DrawText] Tagc........ 573
Table 12: [PDF_List] Tags and Parameters. 573
Table 13: Special Charactersc.couuuienein... 575
Creating and Using Forms oo, 575
Table 14: [PDF_Doc| Form Member Tags 576
Table 16: Form Placement Parameters 578
Creating Tables 582
Table 17: [PDF_Table] Tag and Parameters 582
Table 18: [PDF_Table] Member Tags. 583
Table 19: Cell Content Tags, 584
Creating Graphics i 586
Table 20: [PDF_Image] Tag and Parameters 586
Table 21: [PDF_Doc| Drawing Member Tags. 588
Creating Barcodes i 590
Table 22: [PDF_Barcode]| Tag and Parameters 590
Example PDFFiles. 592
Serving PDF Files. 597
Table 23: PDF Serving Tagso cv v it 598
Section V
Upgrading. 6071
Chapter 31
Upgrading Your Solutions. 603
INtroduction.o 604
Lasso Professional 7.1....... 605

LAsso 7.1 LANGUAGE GUIDE

CONTENTS 17

Error Reporting 609
Unicode SUPPOTt.ttt 611
Bytes Type 614
Table 1: Tags That Return the Bytes Type 614
Table 2: Byte and String Shared Member Tags 615
Table 3: Unsupported String Member Tags 616
Syntax Changes (Lasso 6).iuiiuniininn.. 618
Table 4: Syntax Changes. 618
Tag Name Changes (Lasso 5/6)oouiniiineinen... 635
Table 5: Unsupported Tagso vvei i 635
Table 6: Tag Name Changes 636
Table 7: Deprecated Tags.oui ... 636
Syntax Changes (Lasso 5).couuiiini .. 637
Table 8: Syntax Changes. 637
Lasso MySQL (LasS0 5). ..o v vttt e 640
Table 9: Lasso MySQL Syntax Changes 641
Syntax Changes (LassO WDE 3.X)oviiiininenn... 641
Table 10: Syntax Changes 641
Table 11: Line Endings 651
Tag Name Changes (Lasso WDE 3.X)ccoovviun... 656
Table 12: Command Tag Name Changes 656
Table 13: Substitution, Process, and Container Tag Name Changes . .657
Unsupported Tags (LassO WDE 3.X)coooviiinii... 658
Table 14: Unsupported Tags 658
FileMaker Pro (LassOo WDE 3.X)o ovivi it 659
Appendix A
LDML 7 TagList............ 661
LDML 7 Tag List. oo 662
LDML 7 Legacy Tag List 682

Appendix B

ErrorCodes. 687
Lasso Professional 7 Error Codes. 687
Table 1: Lasso Professional 7 Error Codes. 688
Lasso MySQL Error Codes, 692
Table 2: Lasso MySQL Error Codes 692
FileMaker Pro Error Codes, 696
Table 3: FileMaker Pro Error Codes 696
JDBC Error Codes e 700
Table 4: IDBC Error Codes, 700

LAsso 7.1 LANGUAGE GUIDE

18 CONTENTS

Appendix C
Index,

LAsso 7.1 LANGUAGE GUIDE

19

Section |
Lasso Overview

This section includes an introduction to the fundamental concepts and
methodology for building and serving data-driven Web sites powered
by Lasso 7. Every new user should read through all the chapters in this
section.

e Chapter 1: Introduction includes information about the documentation
available for Lasso 7 and about this book.

e Chapter 2: Web Application Fundamentals includes an introduction to
essential concepts and industry terms related to serving data-driven Web
sites.

¢ Chapter 3: Format Files discusses how to create and work with Lasso 7
format files.

e Chapter 4: LDML 7 Tag Language introduces the syntax of Lasso
Dynamic Markup Language (LDML), the language of Lasso 7.

e Chapter 5: LDML 7 Reference introduces the reference database which
contains complete details about the syntax of every tag in LDML 7.

After completing Section 1: Lasso Overview you can proceed to Section
II: Database Interaction to learn how to store and retrieve information
from a database and to Section lll: Programming to learn how to program
in LDML.

LAsso 7.1 LANGUAGE GUIDE

20 SECTION | = LAsso OVERVIEW

LAsso 7.1 LANGUAGE GUIDE

21

Chapter 1
Introduction

This chapter provides on overview of the Lasso 7 documentation, the
section outline, and documentation conventions for this book.

e [asso 7 Documentation describes the documentation included with
Lasso 7 products.

e Lasso 7 Language Guide describes the sections in this book.

e Documentation Conventions includes information about typographic
conventions used within the documentation.

Lasso 7 Documentation

The documentation for Lasso 7 products is divided into several different
manuals and also includes several online resources. The following manuals
and resources are available.

¢ Lasso Professional 7 Setup Guide is the main manual for Lasso
Professional 7. It includes documentation of the architecture of Lasso
Professional 7, installation instructions, the administration interface, and
Lasso security. After the release notes, this is the first guide you should
read.

Lasso 7 Language Guide includes documentation of LDML (Lasso
Dynamic Markup Language), the language used to access data sources,
specify programming logic, and much more.

e LDML 7 Reference provides detailed documentation of each tag in
LDML 7. This is the definitive reference to the language of Lasso 7. This
reference is provided as a LassoApp and Lasso MySQL database within
Lasso Professional 7 and also as an online resource from the OmniPilot
Web site.

LAsso 7.1 LANGUAGE GUIDE

22

CHAPTER 1 — INTRODUCTION

¢ Extending Lasso Guide is a collection of documentation and sample
projects which provide instructions on how to extend Lasso.

Comments, suggestions, or corrections regarding the documentation may
be sent to the following email address.

documentation@blueworld.com

Lasso 7.1 Language Guide

This is the guide you are reading now. This guide contains information
about programming in LDML and is organized into the following sections.

e Section I: Lasso Overview contains important information about using
and programming Lasso that all developers who create custom solutions
powered by Lasso will need to know.

Section lI: Database Interaction contains important information about
how to create format files that perform database actions. Actions can be
performed in the internal Lasso MySQL database or in external MySQL,
FileMaker Pro, or other databases.

Section Ill: Programming describes how to program dynamic format
files using LDML. This section covers topics ranging from simple data
display through advanced error handling and alternate programming
syntaxes.

Section IV: Protocols and Media describes how to use Lasso to
interoperate with other Internet technologies such as email servers and
remote Web servers. It describes how to use Lasso to serve images and
multimedia files. It also describes how to use Lasso to serve pages to
various clients including Web browsers, WAP browsers and more.

Section V: Upgrading contains information for users who are upgrading
from or familiar with an earlier version of Lasso. This section details the
differences between Lasso 7 and earlier versions of Lasso.

¢ Appendices contain listing of all LDML 7 tags and error codes.

Documentation Conventions

The documentation uses several conventions in order to make finding
information easier.

Definitions are indicated using a bold, sans-serif type face for the defined
word. This makes it easy to find defined terms within a page. Terms are
defined the first time they are used.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 1 — INTRODUCTION 23

Cross References are indicated by an italicized sans-serif typeface.

For instance, the current section in this chapter is Documentation
Conventions. When necessary, arrows are used to define a path into a
chapter such as Chapter 1: Introduction > Documentation Conventions.

Code is formatted in a narrow, sans-serif font. Code includes HTML tags,
LDML tags, and any text which should be typed into a format file. Code is
represented within the body text (e.g., [Field] or <body>) or is specified in its
own section of text as follows:

[Field: 'Company_Name']

Code Results represent the result after code is processed. They are indi-
cated by a black arrow and will usually be the value that is sent to the
client’'s Web browser. The following text could be the result of the code
example above.

=>» OmniPilot

Note: Notes are included to call attention to items that are of particular
importance or to include comments that may be of interest to select readers.
Notes may begin with Warning, FileMaker Pro Note, IIS Note, etc. to
specify the importance and audience of the note.

To perform a specific task:

The documentation assumes a task-based approach. The contents following
a task heading will provide step-by-step instructions for the specific task.

LAsso 7.1 LANGUAGE GUIDE

24 CHAPTER 1 — INTRODUCTION

LAsso 7.1 LANGUAGE GUIDE

25

Chapter 2
Web Application
Fundamentals

This chapter presents an overview of fundamental concepts that are essen-
tial to understand before you start creating data-driven Web sites powered
by Lasso Professional 7.

e Web Browser Overview describes how HTML pages and images are
fetched and rendered.

e Web Server Overview describes how HTTP requests and URLs are inter-
preted.

e HTML Forms and URL Parameters describes how GET and POST argu-
ments are sent and interpreted.

e Web Application Servers describes how interactive content is created
and served.

e Web Application Server Languages describes how commands can be
embedded within a format file, processed, and served.

e Error Reporting describes how errors are reported by Lasso and how to
customize the amount of information that is provided to site visitors.

Web Browser Overview

The World Wide Web (WWW) is accessed by end-users through a Web
browser application. Popular Web browsers include Microsoft Internet
Explorer and Netscape Navigator. The Web browser is used to access pages
served by one or more remote Web servers. Navigation is made possible
via hyperlinks or HTML forms. The simple point-and-click operation of

LAsso 7.1 LANGUAGE GUIDE

26 CHAPTER 2 — WEB APPLICATION FUNDAMENTALS

the Web browser masks a complex series of interactions between the Web
browser and Web servers.

URLs

The location of a Web site and a particular page within a site are specified
using a Universal Resource Locator (URL). All URLs follow the same basic
format:

http://www.example.com:80/folder/file.html

The URL is comprised of the following components:

1 The Protocol is specified first, http in the example above and is followed
by a colon. The World Wide Web has two protocols. HTTP (HyperText
Transfer Protocol) which is for standard Web pages and is the default
for most Web browsers and HTTPS (HyperText Transfer Protocol Secure)
which is for pages served encrypted via the Secure Socket Layer (SSL).

2 The Host Name is specified next, www.example.com in the example above.
The host name can be anything defined by a domain name registrar. It
need not necessarily begin with www, the same server may be accessible
using example.com or by an IP address such as 127.0.0.1.

3 The Port Number follows the host name, 80 in the example above. The
port number can usually be left off because a default is assumed based
on the protocol. HTTP defaults to port 80 and HTTPS defaults to port
443,

4 The File Path follows a forward slash, ffolder/file.html in the example
above. The Web server uses this path to locate the desired file
relative to the root of the Web serving folder configured for
the specified domain name. The root of the Web serving folder
is typically C:\InetPub\wwwroot\ for Windows 2000 servers and
ILibrary/WebServer/Documents for Mac OS X servers.

HTTP Request

The URL is used by the Web browser to assemble an HTTP request which is
actually sent to the Web server. The HTTP request resembles the header of
an email file. It consists of several lines each of which has a label followed
by a colon and a value.

Note: Most current Web browsers and Web servers support the HTTP/1.1
standard. Lasso Professional 7 also supports this standard. However, the
examples in this book are written for the HTTP/1.0 standard in order to
provide maximum compatibility with older Web browser clients.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 27

The URL http://www.example.com/folder/file.html becomes the following HTTP
request:

GET ffolderffile.html HTTP/1.0

Accept: */*

Host: www.example.com

User-Agent: Web Browser/4.1

The HTTP request is comprised of the following components:

1 The first line defines the HTTP request. The action is GET and the path
to what should be returned is specified /folder/file.html. The final piece of
information is the protocol and version which should be used to return
the data, HTTP/1.0 in the example above.

2 The Accept line specifies the types of data that can be accepted as a
return value. */* means that any type of data will be accepted.

3 The Host line specifies the host which was requested in the URL.

4 The User-Agent line specifies what type of browser is requesting the
information.

HTTP Response

Once an HTTP request has been submitted to a server, an HITP response is
returned. The response consists of two parts: a response header which has
much the same structure as the HITP request and the actual text or binary
data of the page or image which was requested.

The URL http://lwww.example.com/folder/file.html might result in the following
HTTP response header:

HTTP/1.0 200 OK

Server: Lasso Professional 7.0

MIME-Version: 1.0

Content-type: text/html; charset=iso-8859-1

Content-length: 7713

The HTTP response header is comprised of the following components:

1 The first line defines the type of response. The protocol and version are
given followed by a response code, 200 OK in the example above.

2 The Server line specifies the type of Web server that returned the data.
Lasso Professional 7 returns Lasso Professional 7.0 in the example above.

3 The MIME-Version line specifies the version of the MIME standard used
to define the remaining lines in the header.

4 The Content-type line defines the type of data returned. text/html means
that ASCII text is being returned in HTML format. This line could also

LAsso 7.1 LANGUAGE GUIDE

28 CHAPTER 2 — WEB APPLICATION FUNDAMENTALS

read text/xml for XML data, image/gif for a GIF image or image/jpeg for a
JPEG image.

The charset=is0-8859-1 parameter specifies the character set of the page.
Lasso returns pages in UTF-8 encoding by default or in the character set
specified in the [Content_Type] tag.

5 Content-length specifies the length in bytes of the data which is
returned along with this HTTP response header.

The header is followed by the text of the HTML page or binary data of the
image which was requested.

Requesting a Web Page

The following are the series of steps which are performed each time a URL
is requested from a Web server:

1 The Web browser determines the protocol for the URL. If the protocol
is not HTTP then it might be passed off to another application. If the
protocol is HTTPS then the Web browser will attempt a secure connec-
tion to the server.

2 The Web browser looks up the IP address of the server through a
Domain Name Server (DNS).

3 The Web browser assembles an HTTP request including the path to the
requested page.

4 The Web browser parses the HTML returned by the request and renders it
for display to the visitor.

5 If the HTML contains any references to images or linked style sheets then
additional HTTP requests with appropriate paths are generated and sent
to the Web server.

6 The images and linked style sheets are used to modify the rendered
HTML page.

7 Client-side scripting language such as JavaScript are interpreted and may
further modify the rendered page.

The Web browser opens a new HITP request for each HTML page, style
sheet, or image file that is requested. All HITP requests for a given HTML
page can be sent to the same Web server or to different Web servers
depending on how the HTML page is written. For example, many HTML
pages reference advertisements served from a completely different Web
server.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 29

Character Sets

All Web pages must be transmitted from server to client using a character
set that maps the actual bytes in the transmission to characters in the fonts
used by the client’s Web browser. The Content-Type header in the HITP
response specifies to the Web browser what character set the contents of
the page has been encoded in.

Lasso processes all data internally using double-byte Unicode strings. Since
two bytes are used to represent each character characters from single-byte
ASCII are padded with an extra byte. Double-byte strings also allow for 4-
byte or even larger characters using special internally encoded entities..

For transmission to the Web browser Lasso uses another Unicode standard
UTF-8 which uses one byte to represent each character. UTF-8 corresponds
roughly to traditional ASCII and the Latin-1 (ISO 8859-1) character set.
Double-byte or 4-byte characters are represented by entities. For example,
the entity 並 represents the double byte character ilfi.

For older browsers or other Web clients it may be necessary to send data
in a specific character set. Some clients may expect data to be transmitted
in the pre-Unicode standard of Latin-1 (ISO 8859-1). Lasso will honor the
[Content_Type] tag in order to decide what character set to use for transmis-
sion to the Web browser. Using the following tag will result in the Latin-1
(ISO 8859-1) character set being used.

[Content_Type: 'text/html; charset=iso-8859-1]

Note: UTF-8 is an abbreviation for the 8-bit (single-byte) UCS Transformation
Format. UCS is in turn an abbreviation for Universal Character Set. Since 8-bit
Universal Character Set Transformation Format is such a mouthful it helps to
think of UTF-8 simply as the most common Unicode character encoding.

Cookies

Cookies allow small amounts of information to be stored in the Web
browser by a Web server. Each time the Web browser makes a request to a
specific Web server, it sends along any cookies which the Web server has
asked to be saved. This allows for the Web server to save the state of a visi-
tor’s session within the Web browser and then to retrieve that state when
the visitor next visits the Web site, even if it is days later.

Cookies are set in the HITP header for a file that is sent from the Web
server. A single HTML file can set many cookies and cookies can even be
set in the headers of image files. Each cookie has a name, expiration date,
value, and the IP address or host name of a Web server. The following line
in an HTTP header would set a cookie named session-id that expired on

LAsso 7.1 LANGUAGE GUIDE

30 CHAPTER 2 — WEB APPLICATION FUNDAMENTALS

January 1, 2010. The cookie will be returned in the HTTP request for any
domains that end in example.com.

Set-Cookie: session-id=102-2659358; path=/; domain=.example.com;
expires=Wednesday, 1-January-2010 08:00:00 GMT

Each time a request is made to a Web server, any cookies which are labeled
with the IP address or host name of the Web server are sent along with

all HTTP requests for HTML files or image files. The Web server is free

to read these cookies or ignore them. The HTTP request for any file on
example.com or www.example.com would include the following line.

Cookie: session-id=102-2659358

Cookies are useful because small items of information can be stored on
the client machine. This allows a customer ID number, shopping cart ID
number, or simple site preferences to be stored and retrieved the next time
the user visits the site.

Cookies are dependent upon support from the Web browser. Most Web
browsers allow for cookie support to be turned off or for cookies to be
rejected on a case-by-case basis. The maximum size of cookies is Web
browser dependent and may be limited to 32,000 characters or fewer for
each cookie or for all cookies combined.

Cookies can be set to expire after a certain number of minutes or at the
end of the current user’s session (until they quit their Web browser).
However, this expiration behavior should not be counted on. Some Web
browsers do not expire any cookies until the Web browser quits. Others
do not expire cookies until the machine hosting the Web browser restarts.
Some Web browsers even allow visitors to alter the expiration dates of
stored cookies.

Authentication

Web browsers support authentication of the visitor. A username and
password can be sent along with each HTTP request to the server. This
username and password can be read or ignored by the Web server. If the
Web server is expecting a username and password and does not find any or
does not find a valid username and password then the server can send back
a challenge which forces the browser to display an authentication dialog
box.

The following lines added to an HTTP response header will force most
Web browsers to challenge the visitor for a username and password. The
response code 401 Unauthorized informs the Web browser that the user is not
authorized to view the requested file.

HTTP/1.0 401 Unauthorized

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 31

There are two ways for a visitor to authenticate themselves to a Web server.

The first is through an authentication dialog box in response to a challenge
by the Web server. The second is by specifying a username and password in
a URL directly as follows:

http://username:password@www.example.com/folder/default.lasso

In either case, the username and password are transmitted to the Web
server with each HTTP request in plain text unless a secure protocol such
as HTTPS is used. The following line would be added to an HTTP request
based on the URL above. The username and password are encoded, but are
not encrypted.

Authorization: Basic dXNlcm5hbWU6¢GFzc3dvemQ=

The same username and password will continue to be transmitted to the
Web server until the user re-authenticates or quits the Web browser applica-
tion.

Note: See the section on Authentication Tags in Chapter 22: Lasso Control
Tags for information about LDML tags that automatically prompt for authenti-
cation information.

Web Server Overview

The World Wide Web is served to end-users by Web server applications.
Popular Web servers include Apache, WebSTAR, and Microsoft Internet
Information Services (IIS). The Web server handles incoming HTTP
requests for URLs from Web browsers. The interaction described in the
previous section from the Web browser’s point of view looks a little
different from the Web server’s point of view.

The following are the series of steps which are performed each time a URL
is requested from a Web server:

1 The HTTP request is received on one of the ports which is being listened
to by the Web server. Most Web servers listen on port 80 for HTTP
requests and on port 443 for secure HITTPS requests.

2 The HTTP request is parsed and split into its components: protocol, host
name, file path.

3 The host name is used to decide what virtual host to serve a Web page
from. Most Web servers operate from a single IP address, but serve
pages for several different domain names. These may be as simple as
www.example.com and example.com.

LAsso 7.1 LANGUAGE GUIDE

32 CHAPTER 2 — WEB APPLICATION FUNDAMENTALS

4 The path to the page request is added to the server root for the specified
virtual host. The virtual hosts may all start in a different folder on the
hard drive.

5 The security settings of the server are checked to see if the user needs
to be authenticated to receive the page they are requesting. If an appro-
priate username and password are not specified in the HTTP request
then a challenge is sent in the HTTP response instead of the request
page.

6 Server-side plug-ins or modules are called upon to process the request
page. For example, requests for HTML pages that have a file name with
the suffix .lasso will be sent to Lasso Service for processing. The processed
page is returned to the Web server and may even be sent through
multiple server-side plug-ins or modules before being served.

7 The requested HTML page or image is returned to the user with an
appropriate HTTP response header.

HTML Forms and URL Parameters

HTML forms and URLs allow for significant amounts of data to be trans-
mitted along with the simple HTTP requests defined in the previous
sections. The data to be transmitted can either be included in the URL or
passed in the HTTP request itself.

URL Parameters

A URL can include a series of name/value parameters following the file
path. The name/value parameters are specified following a question mark
?. The name and value are separated by an equal sign = and multiple
name/value parameters are attached to a single URL with ampersands

&. The following URL has two name/value parameters: name1=value1 and
name2=value2.

http://www.example.com/folder/file.lasso?name1=value1&name2=value2

The URL parameters are simply added to the file path which is specified
in the HTTP request. The URL above might generate the following HTTP
request. Since the parameters follow the word GET they are often referred
to as GET parameters.

GET /folder/file.lasso?name1=value1&name2=value2 HTTP/1.0

Accept: */*

Host: www.example.com

User-Agent: Web Browser/4.1

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 33

Since the characters : / ? & = @ # % are used to define the structure of a URL,
the file path and URL parameters cannot include these characters without
modifying them so that the structure of the URL is not disturbed. The char-
acters are modified by encoding them into %nnn entities where nnn is the
hexadecimal ASCII code for the character being replaced. / is encoded as
%2f for example.

HTML Forms

HTML forms provide user interface elements in the Web browser so that a
visitor can customize the parameters which will be transmitted to the Web
server along with an HTTP request. HTML forms can be used to modify the
GET parameters of a URL or can be used to send POST parameters.

Note: A full discussion of the HTML tags possible within an HTML form is
beyond the scope of this section. Please see an HTML reference for a full
listing of HTML form elements.

Example of an HTML form with a GET method:

The following HTML form has an action which specifies the URL that
will be returned when this form is submitted. In this case the URL is
http://www.example.com/folder/file.lasso. The method of the form is defined to be
GET. This ensures that the parameters specified by the HTML form inputs
will be added to the URL as GET parameters.
<form action="http://www.example.com/folder/file.Lasso" method="GET">
<input type="text" name="value1" value="value1">
<input type="submit" name="value2" value="value2">
<[form>

This form generates the following HTTP request. It is exactly the same as
the HTTP request created by the URL http://www.example.com/folder/file.lasso?nam
e1=value1&name2=value2.

GET /folder/file.lasso?name1=value1&name2=value2 HTTP/1.0

Accept: */*

Host: www.example.com

User-Agent: Web Browser/4.1

Example of an HTML form with a POST method:

The following HTML form has an action which specifies the URL that

will be returned when this form is submitted. In this case the URL is
http://www.example.com/folder/file.lasso. The method of the form is defined to be
POST. This ensures that the parameters specified by the HTML form inputs
will be added to the HTTP request as POST parameters and that the URL
will be left unmodified.

LAsso 7.1 LANGUAGE GUIDE

34 CHAPTER 2 — WEB APPLICATION FUNDAMENTALS

<form action="http://www.example.com/folder/file.Lasso" method="POST">
<input type="text" name="value1" value="value1">
<input type="submit" name="value2" value="value2">

<[form>

This form generates the following HITP request. The request file is simply
that which was specified in the action, but the method is now POST. The
HTML form parameters are specified as the content of the HTTP request.
They are still URL encoded, but now appear at the end of the HTTP
request, rather than as part of the URL.

POST ffolder/file.lasso HTTP/1.0

Accept: */*

Host: www.example.com

User-Agent: Web Browser/4.1

Content-type: application/x-www-form-urlencoded

Content-length: 27

value1=value1&name2=value2

HTML Forms and URL Responses

The GET and POST parameters passed in HTML forms or URLs are most
often used by server-side plug-ins or modules to provide interactive or
data-driven Web pages. The GET and POST parameters are how values are
passed to Lasso in order to specify database actions, search parameters, or
for any purpose a Lasso developer wants.

Web Application Servers

A Web Application Server is a program that works in conjunction with
a Web server and provides programmatically generated HTML pages or
images to Web visitors. Web application servers include programs that
adhere to the Common Gateway Interface (CGI), programs which have
built-in Web servers, plug-ins or modules for Web server applications, and
services or demons that communicate with Web server applications.

Lasso Professional 7 is a Web application server which runs as a back-
ground service and communicates with the Web server Apache via a
module called Lasso Connector for Apache, the Web server WebSTAR V via
a plug-in called Lasso Connector for WebSTAR, or IIS via an ISAPI filter
called Lasso Connector for IIS.

Web application servers are triggered in different ways depending on
the Web server being used. Many Web application servers are triggered
based on file suffix. For example, all file names ending in .lasso could be
processed by Lasso Service. Any file suffix can be configured to trigger

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 2 — WEB APPLICATION FUNDAMENTALS 35

processing by Lasso Service including .html so all HTML pages will be
processed before being served. Web application servers can usually also be
set to process all pages that are served by a Web server.

Most Web application servers function by interpreting a programming or
scripting language. Commands in the appropriate language are embedded
in format files and then executed when an appropriate HTML form or URL
is selected by a Web site visitor. The Web application server accepts the GET
and POST parameters in the HTML form or URL, interprets the commands
contained within the referenced format file, and returns a rendered HTML
page to the Web site visitor.

Developers can choose to develop complete Web sites using the scripting
language provided by a Web application server or they can purchase solu-
tions which are written using the scripting language of a particular Web
application server.

Lasso Professional 7 is a scriptable Web application server with a powerful
tag-based language called Lasso Dynamic Markup Language (LDML).
Custom solutions can be created by following the instructions contained
in this Lasso 7 Language guide. Links to pre-packaged, third party solutions
can be found on the OmniPilot Web site.

http://www.blueworld.com/

Web Application Server Languages

There are two main types of languages provided by Web application
servers.

e Scripting Languages are used to specify programming logic and are
generally close in function to traditional programming languages.
Scripting languages can be used to assemble HTML pages and output
them to the Web visitor. Server-Side JavaScript is an example of a
scripting language.

¢ Tag-Based Languages are used to specify data formatting and program-
ming logic within pre-formatted HTML or XML format files. The tags
embedded in the format file are interpreted and the output is modified
before the page is served to the Web visitor. Server Side Includes (SSI) is
an example of a tag-based language.

Lasso Professional 7 provides one language, LDML, which functions as
both a scripting language and a tag-based language. LDML tags can be
used in LassoScripts as a scripting language to define programming logic.
LassoScripts can be used to render individual HTML tags or to render

LAsso 7.1 LANGUAGE GUIDE

36 CHAPTER 2 — WEB APPLICATION FUNDAMENTALS

complete HTML documents programmatically. LDML tags can also be used
as a tag-based language inside square brackets within HTML or XML code.

Error Reporting

When syntax or logical errors occur while processing a format file, Lasso
will display an error page. The amount of information which is provided
on the error page can be customized in a number of ways.

The error reporting level can be adjusted in Lasso Administration to
control how much information is provided on the default error page. A
reporting level of None provides only a statement that an error occurred
with no details. A level of Minimal provides only the error code and a brief
error message. A level of Full provides detailed troubleshooting informa-
tion.

The error reporting level can be adjusted for a single format file using
the [Lasso_ErrorReporting] tag. For example, the global error reporting
level could be set to Minimal. While a page is being coded it can use
[Lasso_ErrorReporting] to set the level for that page only to Full.

Using the -Local keyword, the [Lasso_ErrorReporting] tag can be used to
limit the error information from sensitive custom tags or include files.
With this keyword the tag adjusts the error level only for the immediate
context.

A custom errorlasso page can be created for each site. This custom error
page can provide an appropriate level of detail to site visitors and can
be presented in the same appearance as the rest of the Web site. In
addition, the custom error page can log or even email errors to the site
administrator.

A custom server-wide errorlasso page can be created which will override
the built-in error page entirely. This custom page can be created on a
shared server to provide appropriate error information to all users of the
server.

More information about each of these options can be found in Chapter
21: Error Control. Consult that chapter for full details about how to use
the [Lasso_ErrorReporting] tag and how to create custom error pages.

LAsso 7.1 LANGUAGE GUIDE

37

Chapter 3
Format Files

This chapter introduces the concept of format files that contain LDML
tags. Understanding how to create and use format files is critical to under-
standing Lasso 7. All new users of Lasso 7 should read this chapter.

Introduction includes basic information about how format files are
created and used in Lasso 7.

e Storage Types introduces the different methods of storing and retrieving

format files.
Naming Format Files describes the rules for naming format files.

Character Encoding describes how Lasso uses the Unicode byte order
mark to determine whether to read a file using the UTF-8 or Latin-1
(also known as ISO 8859-1) character set.

Editing Format Files explains the options which are available for editing
format files.

Functional Types describes the various ways in which format files are
used and introduces functional names for different types of format files.

Action Methods introduces the concept of actions and describes how
format files and LDML interact to create an action.

Securing Format Files explains the importance of maintaining security
for your format files.

Output Formats shows how to use a format file to create output of
various types.

File Management explains how the architecture of Lasso 7 influences
where files are stored and how they can be manipulated.

Specifying Paths shows how URLs, HTML forms, and paths can be used
to refer to format files.

Format File Execution Time Limit describes the built-in limit on the
length of time that format files will be allowed to execute.

LAsso 7.1 LANGUAGE GUIDE

38

CHAPTER 3 — FORMAT FILES

Introduction

Format files are text files that contain embedded Lasso 7 code. When a
format file is processed by Lasso Service, the embedded LDML tags are
interpreted, executed, and the results are substituted in place of the tags.
The resulting document is then returned to the client. Web sites powered
by Lasso 7 are programmed by creating format files which include user
interface elements, database actions, and display logic.

This chapter describes the different methods of storing, naming, and
editing format files. It also discusses how multiple format files and LDML
work together to create actions. The chapter finishes with discussions of
how to output different types of data with format files and how to refer-
ence format files from within LDML tags, URLs, and HTML forms.

Note: Many of the terms used in this chapter are defined in Appendix A:
Glossary of the Lasso Professional 7 Setup Guide. Please consult this glossary
if you are unsure how any words are being used in this language guide.

Storage Types

The term Format File is used to describe any text file that contains
embedded Lasso 7 code. Format files are usually stored on the local disk
of the machine which hosts a Lasso Web server connector, but can also be
stored on a remote machine, the machine which hosts Lasso Service, or
even in a database field.

Format files are always text-based, but the structure of the text is not
important to Lasso. Lasso will find the embedded LDML 7 tags, process
them, and replace them with the results. Lasso will not disturb the text that
surrounds the LDML tags, but may modify text which is contained within
LDML container tags. The most common types of format files are described
below.

¢ HTML Format Files contain a mix of LDML tags and HTML tags. HTML
format files can be edited in leading visual Web authoring programs with
LDML tags represented as icons or displayed as plain text. The output is
usually HTML suitable for viewing in a Web browser.

¢ XML Format Files contain a mix of LDML tags and XML tags. When
a developer creates an XML format file it may not be strictly valid XML
code. However, it is constructed in such a way that the output after
being processed by Lasso is valid XML code. XML format files can
be constructed so that their output conforms to any Document Type
Definition (DTD) or XML Schema.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 3 - FORMAT FILES 39

¢ Text Format Files contain a mix of LDML tags and ASCII text. Text
format files can be used as the body of email messages or can be used to
output data in any ASCII-compatible form.

¢ LDML Format Files contain only LDML tags. Pure LDML format files
usually contain programming logic and include other content types as
needed. A pure LDML format file could be a placeholder that returns the
appropriate type of content to whatever client loads the page.

Lasso format files can be stored in a variety of locations depending on how
they are going to be used. Four locations are listed below, along with brief
descriptions of how format files stored within them are used.

e Web Server - Format files are typically stored as text files on the
machine which hosts the Web serving software with a Lasso Web server
connector. The format files are stored along with the HTML and image
files that comprise the Web site. As the client browses the site, they may
visit some pages which are processed by Lasso Service and others that are
served without any processing.

Lasso Service - Format files can be stored on the machine which hosts
Lasso Service. Usually, these format files serve a special purpose such as
library files in the LassoStartup folder that contain code which is executed
when Lasso Service starts up.

Database Field - Format files can be stored as text in a database field.
When a database action is performed the contents of the field are
returned to the client as if a disk-based text file had been processed and
served. Permission must be granted in Lasso’s administration interface in
order to use a database field in this fashion. See Chapter 7: Setting Up
Data Sources in the Lasso Professional 7 Setup Guide for more informa-
tion.

® Remote Server - Lasso will not process LDML code which is stored on
remote servers, but it can incorporate content from remote Web servers
into the results served to the client or trigger CGI actions on remote
servers using the [Include_URL] tag. See Chapter 20: Files and Logging
for more information.

Naming Format Files

The Lasso Professional 7 Installer will automatically configure your Web
server to pass files named with a .lasso suffix to Lasso Service for processing.
Once it has finished processing a file, Lasso Service passes the resulting

file back to the Web server, which in turn sends the file to the client’'s Web
browser. Files with other extensions, such as .gif or .jpg image files or .html

LAsso 7.1 LANGUAGE GUIDE

40

CHAPTER 3 — FORMAT FILES

files are served directly by the Web server without being processed by Lasso
Service.

In addition, the Web server can be configured to send LDML format

files with other extensions such as .xml or .wml to Lasso Service. It is even
possible to configure the Web server to send all .html files to Lasso Service
for processing. See Chapter 6: Setting Global Preferences and the config-
uration chapters in the Lasso Professional 7 Setup Guide for more informa-
tion.

In order to promote the portability of your format files between Macintosh,
Windows, and UNIX platforms, it is best to name them in a multi-plat-
form friendly fashion. Never use reserved characters such as : ? &/\#% "' in
file names. Avoid spaces, punctuation, stray periods, and extended ASCII
characters. The safest file names contain only letters, numbers, and under-
scores. Some file systems are case-sensitive. Make sure that all references to
a file are specified using the same case as the actual file name on disk. One
option is to standardize on lowercase characters for all filenames.

Character Encoding

Lasso uses the standard Unicode byte order mark to determine if a format
file is encoded in UTF-8. If no byte order mark is present then the format
file will be assumed to be encoded using the Macintosh (or Mac-Roman)
character set on Mac OS X or the Latin-1 (or ISO 8859-1) character set on
Windows or Linux. Lasso does not support UTF-16 or UTF-32 format files.

Standard text editors such as Bare Bones BBEdit can save files using UTF-8
encoding with the byte order mark included. Consult the manual for the
text editor to see how to change the encoding of format files and how to
include the proper byte order mark to specify the encoding.

Note: It is recommended to use the Macintosh or Latin-1 character set only
for format files that do not contain extended, accented, or foreign characters.

Editing Format Files

Lasso format files can be edited in any text editor. If a format file contains
markup from a specific language such as HTML, WML, or XML then it can
be edited using an application which is specific to creating that type of file.

In order to make creating and editing Lasso format files which contain
HTML easier, OmniPilot supplies a product called Lasso Studio. Lasso
Studio provides tag-specific inspectors, wizards, and builders which allow
a developer to quickly build Lasso format files within either Macromedia

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 3 - FORMAT FILES 41

Dreamweaver, or Adobe GoLive. More information about Lasso Studio is
available at the following URL:

http://www.LassoStudio.com/

To ease editing of Lasso format files within leading text editors such as Bare
Bones BBEdit or Macromedia Home Site consult the Lasso Solutions page
at the following URL for links to various third-party solutions:

http://www.blueworld.com/blueworld/products/lassosolutions.html

Functional Types

Format files can be classified based on the types of LDML tags they contain
or based on the commands they will perform within a Web site. The
following list contains terms commonly used to refer to different types of
format files. A format file can be classified as being one or more of these

types.

Pre-Lasso is used to refer to a format file that contains only command
tags within HTML form inputs and URLs. Since Lasso does not perform
any substitutions on command tags, these format files do not require
any processing by Lasso before they are served to a client. Pre-Lasso
format files can be named with a .html file name extension and can
even be served from a Web server that does not have a Lasso Web server
connector installed.

Post-Lasso format files are the most common type of format files.
Post-Lasso format files can contain any combination of tags in

square brackets, command tags in HTML form inputs and URLs, and
LassoScripts. Post-Lasso format files need to be processed by Lasso
Service before they are served to the client. They are usually named with
a .lasso file name extension.

Library format files are used to modify Lasso’s programming environ-
ment by defining new tags and data types, setting up global constants,
and performing initialization code. Libraries are included in other
format files to modify the environment in which a single format file
is processed or loaded at startup to modify the global environment in
which all format files are processed.

Add Page, Search Page, Update Page, Listing Page, Detail Page
and others are format file names based upon the action which the client
will perform when they load the page in their Web browser. For example,
a format file might implement the search page of a site. An update page
would allow a user to edit a record from a database. A listing page is

LAsso 7.1 LANGUAGE GUIDE

42 CHAPTER 3 — FORMAT FILES

usually the result of a search and contains links to a detail page which
presents more information about each of the records listed.

¢ Add Response, Search Response, Delete Response and others are
format files named based on the action which results in the format file
being served to the client. These are typically called response pages. For
example, a delete response is served in response to the client opting to
delete a record from the database.

e Error Page, Add Error, Search Error and others are format files that
provide an error message to the client based on the current action.

Action Methods

Web servers and Lasso Service are passive by nature. The software waits
until an action is initiated by a client before any processing occurs. Every
page load which is processed by Lasso can be thought of as an action
with two components: a source and a response. A visitor selects a URL
or submits an HTML form within the source format file and receives the
response format file. The different types of Lasso actions are summarized
in the table below and then described in more detail in the sections that
follow.

Table 1: Action Methods

Action Method Example

URL Action http://www.example.com/default.lasso

HTML Form Action <form action="Action.Lasso" method="post"> ... </form>
Inline Action [Inline: -Database="Contacts', ..., -Search] ... [/Inline]
Scheduled Action [Event_Schedule: -URL="default.lasso', -Delay="10']
Startup Action [LassoStartup/startup.lasso

URL Action

A URL action is initiated or called when a client selects a URL in a source
file. The source file could be an HTML file from the same Web site, an
HTML file from another Web site, the “favorites” of a Web browser, or
could be a URL typed directly in a Web browser. The selected URL triggers
a designated response file that is processed and returned to the client.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 3 - FORMAT FILES 43

The characteristics of the URL determine the nature of the action which is

performed.

e HTML - If the URL references a file with a .html file name extension
then no processing by Lasso will occur (unless the Web server has been
configured to send .html files to Lasso Service.). The referenced HTML file
will be returned to the client unchanged from how it is stored on disk.

http://www.example.com/default.ntml

Lasso - If the URL references a file with a .lasso file name extension
then Lasso Service will be called upon to process the file. The referenced
format file will be returned to the client after Lasso Service has evaluated
all the LDML tags contained within.

http://www.example.com/default.lasso

e Action.Lasso - If the URL references Action.Lasso then any command tags
contained in the URL will be evaluated and an appropriate response will
be returned to the user. The response to an Action.Lasso URL will always
be processed by Lasso Service whether it is a .html file, a .lasso file, or a
database field.

http://www.example.com/Action.Lasso?-Response=default.html

Note: Lasso will only process files with extensions that have been registered
within Lasso Administration. See Chapter 6: Setting Global Preferences of
the Lasso Professional 7 Setup Guide for more information.

HTML Form Action

An HTML form action is initiated or called when a client submits an HTML
form in a source file. The source file could be an HTML file from the same
Web site or an HTML file from another Web site. The form action and
inputs of the form are evaluated and trigger a designated response file that
is processed and returned to the client.

The characteristics of the form action determine the nature of the action

which is performed.

e Lasso - If the HTML form references a file with a .lasso file name exten-
sion then Lasso Service will be called upon to process the file. The refer-
enced format file will be returned to the client after Lasso Service has
evaluated all the LDML tags contained within the inputs of the form.

<form action="default.lasso" method="post">

</form>

e Action.Lasso - If the HTML form references Action.Lasso then any
command tags contained in the inputs in the form will be evaluated and

LAsso 7.1 LANGUAGE GUIDE

44

CHAPTER 3 — FORMAT FILES

an appropriate response will be returned to the user. The response to an
HTML form with an Action.Lasso form action will always be processed by
Lasso Service whether it is a .html file, a .lasso file, or a database field.

<form action="Action.Lasso" method="post">
<input type="hidden" name="-Response" value="default.lasso"

</form>

Note: Lasso will only process files with extensions that have been registered
within Lasso Administration. See Chapter 6: Setting Global Preferences of
the Lasso Professional 7 Setup Guide for more information.

Inline Action

Inline actions are initiated when the format file in which they are
contained is processed by Lasso Service. The result of an inline action is
the portion of the format file contained within the [Inling] ... [/Inline] tags
that describe the action. As with all Lasso format files, inline actions are
processed as the result of a URL being visited or an HTML form being
submitted. However, inline actions are not reliant on command tags speci-
fied in the URL or HTML form.

¢ Inline Tag - The [Inline] ... [/Inline] container tags can be used to imple-
ment an inline action within a format file. The action described in the
opening [Inline] tag is performed and the contents of the [Inling] ... [/Inline]
tags is processed as a sub-format file specific to that action.
[Inline: ... Action Description ...]
... Response ...
[/Inline]

¢ Multiple Inlines - A single format file can contain many [Inline] ... [/Inline]
container tags. Each set of tags is implemented in turn. A single format
file can be used to perform many different database actions in different
databases as the result of a single URL action or HTML form action.
[Inline: ... Action One Description ...]
... Response One ...
[/Inling]

[Inline: ... Action Two Description ...]
... Response Two ...

[/Inling]

¢ Nested Inlines - Inlines can be nested so that the results of one inline
action are used to influence the processing of subsequent inline actions.
Nested inline actions allow for complex processing to be performed such

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 3 - FORMAT FILES 45

as copying records from one database to another or summarizing data in
a database.
[Inline: ... Action One Description ...]
[Inline: ... Action Two Description ...]
... Combined Response ...
[/Inling]
[/Inling]

¢ Named Inlines - Inlines can be processed at the top of a format file and

their results can be used later in the format file. This allows the logical
processing of an action to be separated from the data formatting. The
results of the inline action are retrieved by specifying the inline’s name
in the [Records] ... [[Records] container tag.

[Inline: -InlineName="Action’, ... Action Description ...]

... Empty ...
[/Inline]

[Records: -InlineName="Action’]
... Response ...
[/Records]

Scheduled Action

Scheduled actions are initiated when they are queued using the
[Event_Schedule] tag in a source file. The source file could be a format file
which is loaded as the result of an action by a client or could be loaded
as a startup action. The response to the scheduled action is not processed
until the designated date and time for the action is reached.

Any type of format file can be called as a scheduled action, but the results
will not be stored. Scheduled format files can effectively be thought of as
pure LDML format files. Scheduled format files can use logging or email
messages to notify a client that the action has occurred. See Chapter 22:
Control Tags for more information.

¢ Lasso - The URL referenced when the action is scheduled will usually
contain a .lasso file name extension. The referenced format file will
be processed when the designated date and time is reached, but the
results will not be returned to any client. For example, the following
[Event_Schedule] tag schedules a call to a page that will send an email
report to the administrator of the site every 24 hours (1440 minutes),
even after server restarts:

[Event_Schedule: -URL="http://www.example.com/admin/emailreport.lasso’,
-Delay="1440", -Repeat=True, -Restart=True]

LAsso 7.1 LANGUAGE GUIDE

46 CHAPTER 3 — FORMAT FILES

Startup Action

Startup actions are initiated when Lasso Service is launched by placing
format files in the LassoStartup folder. Format files which are processed at
startup are library files which are used to set up the global environment
in which all other pages will be processed. For example, they can add tags
and custom data types to the global environment, set up global constants,
or queue scheduled actions.

e Lasso - Format files with .lasso file name extensions are used at startup
to queue scheduled actions or perform routine tasks on the databases or
files managed by Lasso Service. Any format files in the LassoStartup folder
will be processed every time Lasso Service is launched.

e Library - Libraries of LDML tags and custom data types can be
processed at startup in order to extend the global environment in which
all other pages are processed. All LDML tags and data types in a library
processed at startup will be available to all other format files processed
by Lasso Service. See Chapter 20: Files and Logging for more informa-
tion about libraries.

Securing Format Files

The information being collected or served in a Web site is often of a sensi-
tive nature. Credit card numbers and visitor’s personal information must
be kept secure. Proper format file security is the first step toward creating a
Web site which only provides the information you want it to publish.

The LDML code contained in a format file should be secured so visitors
cannot examine it. Format files contain information about how to access
your databases. They may contain passwords, table and field names, or
custom calculations.

LDML code in a format file is implicitly secured if it is stored in a format
file with a .lasso file extension. The code in the file will always be processed
by Lasso before it is served to visitors. Visitors can access the HTML source
of the file they receive, but cannot access the LDML source of the original
format file.

It is important to ensure that your format files cannot be accessed unse-
curely through other Internet technologies such as FTP, Telnet, or file
sharing. Make sure that the files in your Web serving folder can only be
accessed by trusted developers and administrators. See Chapter 8: Setting
Up Security in the Lasso Professional 7 Setup Guide for more information.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 3 - FORMAT FILES 47

Output Formats

Although Lasso format files are always text files, they can be used to output
a wide variety of different data formats. The most basic format files match
the output format. For example, HTML format files are used to return
HTML output to Web browsers. But, pure LDML format files can be used
to return data in almost any format through the use of the [Include] tag and
data from database fields.

This section describes how to output the most common data formats from
Lasso format files.

Text Formats

Lasso can be used to output any text-based data format. Format files are
usually based on a file of the desired type. The following are common
output formats:

e HTML is the most common output format. Usually, HTML output
is generated from HTML format files. The embedded LDML tags are
processed, altering and adding to the content of the file, but the essential
characteristics of the file remain unchanged.

e XML is rapidly becoming a standard for data exchange on the Internet.
XML output is usually generated through Lasso by processing XML
format files. The embedded LDML tags are processed, altering and
adding content to the XML data in the file. The resulting XML data can
be made to conform to any Document Type Definition (DTD) or XML
Schema desired.

e WML is the language used to communicate with WAP-enabled wireless
devices. WML is a language which is based on XML. It is an example of a
DTD or XML Schema to which output data must conform. Lasso usually
generates WML output by processing WML format files. Developers
can create WML format files by using a WML authoring tool and then
embedding LDML tags within.

e PDF or Portable Document Format is Adobe’s machine-independent
format for distribution of electronic documents. Lasso can be used in
concert with PDFs in several ways. Lasso can be used to process forms
embedded within PDF files and to return results to a client. Lasso can
be used to generate ASCII PDFs through custom programming. Finally,
Lasso can be used to provide access control to PDFs so only authorized
users are able to download certain PDFs.

LAsso 7.1 LANGUAGE GUIDE

48 CHAPTER 3 — FORMAT FILES

Binary Formats

Lasso can be used to output a variety of binary data formats. Generally,
Lasso is not used to perform any processing on the binary data being
served, but is just a conduit through which pre-existing binary data is
routed. See Chapter 26: Images and Multimedia for more informa-
tion about each of these methods. The following list describes common
methods of outputting binary data.

e URLs can be created and manipulated using LDML. For example, a data-
base could contain a file name in a field. LDML can be used to convert
that file name into a valid URL which will then be served as part of an
HTML page. The binary data will be fetched from the client directly
without any further action by Lasso.

Database Fields can be used to store binary data such as image files

in a container or binary format. If a Lasso data source connector for the
appropriate database supports fetching binary data, then Lasso can serve
the binary data or image files directly from the database field using the
[Field], [Image_URL] or -Image tags.

Binary Files can be served through Lasso using a combination of the
[Include_Raw] tag to output the binary data and the [Content_Type] tag to
report to the client what type of data is being served.

File Management

Lasso 7 introduces a new distributed architecture. Lasso Service can

be installed on one machine and a Lasso Web server connector can be
installed into a Web server on a different machine. It is important to realize
where format files are stored so they can be located on the appropriate
machine.

Note: In most Lasso 7 installations Lasso Service and a Lasso Web server
connector will be installed on the same machine. The discussion below still
applies since the various components of Lasso 7 will operate out of different
folders. An administrator can set up a machine so the same files are shared
by all components of Lasso.

Lasso Web Server Connector

Most format files for a Web site will be stored on the same machine as a
Lasso Web server connector in the Web serving folder which contains the
HTML and image files for the Web site.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 3 - FORMAT FILES 49

Client Format Files are stored alongside the HTML and image files
which comprise a Web site. To the client, these format files appear no
different from plain HTML files except that they contain dynamic data.

Included Files are stored in the Web serving folder. These are files which
are incorporated into format files using the [Include| and [Include_Raw]
tags. Included files could be other format files, plain HTML files, images
files, PDF files, etc.

Library Files can be stored in the Web serving folder. These files contain
definitions for LDML tags and data types. Library files are referenced
much like included files. The custom tags and data types defined in the
library file are available only in the pages which load the library file.

Administrative Files are stored in the Web serving folder in a folder
named Lasso. These files comprise the Web-based administration inter-
face for Lasso Service.

Lasso Service

Format files which are stored on the same machine as Lasso Service are

used primarily when Lasso Service starts up to set up the global environ-

ment. However, other files which are manipulated by Lasso’s logging and

file tags are also stored on the Lasso Service machine.

Startup Format Files are stored in the LassoStartup folder with Lasso
Service. These files are processed when Lasso Service is launched and can
perform routine tasks or modify the global environment in which all
other Lasso format files will be processed. Any LDML tags, data types, or
global constants defined in these libraries will be available to all pages
which are processed by Lasso Service.

Startup LassoApps are stored in the LassoStartup folder with Lasso
Service. The default page of each LassoApp is processed at startup and
the LassoApp is pre-loaded into memory for fast serving.

Log Files are created using the [Log] tag. These files can be used to store
information about the format files which have been processed by Lasso
Service. Log files are created on the same machine as Lasso Service.

Uploaded Files are stored in a temporary location in a folder with
Lasso Service. Files can be uploaded by a client using a standard HTML
file input. Uploaded files must be moved from their temporary location
to a permanent folder before the page on which they were uploaded
finishes processing.

File Tags operate on files in folders on the same machine as Lasso
Service. The file tags can be used to manipulate log files or uploaded
files. The file tags are also used to manipulate HTML and other format

LAsso 7.1 LANGUAGE GUIDE

50

CHAPTER 3 — FORMAT FILES

files in the Web serving folder if Lasso Service is installed on the same
machine as a Lasso Web server connector or if file sharing between the
two machines facilitates accessing the files as a remote volume. See
Chapter 20: Files and Logging for more information.

Note: A user can only access files to which the group they belong has
been granted access . See Chapter 8: Setting Up Security in the Lasso
Professional 7 Setup Guide for more information.

Database

Format files can be stored in any database which is available to Lasso
Service. They can be stored in the local Lasso MySQL database or in a
remote database hosted on another machine.

e Format Files stored in database fields can be included in a page using
the [Process] tag. In the following example, the field LDML_Template is
processed using the [Process] tag:

[Process: (Field: 'LDML_Template')]

Database fields can also be referenced through appropriate URL or
HTML form parameters. See Chapter 7: Setting Up Data Sources in the
Lasso Professional 7 Setup Guide for more information about granting
permission to use a field as a format file. In the following example, the
field LDML_Template is used to format the response to the URL:

http://www.example.com/Action.Lasso?-Response=Field:LDML_Template

Specifying Paths

Format files can be referenced in many different ways depending on how
they are being used. They can be referenced in any of the following ways:

e A URL can be used to reference a format file with a .lasso file extension
directly:
http://www.example.com/default.lasso

e A URL can be used to reference format files with any file exten-
sions by calling Action.Lasso and then specifying the format file in a
-Response command tag:

http://www.example.com/Action.Lasso?-Response=default.html

e An HTML form can be used to reference a format file with a .lasso file
extension directly in the form action:

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 3 - FORMAT FILES 51

<form action="default.lasso" method="post">

</form>

e An HTML form can be used to reference format files with any file exten-
sions by calling Action.Lasso as the form action and then specifying the
format file in a -Response hidden input:

<form action="Action.Lasso" method="post">
<input type="hidden" name="-Response" value="default.html">

</form>

e A format file can be referenced from within certain LDML tags. For
instance, the [Include] tag takes a single format file name as a parameter:

[Include: 'default.lasso’]

Paths are specified for format files differently depending on what type of
format file contains the path designation and to which type of format file
is being referred.

Note: Lasso cannot be used to reference files outside of the Web server root
unless specific permission has been granted within Lasso Administration. See
Chapter 8: Setting Up Security in the Lasso Professional 7 Setup Guide for
more information.

Relative and Absolute Paths

Most paths in Lasso format files follow the same rules as the paths between
HTML files served by the Web server. Relative and absolute paths are inter-
preted either by the client's Web browser or by Lasso Service. These paths
are all defined within the context of the Web serving folder established by
the Web server which is hosting a Lasso Web server connector. If a single
Web server is used to host multiple sites, the Web serving folder could be
different for each virtual host.

¢ Relative Paths between files can be specified using all the rules and

features of URL file paths. For example, the following anchor tag desig-
nates a response in the same folder as the current page:

Response

e Paths can use ../ to specify a higher level folder. The following anchor
tag designates a response in the folder one level higher than that which
contains the current page:

Response

e Relative paths designated within LDML tags follow the same basic rules
except that ../ cannot be used to access the parent folder for a format

LAsso 7.1 LANGUAGE GUIDE

52

CHAPTER 3 — FORMAT FILES

file. For example, the following [Include] tag includes a file from the same
folder as the current page.

[Include: 'include.lasso']

Absolute Paths are referenced from the root of the Web serving folder
as designated by the Web serving software. The Web server root is speci-
fied using the / character. The following anchor tag designates a response
file contained at the root level of the current Web site:

Response

Absolute paths designated within LDML tags work the same as absolute
paths in URLs. The following [Include] tag includes a file contained at the
root level of the current Web site.

[Include: 'finclude.lasso’]

For more information about specifying relative and absolute paths, consult
your favorite HTML reference or the documentation for your Web serving
application.

Action.Lasso Paths

If a format file has been called using Action.Lasso in either a URL or in an
HTML form action then all paths within the format file will be evaluated
relative to the stated location of Action.Lasso.

e Action.Lasso could be specified as Action.Lasso so it appears to be located in
the same folder as the calling format file. All paths must then be speci-
fied as if the referenced format file was located in the same folder as the
calling format files. Paths relative to the referenced format file will fail,
but paths relative to the calling format file will succeed.

Response

e Action.Lasso could be specified as /Action.Lasso so it appears to be located
at the root of the Web serving folder. All paths must then be specified as
if the referenced format file was located at the root of the Web serving
folder. Paths relative to the referenced format file will fail.

Response

e Action.Lasso can also be specified using an arbitrary path such as
[Folder/Action.Lasso. In this case all paths will be relative to the specified
location of Action.Lasso.

Response

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 3 - FORMAT FILES 53

Database Field Paths

The path to database fields which are going to be used as format files is a
special case since these files are not contained on the local disk of the Web
serving machine.

e In a URL, a field named Example_Template can be referenced as follows.
Usually, Action.Lasso is used as the target of a URL and the field is speci-
fied in a -Response command tag. The URL must contain a valid data-
base action that returns a record from which the field will be used. The
following example searches for a person from the Contacts database
whose ID is 1. The value of Example_Template for that person is used as the
response format file.

http://www.example.com/Action.Lasso?-Database=Contacts&-Table=People&
-KeyField=ID&-KeyValue=18&-Search&-Response=Field:Example_Template

In an HTML form, a field named ExampleTemplate can be referenced as
follows. Usually, Action.Lasso is used as the form action and the field is
specified in a hidden input using a -Response command tag. This form
uses the same database action defined in the URL above.
<form action="Action.Lasso" method="post">
<input type="hidden" name="-Search" value="">
<input type="hidden" name="-Database" value="Contacts">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">
<input type="hidden" name="-KeyValue" value="1">
<input type="hidden" name="-Response" value="Field:Example_Template ">
</form>

Note: Permission must be granted in Lasso Administration for a field to be
used as a response field. See Chapter 7: Setting Up Data Sources in the
Lasso Professional 7 Setup Guide for more information.

Lasso Service Paths

Paths to format files on the machine hosting Lasso Service are speci-

fied differently than those which are used in format files on the machine

hosting a Lasso Web server connector. Format files on the machine hosting

Lasso Service are usually only referenced by the file tags and log tag.

e Most paths should be Fully Qualified Paths specified from the root of
the disk on which Lasso Service is installed. For example, the following
path would represent a file in the same folder as Lasso Service in a
typical install on a Windows 2000 machine:

C:/IProgram Files/OmniPilot Communications/Lasso Professional 7/default.lasso

LAsso 7.1 LANGUAGE GUIDE

54

CHAPTER 3 — FORMAT FILES

¢ The following path would represent the same file if it were in the same
folder as Lasso Service in a typical install on a Mac OS X machine:

Il/Applications/Lasso Professional 7/default.lasso

In Mac OS X, the hard drive name is set to a slash / so the fully qualified
paths must start with three slashes ///. Paths starting with a single slash
| are defined to be relative to the Web server root.

For more information about specifying fully qualified paths, consult
Chapter 20: Files and Logging.

Note: Fully qualified paths can also be specified in a platform
specific fashion. For example, the path above could be written as
C:\\Program Files\Blue World Communications\Lasso Professional 7\default.lasso on
Windows or as Applications:Lasso Professional 7:defaultlasso on Macintosh.

Format File Execution Time Limit

Lasso includes a limit on the length of time that a format file will be
allowed to execute. This limit can help prevent errors or crashes caused by
infinite loops or other common coding mistakes. If a format file runs for
longer than the time limit then it is killed and a critical error is returned
and logged.

The execution time limit is set to 10 minutes (600 seconds) by default and
can be modified or turned off in the Setup > Global > Settings section of
Lasso Admin. The execution time limit cannot be set below 60 seconds.

The limit can be overrided on a case by case basis by including the
[Lasso_ExecutionTimeLimit] tag at the top of a format file. This tag can set the
time limit higher or lower for the current page allowing it to exceed the
default time limit. Using [Lasso_ExecutionTimeLimit: 0] will deactivate the time
limit for the current format file altogether.

On servers where the time limit should be strictly enforced, access to the
[Lasso_ExecutionTimeLimit] tag can be restricted in the Setup > Global > Tags
and Security > Groups > Tags sections of Lasso Admin.

Asynchronous tags and compound expressions are not affected by the
execution time limit. These processes run in a separate thread from the
main format file execution.

Note: When the execution time limit is exceeded the thread that is
processing the current format file will be killed. If there are any outstanding
database requests or network connections open there is a potential for some
memory to be leaked. The offending page should be reprogrammed to

run faster or exempted from the time limit using [Lasso_ExecutionTimeLimit: 0].
Restarting Lasso Service will reclaim any lost memory.

LAsso 7.1 LANGUAGE GUIDE

55

Chapter 4
LDML 7 Tag Language

This chapter introduces the methodology behind programming data-driven
Web sites powered by Lasso 7. This chapter introduces terminology which
is used through the remainder of this language guide. All new users of
Lasso Professional 7 should read through this chapter to familiarize them-
selves with the structure of Lasso Dynamic Markup Language (LDML).

e Introduction describes the layout of this chapter in detail.
e Syntax Types describes the ways to embed LDML 7 tags in format files.

e Tag Types introduces the five types of LDML 7 tags including substitu-
tion tags, process tags, container tags, member tags, and command tags.

Tag Categories and Naming introduces the logic behind the names of
LDML 7 tags.

Parameter Types describes the different types of parameters that can be
specified within a tag.

e Encoding contains a discussion of character encoding features for substi-
tution tags.

e Data Types describes the different data types which LDML 7 offers.

e Expressions and Symbols introduces the concept of performing calcula-
tions directly within parameters.

¢ Delimiters includes a technical description of the characters used to
delimit LDML 7 tags in any syntax.

Introduction

This chapter describes the syntax features of LDML 7. Most of the topics in
this chapter are interrelated, and many of the terms used in this chapter are

LAsso 7.1 LANGUAGE GUIDE

56

CHAPTER 4 — LDML 7 TAG LANGUAGE

defined in Appendix A: Glossary of the Lasso Professional 7 Setup Guide.
Consult this glossary if you are unsure of how any terms are used in this
guide.

The first part of this chapters describes the various syntax types that can be
used when coding in LDML, and the describes the different categories of
LDML tags.

The next part of the chapter describes the syntax of individual tags. The
different components of tags are discussed, followed by an introduction to
the various parameters that can be specified in LDML tags. Next, the focus
shifts to the values which are used to specify parameters. A discussion of
Lasso’s built-in data types sets the stage for the introduction of symbols
and expressions which can be used to modify values.

Finally, the chapter ends with a technical description of the delimiters used
to specify all the different tag types within Lasso and a brief discussion of
syntax rules and guidelines which make coding format files within Lasso
easier.

Syntax Types

LDML tags can be specified in several different ways within a format file.
They can be embedded in square brackets, LassoScripts, compound expres-
sions, HTML form inputs or URLs. Each of these methods is listed in the
table below and then described in more detail in the sections that follow:

Table 1: LDML 7 Syntax Types

Syntax Type Example

Square Brackets [Field: 'Company_Name']

LassoScript <?LassoScript Field: '‘Company_Name'; 7>
Compound Expression [Output: {If: $Num =="1'; Return:'Yes'; /If;}->Run]
HTML Form Inputs <input type="hidden" name="-Required">

URLs http://www.example.com/default.lasso?-Token.Num=32

Square Brackets

A single LDML tag can be embedded within square brackets in a format
file by specifying its tag name and parameters within the brackets. The
entire square bracketed tag will be replaced by the result of the tag when
the format file is served to a client. For example, the following [Field] tag is
replaced by the value of the specified field in the current database:

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 57

[Field: 'Image_URL'] =¥ /Images/Portrait.qgif

The square brackets serve to distinguish LDML tags from markup tags in
the format file, such as HTML and XML tags which are delimited by angle
brackets. LDML tags can be written on their own or within HTML or XML
tags. Lasso will not disturb the markup tags, but will replace the square
bracketed tag by its value in place when the format file is served. For
example, the [Field] tag can be used to specify the value of the src attribute
for an HTML tag:

 =»

Any of the various tag types can be embedded within square brackets. See
the section on Tag Types below for more details. Some tags do not return
a value in which case they will be evaluated and removed from the output
when the format file is served.

Note: Lasso will attempt to interpret any expression that is contained within
square brackets in a format file and return the results. See Chapter 31:
Upgrading Your Solutions for information about how to use square brackets
in JavaScript without having Lasso interpret their contents.

LassoScript

Multiple LDML tags can be embedded within a LassoScript in a format file

by specifying the tags inside the LassoScript container <?LassoScript ... 7>.

The entire LassoScript is replaced by the result of all the tags included in

the LassoScript when the format file is served to a client. For example, the

following LassoScript will return the value of the included [Field] tag:
<?LassoScript

Field: 'Image_URL';
»>

=>» /Images/Portrait.gif

Individual LDML tags inside a LassoScript are separated by semi-colons.
Multiple tags can be included in the same line as long as they are sepa-
rated by semi-colons, but usually each tag is specified in its own line.
Parentheses can optionally be used around individual tags in order to
make it clear which parameters belong to which tag. For example, the
following LassoScript contains two [Outpuf] tags and a [Field] tag each speci-
fied in its own line. The result of the LassoScript is the concatenation of the
values of all three tags.

LAsso 7.1 LANGUAGE GUIDE

58 CHAPTER 4 — LDML 7 TAG LANGUAGE

<?LassoScript
Output: '<img src=\";
Field: 'Image_URL';
Output; \">";

»>

=>»

The same LassoScript as in the previous example can be written in a single

line with optional parentheses included so that the parameters of each tag

can be clearly distinguished. Note that even when parentheses are specified

around a tag, the semi-colon still must be included between tags:
<?LassoScript

(Output: '');
»>

=»

Comments can be included at the end of any line of a LassoScript after two
forward slash characters //. The comment continues only until the end of
the line. Longer comments can be created by starting subsequent lines with
the // characters. For example, the LassoScript from above can be written as
follows with comments explaining each of the elements of the LassoScript.
The output is the same as above since the comments are all disregarded
when the LassoScript is processed:
<?LassoScript
II'A LassoScript to output an HTML tag for field 'lmage_URL'".
Output: '<img src=\";
/I Output the start of the tag up to the first quote mark.
Field: 'Image_URL';
I/ Output the value of the field 'Image_URL' from the database.
Output; \">;
/I Output the end of the tag from the final quote mark.
»>

=>»

Any of the various tag types can be embedded within LassoScripts. See the
section on Tag Types later in this chapter for more details.

Compound Expression Syntax

Compound expression syntax is a combination of square bracket syntax
and LassoScript whereby a LassoScript expression can be contained
within a custom tag with square bracket syntax. In the example below, a
LassoScript conditional statement is used within the [Output] tag to display
Yes or No based on the value of the variable MyTest.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 59

[Variable: 'myTest'= 'Yes']
[Output: { If: $myTest; Return: 'Yes'; Else; Return: 'No'; /If; }->Eval]

=> Yes

Instead of using the LassoScript container <?LassoScript ... ?>, the LassoScript
syntax is delimited by curly braces {...} within square bracket syntax. Inside
the curly braces, all syntax rules for LassoScript apply. Compound expres-
sion syntax combines the conciseness of LassoScript with the distinguish-
ability of square bracket syntax for streamlined coding.

Compound expression syntax is most useful when creating custom tags,
and is described in detail in Chapter 5: Advanced Programming Topics of
the Extending Lasso 7 Guide. The [Tag] tag, which is required for use with
compound expressions, is also described in that chapter.

HTML Form Inputs

LDML tags can be embedded within HTML form inputs in two different
ways. An LDML command tag can be embedded as the name parameter

of an <input>, <select>, or <textarea> tag. LDML tags in square brackets can

be embedded as either the name or value parameters. For example, the
following <input> tag includes an LDML command tag -ResponseAnyError as
the name parameter and an LDML substitution tag [Response_FilePath] as the
value parameter.

<input type="hidden" name="-ResponseAnyError" value="[Response_FilePath]">

When the format file that includes the -ResponseAnyError tag is served to a
client, the -ResponseAnyError tag will not be processed until the HTML form
in which this <input> is embedded is submitted by a client. However, the
[Response_FilePath] substitution tag is replaced by the name of the current
Web page to yield the following HTML for the <input> tag.

=» <input type="hidden" name="-ResponseAnyError" value="/form.lasso">

Any of the various tag types can be embedded within HTML form inputs,
but the details differ for each type of tag. See the section on Tag Types
below for more details.

URLs

LDML tags can be embedded within the parameters of URLs in two
different ways. An LDML command tag can be embedded as the name half
of a parameter. LDML tags in square brackets can be embedded as either
the name or value half of a parameter. For example, the following URL
includes an LDML command tag -Token.Name as the name half of the first

LAsso 7.1 LANGUAGE GUIDE

60

CHAPTER 4 — LDML 7 TAG LANGUAGE

parameter and an LDML substitution tag [Client_Username] as the value half
of the first parameter.

When the format file that includes this tag is served to a client the
-Token.Name command tag will remain unchanged. This tag will not be
processed until the URL is selected by a client. The [Client_Username] substi-
tution tag will be replaced by the name of the current user logged in.

=»

Any of the various tag types can be embedded within URLs, but the details
differ for each type of tag. See the section on Tag Types below for more
details.

Tag Types

LDML 7 tags are divided into five different types depending on how the
tags are used and how their syntax is specified. Each of the five tag types is
listed in the table below and then discussed in more detail in the sections
that follow, including details of how each tag type can be used within a
format file.

Table 2: LDML 7 Tag Types

Tag Type Example

Substitution Tag [Field: 'Company_Name']

Process Tag [Event_Schedule: -URL="http://www.example.com/]
Member Tag [Output: 'String'->(Get: 3)]

Container Tag [Loop: 5] ... Looping Text ... [/Loop]

Command Tag <input type="hidden" name="-Required">

Substitution Tags

Substitution tags return a value which is substituted in place of the tag
within the format file being served to a client. Most of the tags in LDML
are substitution tags. Substitution tags are used to return field values from
a database query, return the results of calculations, or to display informa-
tion about the state of Lasso Service and the current page request.

The basic format for substitution tags is a tag name followed by a colon
and then one or more parameters separated by commas. Every substitu-
tion tag also accepts an optional encoding keyword as described later. The

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 61

following example shows the structure of substitution tags expressed in
square brackets:

[Substitution_Tag: Tag_Parameter, -EncodingKeyword]

Substitution tags have the same basic form when they are expressed in
a LassoScript as when they are expressed in square brackets, except that
each tag must end with a semi-colon when expressed in a LassoScript. The
following example shows the format of substitution tags and process tags
expressed in a LassoScript:

<?LassoScript

Substitution_Tag: Tag_Parameter, -EncodingKeyword;
»>

To embed a substitution tag within square brackets:

e Specify the substitution tag on its own. The tag will be replaced by its
value when the page is served to a client. For example, the following
[Field] tags will be replaced by the company’s information from the data-
base:

[Field: 'Company_Name'] =» OmniPilot
[Field: '‘Company_URL'] =¥ http://www.blueworld.com

e Specify the substitution tag within HTML or XML markup tags. The
LDML tag will be replaced by its value when the page is served to a
client, but the markup tags will be served as written. For example, the
following [Field] tags are replaced by the company’s information from the
database within an HTML anchor tag.

[Field: 'Company_Name']

=» OmniPilot

To embed a substitution tag within a LassoScript:

¢ Specify the substitution tag inside the LassoScript container followed by
a semi-colon. The value of the LassoScript will be the value of the lone
substitution tag. For example, the [Field] tag is the value of the LassoScript
in the following code:
<?LassoScript

Field: 'Company_Name';
o

=>» OmniPilot

e Specify multiple substitution tags on separate lines of the LassoScript.
End each tag with a semi-colon. The value of the LassoScript will be
the concatenation of the value of all the substitution tags. For example,

LAsso 7.1 LANGUAGE GUIDE

62 CHAPTER 4 — LDML 7 TAG LANGUAGE

the [Output] tags and [Field] tag define the value of the LassoScript in the
following code:
<?LassoScript
Output: '', -EncodeNone;
Field: 'Company_Name';

Output: '', -EncodeNone;
o

=» <p>OmniPilot

Note: Every substitution tag accepts an optional encoding parameter which
specifies the output format for the value which is being returned by the tag.
Please see the section on Encoding below for more details.

Process Tags

Process tags perform an action which does not return a value. They can
be used to alter the HITP header of an HTML file being served, to store
values, to schedule tasks for later execution, to send email messages, and
more.

The basic format for process tags is identical to substitution tags: a tag
name followed by a colon and then one or more parameters separated by
commas.

[Process_Tag: Tag_Parameter]

Process tags have the same basic form when they are expressed in a
LassoScript as when they are expressed in square brackets. Except that
each tag must end with a semi-colon when expressed in a LassoScript.
The following example shows the format of process tags expressed in a
LassoScript:

<?LassoScript

Process_Tag: Tag_Parameter;
”»

To embed a process tag within square brackets:

e Specify the process tag on its own. The tag will be removed from the
format file when it is served. For example, the following [Email_Send] tag
will send an email to a specified email address, but will return no value
in the Web page being served.

[Email_Send: -Host="smtp.myserver.com'’,
-To="Somebody@example.com’,
-From="Nobody@example.com’,
-Subject="This is the subject of the email’,
-Body='This is the message text of the email]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 63

To embed a process tag within a LassoScript:

e Specify the process tag inside the LassoScript container followed by a
semi-colon. Since the process tag does not return a value it will not
affect the return value of the LassoScript. For example, the following
[Email_Send] tag will send an email to a specified email address, but
since the LassoScript contains only this tag it will return no value in the
format file being served:

<?LassoScript
Email_Send: -Host="smtp.myserver.com',
-To="Somebody@example.com’,
-From="Nobody@example.com’,
-Subject="This is the subject of the email’,

-Body='This is the message text of the email';
>

A combination of substitution and process tags can be included in a
LassoScript, but the output value of the LassoScript will be determined
solely by the value of the substitution tags.

Member Tags

Member tags modify or return data from a value of a specific data type.
Each data type in Lasso has different member tags. Member tags can either
be used in the fashion of process tags to alter a value or they can be used
in the fashion of substitution tags to return a value.

Member tags differ from substitution and process tags in that they must be
called using the member symbol -> and a value from the appropriate data
type. The following example shows the structure of member tags:

[Value->(Tag_Name: Parameters)]

For example the [String->Get] member tag requires a value of type string.
Member tags are always written in this fashion in the documentation: the
data type followed by the member symbol and the specific tag name. The
following code fetches the third character of the specified string literal:

[Output: 'The String->(Get: 3)] =» e

Member tags are defined for any of the built-in data types and third parties
can create additional member tags for custom data types. The built-in data
types include String, Integer, Decimal, Map, Array, and Pair. More informa-
tion can be found in the section on Data Types below.

LAsso 7.1 LANGUAGE GUIDE

64

CHAPTER 4 — LDML 7 TAG LANGUAGE

To embed a member tag within square brackets:

e Specify the member tag as the parameter of an [Output] substitution tag.
This makes it clear that you want to output the value returned by the
member tag.

[Output: 'The String'->(Get: 3)] = e
[Output: 123->(Type)] =¥ Integer

To embed a member tag within a LassoScript:

e Specify the member tag as the parameter of an [Output] substitution tag.
This makes it clear that you want to output the value returned by the
member tag.

<?LassoScript
Var:'Text'="The String’;

Output: $Text->(Get: 3);
>

=>e

e Member tags can be specified directly if they are being used
in the fashion of a process tag. In the following example, the
[String->Append] member tag is used to add text to the string, but no result
is returned.
<?LassoScript
Var:'Text'="The String’;

$Text->(Append: ' is longer.");
>

Container Tags

Container tags are a matching pair of tags which enclose a portion of a
format file or LassoScript and either alter the enclosed contents or change
the behavior of tags within the enclosed contents. The opening tag uses the
same syntax as a substitution or process tag. The closing tag has the same
name as the opening tag, but the closing tag is specified with a leading
forward slash. This is similar to how HTML markup tags are paired.

In the documentation, container tags are referred to by specifying both
tags with an ellipsis representing the enclosed content. The loop tag will be
referred to as [Loop] ... [[Loop]. When the attributes or parameters of one half
of the container tag pair is being discussed, then just the single tag will be
named. The opening loop tag is [Loop] and the closing loop tag is [/Loop].

For example, the following [Loop] tag has a single parameter which specifies
the number of times the contents of the tag will be repeated. The [/Loop] tag
defines the end of the area which will be repeated:

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 65

[Loop: 5] Repeated [/Loop]
=» Repeated Repeated Repeated Repeated Repeated

To embed a container tag within square brackets:

¢ Specify the opening container tag followed by the contents of the
container tags and the closing container tag. The contents of the
container tags will be affected by the parameters passed to the opening
container tag. For example, the following [If] tag will output its contents
if its parameter evaluates to True. Since 1 does indeed equal 1 the output
is True.

[If: 1 == 1] True [/If] =» True

Note: Both the opening and closing tags of a container tag must be
contained within the same format file. Container tags can be nested, but all
enclosed container tags must be closed before the enclosing container tag is
closed. See Chapter 13: Conditional Logic for more information.

To embed a container tag within a LassoScript:

e Specify the opening container tag followed by the contents of the

container tag and the closing container tag. Each tag must end with

a semi-colon. For readability, the contents of a container tag is often
indented. For example, the following [If] tag will output the contents of
the enclosed tags if its parameter evaluates to True. Since 1 does indeed
equal 1 the output is True.

<?LassoScript
If: 1==1;
Output: True;

/If;
>

=> True

Command Tags

Most command tags are actually parameters of the [Inline] tag, but can be
used on their own within HTML forms or URLs. Command tags are used
to send additional information in a form submission or URL request that
is flagged for special use by Lasso. This includes specifying field search
operators, required form fields, error response pages, and passing token
information.

Command tags names always start with a hyphen, e.g. -Required. Command
tags can be though of as “floating parameters”, as they use the same

LAsso 7.1 LANGUAGE GUIDE

66 CHAPTER 4 — LDML 7 TAG LANGUAGE

hyphenated syntax conventions as substitution, process, and container tag
parameters, and can also be used directly as [Inline] tag parameters.

The basic format for a command tag is a tag name starting with a hyphen
and an associated value. Since command tags can be specified within
HTML form inputs, URLs, and as parameters of the [Inline] tag, the form of a
command tag is different in each situation.

To embed command tags within an HTML form:

e Specify multiple command tags within the HTML form inputs. Each
command tag should be specified in its own form input with the
command tag as the name of the input tag.

<input type="hidden" name="-CommandTag" value="Command Value">

The following example shows a form that contains Lasso command tags.
Each -Operator command tag is contained in an HTML hidden input,
which augments a field inputs below it. When the form is submitted,
each field passed to the searchresponse.lasso page will be passed with an
Equals operator, meaning the field value submitted must match values in
a database exactly before results will be returned.
<form action="searchresponse.lasso" method="post">

<input type="hidden" name="-Operator" value="equals">

<input type="text" name="Field1" value="">

<input type="hidden" name="-Operator" value="equals">

<input type="text" name="Field2" value="">

<input type="submit" value="Search">

</form>

e Command tags occasionally accept a parameter which is specified just
after the name of the tag following a period. For example, the -Token tag
has a name parameter and a value parameter. The -Token tag can be speci-
fied in a form as follows:

<input type="text" name="-Token.Name" value="Default Value">

To embed command tags within a URL:

e Specify multiple command tags within the parameters of the URL. A
URL consists of a page reference followed by a question mark and one or
more URL parameters. Each command tag parameter should be specified
as the command tag followed by an equal sign then its value. Individual
command tag parameters should be separated in the URL by amper-
sands.

http://www.example.com/default.lasso?-CommandTag=Command%20Value

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 67

A full action would be specified as follows. The result of selecting
this URL in a Web browser would be that the response page
searchresponse.lasso will be returned to the visitor with the result of the
search from the specified database and table.

http://www.example.com/searchresponse.lasso?-Operator=Equals&Field1=Value1&
-Operator=Equals&Field2=Value2

To embed command tags within an [Inline]:

e Specify multiple command tags within the opening [Inline] tag. The
command tags will specify the action which the [Inline] is to perform.
The contents of the [Inline] ... [/Inline] tags will be affected by the results of
this action. The following example shows how the -Op tags can be used
directly within an [Inline] tag.

[Inline:
-Database="Contacts'
-Table='People’,
-KeyField="ID",
-Op="eq,
'Field1'='Value1',
-Op="eq,
'Field2'='Value2',
-Search]

[/Inline]

Tag Categories and Naming

All of the tags in LDML 7 are grouped and named according to a few
simple rules. These rules define where the tag can be found in Lasso 7
documentation and in Lasso Administration.

Tag Categories

The following chart describes the major tag categories in LDML 7. Each tag
category is discussed in more detail later in the book. Look for a chapter
which has the same name as the tag category or use the index to locate a
particular tag.

Table 3: LDML 7 Tag Categories

Tag Category Description
Administration Administration and security tags.
Array Array, map, and pair member tags.

LAsso 7.1 LANGUAGE GUIDE

68 CHAPTER 4 — LDML 7 TAG LANGUAGE

Client
Conditional
Custom Tag
Data Types
Database
Date
Encoding
Encryption
Error

File

Image
Include
Link

Math
Operator
Output
Network
PDF
Results
String
Technical
Utility
Variable
XML

Information about the current visiting client.
Conditional logic and looping tags.

Create custom LDML tags and data types.
Tags to cast values to specific data types.
Information about the current database.

Date manipulation tags.

Tags for encoding data.

Encrypt data so it can be transmitted securely.
Tags for reporting and handling errors.

Tags for manipulating files.

Tags for manipulating images.

Allows data to be included in a format file.
Link to other records in the current found set.
Mathematical operations and integer member tags.
Set and retrieve logical and field-level operators.
Tags for formatting or suppressing output.
Tags for performing network operartions.

Tags for creating PDF documents.

Results from the current Lasso action.

String operations and string member tags.
Tags for performing low-level operations.

Tags which don't fit in any other category.
Tags for creating and manipulating variables.
Tags for processing XML.

Tag Naming Conventions

Tags in LDML are named according to a set of well-defined naming
conventions. Understanding these conventions will make it easier to locate
the documentation for specific tags. We also recommend the following
naming conventions when creating custom tags, libraries, and modules.

e Case is unimportant in both tag name and tag parameter names. All

LDML tags can be written in uppercase, lowercase, or any combination

of mixed case. Tags are always written in title case in the documentation.

The following tag names would all be equivalent, but the first, e.g. title

case, is preferred:

[Tag_Name]
[TAG_NAME]

[tag_name]
[TaG_NaMe]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 69

Core language tags usually have simple tag names and do not contain
underscore characters. For example:

[Variable] [Field]
[If] ... [Else] ... [/If] [Inling] ... [/Inling]

Most tag names include a category name followed by an underscore then
the specific tag name. For example: [Math_Sin] is the tag in the “Math”
category that performs the function “Sine.” Similarly, [Link_NextRecordURL]
is the tag in the “Link” category that returns the URL of the next record
in the found set. Category names appear in tag names based on the
following format:

[Category_TagName]

Tag names never start with an underscore character. These tag names are
reserved for internal use.

Some tag names reference another tag or other component of Lasso
7 followed by an underscore then a specific tag name. For example
[MaxRecords_Value] returns the value of the -MaxRecords command tag.
There is no underscore in the words MaxRecords since it is referring to
another tag. This association can be expressed as follows:

[TagReference_TagName]

Many tag names include a word at the end that specifies what the output
of the tag will be. For instance, [Link_NextRecord] ... [/Link_NextRecord] is a
container tag that links to the next record, but [Link_NextRecordURL] is a
substitution tag that returns the URL of the next record. Tags that end

in “URL” output URLs. Tags that end in “List” and most tags that have
plural names output arrays. Tags that end in “Name” return the name of
a database entity. Tags that end in “Value” return the value of the named
database entity.

[Link_NextRecordURL] [File_ListDirectory]
[Action_Params] [Variables]
[KeyField_Name] [KeyField_Value]

Member tag names are written in the documentation with the data type
followed by the member symbol then the tag name. For example, the
Get tag of the data type string would be written: [String->Get]. All of the
member tags of a particular data type are considered to be part of the
category which has the same name as the data type. All of the string
member tags are part of the string category.

Tags created by third parties should start with a prefix which identifies
the creator of the tag. For example, tags from “Example Company” might
all start with Ex_. This ensures that the third party tags do not conflict
with built-in tags or other third party tags.

LAsso 7.1 LANGUAGE GUIDE

70 CHAPTER 4 — LDML 7 TAG LANGUAGE

[Ex_TagName] [ExCategory_TagName]

Synonyms and Abbreviations

The following charts detail some standard synonyms and abbreviations in
LDML 7. Any of the synonyms or abbreviations in the right column can be
used instead of the term in the left column, but the term in the left column
is preferred.

Table 4: LDML 7 Synonyms

Preferred Term Synonym Example

Field Column [Field_Name] [Column_Name]
Record Row [Records] [Rows]

KeyValue RecordID [KeyField_Value] [RecordID_Value]
Table Layout [Table_Name] [Layout_Name]

Table 5: LDML 7 Abbreviations

Preferred Term Abbreviation Example
Operator Op -Operator -Op
Required Req -Required -Req
Variable Var [Variable] [Var]

Some tags which were synonyms in earlier version of Lasso are no longer
supported. Please see Chapter 31: Upgrading Your Solutions for more
information. For a complete list of synonyms and abbreviations please
consult the LDML 7 Reference.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 71

Parameter Types

This section introduces the different types of parameters which can be
specified within LDML tags. This discussion is applicable to substitution
tags, process tags, the opening tag of container tags, and member tags.
Command tag parameters are fully described in the previous section.

Table 6: Parameter Types

Parameter Type Example

Value [Field: 'Field_Name']

Keyword [Error_CurrentError: -ErrorCode]
Keyword/Value [Inline: -Database=(Database_Name), ...]
Name/Value [Variable: 'Variable_Name'="Variable_Value']

Some parameters are required for a tag to function properly. The [Field]
and [Variable] tags require that the field or variable to be returned is speci-
fied. In contrast, the keyword in [Error_CurrentError] is optional and can be
safely omitted. If no keyword is specified for an optional parameter then
a default will be used. For a complete listing of required, optional, and
default parameters for each tag, please consult the LDML 7 Reference.

A Value is the most basic parameter type, and consists of a basic data type
contained within a tag after a colon character (:). Values include string
literals, integer literals, decimal literals, sub-tags, and complex expressions.

[Field: 'Field_Name'] [Date: '09/29/2003"
[Var_Defined: 'Variable_Name'] [Output: 123]

A value can also be the value of a sub-tag. Any substitution tag or member
tag can be used as a sub-tag. The syntax of the sub-tag is the same as that
for the substitution tag or member tag except that the tag is enclosed in
parentheses rather than square brackets. The following [Output] tags are used
to output the value of several different sub-tags:

[Output: (Field: 'Field_Name")] [Output: (Date)]
[Output: (Loop_Count)] [Output: 'String'->(Get: 3)]

A Keyword is a tag-specific parameter that alters the behavior of a tag.
Keyword names always start with a hyphen. This makes it easy to distin-
guish tag-specific keywords from user-defined parameters. The following
examples of [Server_Date] show how the same tag can be used to generate
different content based on the keyword that is specified:

[Server_Date: -Short] =» 3/24/2001

[Server_Date: -Long] =» March 24, 2001
[Server_Date: -Abbrev] =» Mar 24, 2001

[Server_Date: -Extended] =» 2001-03-24

LAsso 7.1 LANGUAGE GUIDE

72

CHAPTER 4 — LDML 7 TAG LANGUAGE

Note: For backwards compatibility, some tags will accept keyword names
without the leading hyphen. This support is not guaranteed to be in future
versions of Lasso so it is recommended that you write all keyword names with
the leading hyphen.

A Keyword/Value parameter is the combination of a tag specific keyword
and a user-defined value which affects the output of a tag. The keyword
name is specified followed by an equal sign and the value. Keyword/value
parameters are sometimes referred to as named parameters. For example,
the [Date] tag accepts multiple keyword/value parameters which specify the
characteristics of the date which should be output:

[Date: -Year=2001, -Day=24, -Month=3] =» 3/24/2001

Command tags are used like keyword/value parameters in the [Inline] tag.
The command tag functions like the keyword and is written with a leading
hyphen. For example, the following [Inline] contains several command tags
that define a database action:
[Inline: -FindAll
-Database="Contacts',
-Table='People’,
-KeyField="1D"]
... Results ...
[/Inling]

A Name/Value parameter is the combination of a user-defined name with
a user-defined value. The name and the value are separated by an equal
sign. Name/value parameters are most commonly used in the [Inline] tag
to refine the definition of a database action. For example, the previous
[Inline] example can be modified to search for records where the field
First_Name starts with the letter s by the addition of a name/value parameter
'First_Name'='s":
[Inline: -Search,
'First_Name'='s',
-Database="Contacts',
-Table='People’,
-KeyField='"ID']
... Results ...
[/Inline]

Encoding

Encoding keyword parameters specify the character format in which the
data output from a substitution tag should be rendered. Encoding ensures
that reserved or illegal characters are changed to entities so that they will

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 73

display properly in the desired output format. Encoding keywords allow
substitution tags to be used to output data in any of the following formats:

e HTML text for display in a Web browser (default).

e HTML tags for display in a Web browser.

e XML data for data interchange.

e URL parameters to construct a hyperlink.

e ASCII text for inclusion in an email message or log file.

The following table demonstrates each of the encoding keywords available
in LDML 7.

Table 7: Encoding Keywords

Keyword Encoding Performed

-EncodeNone No encoding is performed.

-EncodeHTML Reserved, illegal, and extended ASCII characters are
changed to their hexadecimal equivalent HTML entities.

-EncodeSmart lllegal and extended ASCII characters are changed to

their hexadecimal equivalent HTML entities. Reserved
HTML characters are not changed.

-EncodeBreak ASCII carriage return characters are changed to HTML

.

-EncodeURL lllegal and extended ASCII characters are changed to
their equivalent hexadecimal HTTP URL entities.

-EncodeStrictURL Reserved, illegal and extended ASCII characters are
changed to their equivalent hexadecimal HTTP URL
entities.

-EncodeXML Reserved, illegal, and extended ASCII characters are

changed to their UTF-8 equivalent XML entities.

To use an encoding keyword:

Append the desired encoding keyword at the end of a substitution tag. For
example, angle brackets are reserved characters in HTML. If you want to
include an angle bracket in your HTML output it needs to be changed into
an HTML entity. The entity for < is < and the entity for > is >.

[Output: 'HTML Text', -EncodeHTML] =» HTML Text

See Chapter 18: Encoding for more information.

LAsso 7.1 LANGUAGE GUIDE

74

CHAPTER 4 — LDML 7 TAG LANGUAGE

Data Types

Every value in Lasso is defined as belonging to a specific data type. The
data type determines what member tags are available and how symbols
affect the value. Data types generally correspond to everyday descriptions
of a value with the addition of some data types for structured data. The
following table lists the primary data types available in Lasso:

Table 8: Primary LDML 7 Data Types

Data Type Example

String ‘This is a string surrounded by single quotes'

Integer 1500

Decimal 3.14159

Date 9/29/2002 19:12:02

Duration 168:00:00

Array [Array: 'red', 'green’, 'blue’, 'yellow']

Map [Map: 'Company_Name'="OmniPilot', 'City'='Bellevue’]

Note: This section describes the primary data types which are used most
frequently in LDML. There are many other special-purpose data types in
LDML, including PDF, Image, File, and Network Types. These special-purpose
types are described in appropriate chapters later in this guide.

Strings

Strings are any series of alphanumeric characters. String literals are
surrounded by single quotes. The results of a substitution tag will be
considered a string if it contains any characters other than numbers. Please
see Chapter 14: String Operations for more information.

Some examples of string values include:

'String literal' is a string surrounded by single quotes.

'123456' is a string literal since it is surrounded by single quotes.

A string with \'quotes\' escaped' is a string that contains quote marks. The
quote marks are considered part of the string since they are preceded by
back slashes.

The following [Field] tag returns a string value. Notice that the value of a
substitution tag is a string value since it contains alphabetic characters:

[Field: '‘Company_Name'] =» OmniPilot

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 75

¢ The following code sets a variable to a string value, then retrieves that
value:

[Variable: 'String' = 'abcdef]
[Variable: 'String’] =» abcdef

Integers

Integers are any series of numeric characters that represent a whole
number. Integer literals are never surrounded by quotes. The results of a
substitution tag will be considered an integer if it contains only numeric
characters which represent a whole number. Please see Chapter 15: Math
Operations for more information.

Some examples of integer values include:
e 123456 is an integer literal since it is not surrounded by quotes.

e (-50) is an integer literal. The minus sign (hyphen) is used to define a
negative integer literal. The parentheses are required if the literal is to be
used as the right-hand parameter of a symbol.

The following [Field] tag returns an integer value. The value is recognized
as an integer since it contains only numeric characters and represents a
whole number:

[Field: 'Employee_Age'] =» 23

The following code sets a variable to an integer value, then retrieves that
value:

[Variable: 'Integer' = 1000]
[Variable: 'Integer] =» 1000

Decimals

Decimals are any series of characters that represent a decimal number.
Decimal literals are never surrounded by quotes. Decimal values must
include a decimal point and can be expressed in exponential notation.
Please see Chapter 15: Math Operations for more information.

Some examples of decimal values include:

e 123.456 is a decimal literal since it contains a decimal point and is not
surrounded by quotes.
¢ (-50.0) is a negative decimal literal. The parentheses are required if the
literal is to be used as the right-hand parameter of a symbol.
¢ The following [Field] tag returns a decimal value. The value is recognized
as a decimal since it contains numeric characters and a decimal point:
[Field: 'Annual_Percentage_Rate'] =» 0.12

LAsso 7.1 LANGUAGE GUIDE

76

CHAPTER 4 — LDML 7 TAG LANGUAGE

¢ The following code sets a variable to a decimal value, then retrieves that
value:

[Variable: 'Decimal' = 137.48]
[Variable: 'Decimal’] =» 137.48

Dates

Dates are a special data type that represent a date and/or time string. Dates
in Lasso 7 can be manipulated in a similar manner as integers, and calcu-
lations can be performed to determine date differences, durations, and
more. For Lasso to recognize a string as a date data type, the string must
be explicitly cast as a date data type using the [Date] tag. When casting as a
date data type, the following date formats are automatically recognized as
valid date strings by Lasso:

1/1/2001

1/1/2001 12:34

1/1/2001 12:34:56

1/1/2001 12:34:56 GMT

2001-01-01

2001-01-01 12:34:56

2001-01-01 12:34:56 GMT

The “/”, “-”, and “.” characters are the only punctuation marks recognized
in valid date strings by Lasso. If using a date format not listed above,
custom date formats can be defined as date data types using the [Date] tag
with the -Format parameter. See Chapter 16: Date and Time Operations
for more information.

Some examples of dates include:
o [Date:'9/29/2002 is a valid date data type recognized by Lasso.

e [Date:'9.29.20021 is not recognized by Lasso as a valid date data type due to
its punctuation, but can be converted to a date data type using the [Date]
tag with the -Format parameter.

[Date:'9.29.2002', -Format='%m.%d.%Y']

e Specific date and time information can be obtained from date data types
using accessors.
[(Date:'9/29/2002')->DayofYear] =¥ 272

e Date data types can be manipulated using math symbols. Date and time
durations can be specified using the [Duration] tag.
[(Date:'9/29/2002") + (Duration: -Day=2)] =» 10/01/2002

¢ A valid date data type can be displayed in an alternate format using the
[Date_Format] tag.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 77

[Date_Format:(Date:'9/29/2002'), -Format="%Y-%m-%d'] =» 2002-09-29

Note: Lasso uses internal standardized date libraries to automatically
adjust for leap years and day light savings time when performing date
calculations. The current time and time zone are based on that of the Web
server. For information on special cases with date calculations during day
light saving time, see Chapter 16: Date and Time Operations.

Durations

Durations are a special data type that represent a length of time in hours,
minutes, and seconds. Durations are not 24-hour clock times, and can
represent any length of time. Duration data types in Lasso 7 are related to
date data types, and can be manipulated in a similar manner. For Lasso
to recognize a string as a duration data type, the string must be explicitly
cast as a duration data type using the [Duration] tag. Any numeric string
formatted as hours:minutes:seconds or just seconds may be cast as a duration
data type.

168:00:00
60

Colon characters (:) are the only punctuation marks recognized in valid
duration strings by Lasso. The [Duration] tag always outputs values in
hours:minutes:seconds format regardless of what the input format was. See
Chapter 16: Date and Time Operations for more information.

Some examples of durations include:

e [Duration:'169:00:007 is a valid duration data type recognized by Lasso,
and represents a duration of 169 hours. This duration will be output as
169:00:00.

e [Duration:'3007 is a valid duration data type recognized by Lasso, and
represents a duration of 300 seconds. This duration will be output as
00:05:00 (five minutes).

Arrays

Arrays are a series of values which can be stored and retrieved by numeric
index. Arrays can contain values of any other data type, including other
arrays. Only certain substitution tags return array values. Array values are
never returned from database fields. Please see Chapter 17: Arrays and
Maps for more information.

Some examples of how to work with arrays include:

e Create an array using the [Array] tag. The following two examples create
an array with the days of the week in it, where each day of the week is a

LAsso 7.1 LANGUAGE GUIDE

78

CHAPTER 4 — LDML 7 TAG LANGUAGE

string literal. The second example shows abbreviated syntax where the

colon (:) character is used to specify the start of an array data type.
[Array: 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday’, 'Sunday']
[: 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday’]

e Store an array in a variable using the following code which stores the
array created in the code above in a variable named Week.

[Variable: 'Week' = (Array: 'Monday', "Tuesday', 'Wednesday',
'Thursday', 'Friday', 'Saturday', 'Sunday')]

Fetch a specific item from the array using the [Array->Get] member tag.
This code fetches the name of the third day of the week.

[Output: (Variable: 'Week')->(Get:3)] =» Wednesday

Set a specific item from the array using the [Array->Get] member tag. The
following code sets the name of the third day of the week to its Spanish
equivalent Miercoles.

[(Variable: "Week')->(Get:3) = 'Miercoles']

The new value of the third entry in the array can now be fetched.
[Output: (Variable: 'Week')->(Get:3)] =» Miercoles

Maps

Maps are a series of values which can be stored and retrieved by name.
Maps can contain values of any other data type, including arrays or other
maps. Only certain substitution tags return map values. Map values are
never returned from database fields. Please see Chapter 17: Arrays and
Maps for more information.

Some examples of how to work with maps include:

¢ Create a map using the [Map] tag. The following creates a map with some
user information in it. The name of each item is a string literal, the
values are either string literals or decimal literals:
[Map:
'First Name'='John,
‘Last Name'="Doe’,
'Age'=25]

e Store a map in a variable using the following code which stores the map
created in the code above in a variable named Visitor:
[Variable: 'Visitor' = (Map:
'First Name'="John',
'Last Name'='Doe’,
'Age'=25)]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 79

e Fetch a specific item from the map using the [Map->Get] member tag. This
code fetches the visitor’s first name:

[Output: (Variable: 'Visitor')->(Get:'First Name')] =» John

e Set a specific item from the map using the [Map->Get] member tag. This
code sets the age of the visitor to 29. Notice that the [Output] tag returns
no value since the member tag is being used in the fashion of a process
tag to set a value.

[Output: (Variable: 'Visitor')->(Get:'Age') = 29]

The new value of the age entry in the map can now be fetched:
[Output: (Variable: 'Visitor')->(Get:'Age')] =» 29

Note: There are other, less common data types in LDML that are not defined
here. These include pair, boolean, and null. Please see Chapter 17: Arrays
and Maps for more information about the pair type, Chapter 22: Control
Tags for more information about the null type, and Chapter 13: Conditional
Logic for more information about the boolean type.

Expressions and Symbols

Virtually all of the values shown in this chapter so far have been simple
string, integer or decimal literals. Any tag in LDML which accepts a value
as a parameter can accept an expression in place of that value. This allows
nested operations to be performed within the parameters of LDML tags.

This section discusses each of the different types of expressions that can
be used as values within LDML. It starts with simple expressions and
then moves on to more complex expressions. The [Output] tag will be used
throughout this section to output the value of expressions.

Table 9: Types of LDML 7 Expressions

Expression Example

Literal ‘String Literal', 100, 150.34
Sub-Tag (Variable: 'Variable_Name')
Member tag (Array: 1, 2, 3, 4)->(Get: 4)

String Expression 'String One' + 'String Two'

Math Expression 100 /4 + 25 - (-20)

Complex Expression '<p>'+ 100/ 4 + ''

Conditional Expression ‘azure' == 'blue’

Logical Expression (‘blue’ !="orange’) || (‘red" !="green")
Tag Reference \Tag_Name

LAsso 7.1 LANGUAGE GUIDE

80

CHAPTER 4 — LDML 7 TAG LANGUAGE

This section also describes each of the different symbols that can be used
to modify expressions specific to each type of expression.

Literals

Any string literal, integer literal, or decimal literal can be used as a value in
LDML. These are the most basic types of values and the simplest examples
of expressions. These literals are defined in the previous section on Data
Types. Some examples of outputting literal values include:

[Output: 'String Literal'] [Output: 123]

[Output: 100.14] [Ouput: (-123)]

Note: The [Output] tag is not technically required in these expressions.
[123] will evaluate to the integer value 123. However, for clarity, the use of the
[Output] tag is recommended for displaying expressions.

Sub-Tags

Substitution tags are LDML tags that return a value and any substitution
tag can be used as a simple expression in LDML. The syntax of the sub-tag
is the same as that for the substitution tag except that the tag is enclosed
in parentheses rather than square brackets. The value of the expression
is simply the value of the substitution tag. For example, the following
[Output] tags output the value of the specified sub-tag.

[Output: (Field: 'Field_Name')] [Output: (Date)]

[Output: (Loop_Count)]

Note: Substitution tags have a default encoding keyword of

-EncodeHTML applied when they are the outermost tag. However, when substi-
tution tags are used as sub-tags or in square brackets without an [Output] tag,
no encoding is applied by default. See Chapter 18: Encoding for more infor-
mation.

Member Tags

Member tags that return values can be used as simple expressions in
LDML. An appropriate member tag for any given data type can be attached
to a value of that data type using the member symbol ->. For example, the
following member tag returns a character from the specified string literal:

[Output: 'String'->(Get: 3)]

The value on the left side of the member symbol can be any expression
which is valid in LDML. It can be a string literal, integer literal, decimal
literal, sub-tag, or any of the expressions which are defined below. For

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 81

example, the following member tag would return the third character of the
name which is returned from the database:

[Output: (Field: 'First Name')->(Get: 3)]
Note: The [Output] tag is not technically required in member tag expressions.

['String'->(Get: 3)] will evaluate to the character r. However, for clarity, the use of
the [Output] tag is recommended.

Table 10: Member Tag Symbol

Symbol Name Example
-> Member [Output: 'abcdef'->(Get: 3)] =» ¢

String Expressions

String expressions are the combination of string values with one or more
string symbols. A string expression defines a series of operations that
should be performed on the string values. The string values which are to be
operated upon can be either string literals or any expressions which return
a string value.

Symbols should always be separated from their parameters by spaces and
string literals should always be surrounded by single quotes. Otherwise,
Lasso may have a difficult time distinguishing literals and LDML tags.

The most common string symbol is + for concatenation. This symbol can
be used to combine multiple string values into a single string value. For
example, to add bold tags to the output of a [Field] tag we could use the
following string expression:

[Output: -EncodeNone, '' + (Field: ‘CompanyName') + '']
=» OmniPilot

String symbols can also be used to compare strings. String symbols can
check if two strings are equal using the equality == symbol or can check
whether strings come before or after each other in alphabetical order using
the greater than < or less than > symbols. For example, the following code
reports the proper order for two strings:
[If: "abc' == 'def]
abc equals def
[Else: "abc' < 'def]
abc comes before def
[Else: "abc' > 'def]
abc comes after def

/]

=>» abc comes before def

LAsso 7.1 LANGUAGE GUIDE

82

CHAPTER 4 — LDML 7 TAG LANGUAGE

Note: Always place spaces between a symbol and its parameters. The

- symbol can be mistaken for the start of a negative number, command tag,
keyword, or keyword/value parameter if it is placed adjacent to the parameter
that follows.

Table 11: String Expression Symbols

Symbol Name Example

+ Concatenation [Output: 'abc' + 'def'] =» abcdef

* Repetition [Output: 'abc' * 2] =» abcabc

- Deletion [Output: 'abcdef - 'cde’] =¥ abf

>> Contains [Output: 'abcdef' >> 'bed’] =» True
1>> Not Contains [Output: 'abcdef' 1>> 'bed] =» False

== Equality (Value Only) [Output: 'abc' == 'def] =» False
=== Equality (Value & Type) [Output: 123" == 123] =¥ False
I= Inequality (Value Only) [Output: ‘abc' !='def] =» True
I== Inequality (Value & Type) [Output: 123" 1= 123] =» True
< Less Than [Output: 'abc' < 'def] =» True
> Greater Than [Output: 'abc' > 'def] =» False

Please see Chapter 14: String Operations for more information.

Math Expressions

Math expressions are the combination of decimal or integer values with
one or more math symbols. A math expression defines a series of opera-
tions that should be performed on the decimal or integer values. The
numeric values which are to be operated upon can be either decimal or
integer literals or any expressions which return a numeric value.

Symbols should always be separated from their parameters by spaces. This
ensures that the + and - symbols are not mistaken for the sign of one of the
parameters.

Simple math operations can be performed directly within an expression.
For example, the following [Output] tags return the value of the specified
simple math calculations.

[Output: 10 + 5] =» 15 [Output: 10 - 5] =» 5

[Output: 10 * 5] =» 50 [Output: 10/ 5] =» 2

If the second parameter of the expression is negative it should be
surrounded by parentheses.

[Output: 10 + (-5)] =» 5 [Output: 10 * (-5)] =» -50

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 83

Math expressions can be used on either decimal or integer values. If both
parameters of a math symbol are integer values then an integer result will
be returned. However, if either parameter of a math symbol is a decimal
value then a decimal value will be returned. Decimal return values always
have at least six significant digits.

Note: Always place spaces between a symbol and its parameters. The

- symbol can be mistaken for the start of a negative number, command tag,
keyword, or keyword/value parameter if it is placed adjacent to the parameter
that follows.

Table 12: Math Expression Symbols

Symbol Name Example

+ Addition [Output: 100 + 25] =» 125
- Subtraction [Output: 100 - 25] =» 75

* Multiplication [Output: 100 * 25] =» 2500
/ Division [Output: 100 / 25] =» 4

% Modulo [Output: 100 % 25] =» 0

== Equality (Value Only) [Output: 100 == 25] =» False
=== Equality (Value & Type) [Output: 100 == 100.0] =¥ False
I= Inequality (Value Only) [Output: 100 != 25] =» True

I= Inequality (Value & Type) [Output: 100 == 100.0] =» True

> Greater Than [Output: 100 > 25] = True
>= Greater Than or Equal [Output: 100 >= 25] =» True
< Less Than [Output: 100 < 25] =» False
<= Less Than or Equal [Output: 100 <= 25] =» False

Please see Chapter 15: Math Operations for more information.

Complex Expressions

Complex expressions can be created by combining sub-expressions
together using one or more string or math symbols. The results of the
sub-expressions are used as the parameters of the enclosing parameters.
Expressions can be enclosed in parentheses so that the order of operation
is clear.

For example, the following complex math expression contains many
nested math expressions. The expressions in the innermost parentheses
are processed first and the result is used as a parameter for the enclosing
expression. Notice that spaces are used on either side of each of the math-
ematical symbols.

LAsso 7.1 LANGUAGE GUIDE

84 CHAPTER 4 — LDML 7 TAG LANGUAGE

[Output: (1 +(2*3) +(4.0/5) +(-6))] = 1.8

The following complex string expressions contains many nested string
expressions. The expressions in the innermost parentheses are processed
first and the result is used as a parameter for the enclosing expression:

[Output: (‘abc' + (‘def * 2) + (‘abedef' - 'def) + 'def')] =» abcdefdefabedef

String and math expressions can be combined. The behavior of the
symbols in the expression is determined by the parameters of the symbol.
If either parameter is a string value then the symbol is treated as a string
symbol. Only if both parameters are decimal or integer values will the
symbol be treated as a math symbol. For example, the following code
adds two numbers together using the math addition + symbol and then
appends bold tags to the start and end of that value using the string
concatenation + symbol:

[Output: '' + (100 + (-35)) + '', -EncodeNone] =» 65

Conditional Expressions

Conditional expressions are the combination of values of any data type
with one or more conditional symbols. A conditional expression defines a
series of comparisons that should be performed on the parameter values.
The values which are to be operated upon can be valid values or expres-
sions.

Conditional symbols were introduced in the String Expressions and Math
Expressions sections above in the context of comparing string or math
values. They can actually be used on values of any data type including
arrays, maps, and custom types defined by third parties.

Values are automatically converted to an appropriate data type for a
comparison. For example, the following comparison returns True even
though the first parameter is a number and the second parameter is a
string. The second parameter is converted to the same type as the first
parameter, then the values are compared:

[Output: 123 =="'123] =» True

Conditional expressions are used in the [If] ... [/Ifl and
[While] ... [/While] container tags to specify the condition under which the
contents of the tag will be output. For example, the following [If] tag
contains a conditional expression that will evaluate to True only if the
company name is OmniPilot:
[If: (Field: 'Company_Name') == 'OmniPilot]
The company name is OmniPilot

[/

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 85

Table 13: Conditional Expression Symbols

Symbol Name Example
>> Contains [Output: 'abcdef' >> 'bed’] =» True
1>> Not Contains [Output: 'abcdef' >> 'bed’] =» False

== Equality (Value Only) [Output: 100 == 25] =» False
=== Equality (Value & Type) [Output: 100 =='1007] =¥ False
I= Inequality (Value Only) [Output: 100 != 25] =» True
I== Inequality (Value & Type) [Output: 100 !=="100" =» True

> Greater Than [Output: 100 > 25] =» True
>= Greater Than or Equal [Output: 100 >= 25] =» True
< Less Than [Output: 100 < 25] =» False
<= Less Than or Equal [Output: 100 <= 25] =» False

Please see Chapter 13: Conditional Logic for more information.

Logical Expressions

Logical expressions are made up of multiple conditional sub-expressions
combined with one or more logical symbols. The values of the conditional
sub-expressions are combined according to the operation defined by the
logical symbol.

Logical expressions are most commonly used in the [If] ... [/If] container tag
to specify the condition under which the contents of the tag will be output.
A single [If] tag can check multiple conditional expressions if they are
combined into a single logical expressions.

For example, the following [If] tag contains a logical expression that will
evaluate to True if one or the other of the sub-expressions is True. The
[If] ... ['f] container tag will display its contents only if the company name is
OmniPilot or the product name is Lasso Professional:
[If: ((Field: 'Company_Name') == 'OmniPilot') ||
((Field: 'Product_Name') == 'Lasso Professional')]
The company name is OmniPilot

/]
Table 14: Logical Expression Symbols
Symbol Name Example
&& And [Output: True && False] =¥ False
I Or [Output: True || False] =» True
! Not [Output: ! True] =» False

LAsso 7.1 LANGUAGE GUIDE

86

CHAPTER 4 — LDML 7 TAG LANGUAGE

Please see Chapter 13: Conditional Logic for more information.

Note: These logical symbols should not be confused with the logical search
operators which can be used to assemble complex search criteria. See
Chapter 6: Database Interaction Fundamentals for more information about
logical search operators.

Tag References

The back slash \ can be used to reference tags by name. This allows the
member tags of the tag data type to be used on both built-in and custom
tags. For more information about the tag data type consult the Extending
Lasso Guide.

For example, \Field returns a reference to the built-in [Field] tag. Each of the
following code samples is an equivalent way of calling the [Field] tag.

<?LassoScript
Field: 'First_Name';
\Field->(Run: -Params=(Array: 'First_Name'));
\Field->(Invoke: 'First_Name');
>
Simiarly, the member tags of a data type can be referenced using the ->
symbol and the back slash \ symbol together. For example, Array->\Join

would return a reference the [Array->Join] tag. Each of the following code
samples is an equivalent way of calling the [Array->Join] tag.

<?LassoScript
(Array: 'One', "Two')->(Join: " -);
(Array: 'One', "Two')->\Join->(Run: -Params=(Array: ' - "));
(Array: 'One', "Two')->\Join->(Invoke: ' - ');

>

LAsso 7.1 LANGUAGE GUIDE

Delimiters

CHAPTER 4 — LDML 7 TAG LANGUAGE 87

This section describes the delimiters which are used to define LDML and
HTML. It is important to understand how delimiters are used so that tags
can be constructed with the proper syntax.

Table 15: LDML 7 Delimiters

Symbol Name Function
[Square Bracket Start of tag square bracket syntax.
] Square Bracket End of tag in square bracket syntax.
/ Forward Slash Closing container tag name.
\ Back Slash Escapes special characters in strings or
returns a reference to a tag or member tag.
Colon Separates tag name from tag parameters.
, Comma Separates tag parameters.
= Equal Sign Separates name/value parameter.
- Hyphen Starts command tag name and keyword names.
' Single Quote Start and end of LDML string value.
(Parentheses Start of sub-tag or expression.
) Parentheses End of sub-tag or expression.
<?LassoScript LassoScript Start of LassoScript.
7> LassoScript End of LassoScript.
{ Curly Brace Start of compound expression syntax (LassoScript
contained within square bracket syntax).
} Curly Brace End of compound expression syntax.
; Semi-Colon Separates tags within LassoScript.
Il Double Slash Start of line comment in LassoScript.
[* Asterisk Slash Start of extended comment in LassoScript.
¥/ Asterisk Slash End of extended comment in LassoScript.
-> Member Symbol Separates data value from member tag.
Space Specified between symbols and their parameters.

When possible, parentheses should be used around all expressions, sub-tag

calls, and negative literals. The parentheses will ensure that Lasso accurately

parses each expression. If an expression does not seem to be working
correctly, try adding parentheses to make the order of operation explicit.

Unlike symbols, white space is generally not required around delimiters.
White space may be used to format code in order to make it more read-

able.

LAsso 7.1 LANGUAGE GUIDE

88

CHAPTER 4 — LDML 7 TAG LANGUAGE

Note: The double quote " was a valid LDML separator in earlier versions of
Lasso but has been deprecated in Lasso Professional 7. It is not guaranteed
to work in future versions of Lasso.

The following table shows the delimiters which are used in HTML pages
and HTTP URLs.

Table 16: HTML/HTTP Delimiters

Symbol Name Function
< Angle Bracket Start of an HTML or XML tag.
> Angle Bracket End of an HTML or XML tag.
= Equal Sign Separates name/value parameter or attribute.
" Double Quote Start and end of HTML string value.
? Question Mark Separates path from parameters in URL.
Hash Mark Separates path from target in URL.
& Ampersand Separates URL parameters.
/ Forward Slash Folder delimiter in URL paths or designation of
Web server root if used at the start of a URL path.
A Dot Dot Slash Up one folder level in URL paths.
Space Separates tag attributes.

lllegal Characters

The following chart details characters which can cause Lasso problems if
they appear in a format file or within LDML code outside of a string literal.
These characters are not valid in tag names, keyword names, or parameter
names.

For best results use a dedicated HTML editor such as Macromedia

Dreamweaver or Adobe GoLive or a text editor such as BareBones BBEdit
or Microsoft NotePad to create LDML format files. The Zap Gremlins option

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 4 — LDML 7 TAG LANGUAGE 89

in BBEdit is particularly useful in eliminating problem characters such as
these.

Table 17: lllegal Characters

Symbol Name Function

Non-Breaking Space Non-breaking spaces can be used within string
literals, but are not valid white space within LDML
code. Often typed Option-Space on Macintosh.

\0 Null Character The null-character is often used as and end-of-file
marker. Lasso may abort processing if it reads a
null character within a format file.

LAsso 7.1 LANGUAGE GUIDE

90 CHAPTER 4 — LDML 7 TAG LANGUAGE

LAsso 7.1 LANGUAGE GUIDE

921

Chapter 5
LDML 7 Reference

This chapter documents how to use the LDML 7 Reference.

e Overview provides an overview of the LDML 7 Reference and how to
access it.

e Search discusses searching the LDML 7 Reference.

e Browse discusses browsing the LDML 7 Reference by tag type or cate-
gory.

e Detail discusses how to view information about LDML tags, and what
information can be displayed.

e List discusses how all available tags can be listed.

Overview

The LDML 7 Reference is a resource provided by OmniPilot for finding
descriptions, usage guidelines, and detailed examples of LDML tags. It is
the official reference for all tags in LDML 7.

The LDML 7 Reference is a locally-stored LassoApp and Lasso MySQL data-
base included with each installation of Lasso Professional 7, and is also
available on the OmniPilot Web site.

To access the LDML 7 Reference:

e The LDML 7 Reference can be accessed through the Support > LDML
Reference section in Lasso Administration.

e The LDML 7 Reference can also be accessed on the local machine at
the following URL, substituting the actual IP address or host name of

LAsso 7.1 LANGUAGE GUIDE

92

CHAPTER 5 — LDML 7 REFERENCE

the Web server for www.example.com. The LDML 7 Reference requires the
administrator username and password for local access.

http://www.example.com/Lasso/LDMLReference.LassoApp

The LDML 7 Reference can be accessed at OmniPilot at the following
URL. This reference is open for anyone to use and includes a public
comment interface.

http://ldml.blueworld.com/

This version contains the same information as the locally-stored LDML 7
Reference, however, it also contains documentation comments and code
examples from users and developers. This is useful for finding further
examples and information about particular tags.

Components

The local version of the LDML 7 Reference consists of two components.
The interface is provided by the LDMLReference.LassoApp file located in the
Lasso directory of the Web server root. The data for the reference is stored
within Lasso MySQL in a database named LDML7_Reference. Both compo-
nents are installed as part of the standard Lasso Professional 7 installation.

Figure 1: LDML 7 Reference

blueworld

Browse

LDML 7 Tag Search Tags Listing
Name Type Set Support
Tag array [Array->Find] Member LDML60 Preferred
Category Any B [Array->Get] Member LDML60 Preferred
= 5
- [y 2] [Array->Insert] Member LDML60 Preferred
[Array->Last] Member LDML60 Preferred
==t AnY - [Ar 1 Member LDML60 Preferred
Support Any = [Array->RemoveAll] Member LDML60 Preferred
= [Array->Remove]
Ry > Member LDML60 Preferred
[Ar 1 Member LDML60 Preferred
Search | [_Find Al] [_Clear [Array->Sort] Member LDML60 Preferred
[Array] Substitution ~ LDML60 Preferred

search sorted by Name.
Showing 1 to 10 of 10 tags.

© 1996-2003 Blue World Communications. Inc.

Sections of the Interface

The interface is divided into four sections, navigable via tabs at the top of
the screen. These sections are:

e Search - Allows searching the LDML 7 Reference database.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 5 — LDML 7 REFERENCE 93

¢ Browse - Allows browsing the LDML 7 Reference database by category.

o Detail - Shows descriptions, comments, and examples of specific LDML
tags.
e List — Shows a listing of all available LDML tags summarized by category.

Navigation

Navigation occurs by selecting the tab for the desired section at the top

of the interface. Doing so will display the default screen for that tab and
additional tabs for any subsections. Many screens contain two panels. The
left panel generally provides a search interface or a list of options. The right
panel provides search results or details for any selected option.

Navigation within extended lists occurs via Prev and Next buttons. Listings
are displayed in groups of ten or fifteen depending on the section.

Search
This section describes searching for LDML tags in the LDML 7 Reference

using the Search section of the interface.

Basic Searching

The Basic page allows one to specify a basic search for LDML tags and view
the results. LDML 7 preferred tags and their synonyms, and abbreviations
will be returned as well as symbols and delimiters.

Figure 2: Basic Search Page

LDML7

Reference Browse Detail List blueworld
Basic
LDML 7 Tag Search Tags Listing
Name Type Set Support
Tag array [Array->Find] Member LDML60 Preferred
Category Any s [Array->Get] Member LDML60 Preferred
Type ‘Any = [Array->Insert] Member LDML60 Preferred
[Array->Last] Member LDML60 Preferred
Set AnY 2 [An 1 Member LDML60 Preferred
Support Any F) [Array->RemoveAll] Member LDML60 Preferred
Ty [Array->Remove] Member LDML60 Preferred
L i Member LDML60 Preferred
Search | [_Find Al | [_Clear [Array->Sort] Member LDML60 Preferred
[Array Substitution ~ LDML60 Preferred

search sorted by Name.
Showing 1 to 10 of 10 tags.

© 1996-2003 Blue World Communications. Inc.

LAasso 7.1 LANGUAGE GUIDE

94 CHAPTER 5 — LDML 7 REFERENCE

Tags can be searched by entering or selecting values from the following
fields, and then selecting the Search button:

e Tag - Specifies the LDML tag by name.
e Category - Pull-down menu listing all 30 tag categories.
e Type - Pull-down menu listing all possible tag types.

e Set - Pull-down menu listing all available tag sets. All preferred Lasso
Professional 7 tags belong to the LDML 7.0 set.

e Support - Pull-down menu listing the types of tag support in Lasso
Professional 7. A Preferred tag is part of the core syntax for LDML 7. An
Abbreviation is an abbreviation of a preferred tag. A Synonym is a synonym
of a preferred tag. A Deprecated tag is supported in LDML 7, but may not
be supported in a future version.

Note: Deprecated tags can only be searched using the Advanced search
page.

e Sort Results By - Allows results to be sorted by tag name, type, set, or
support.

Selecting the Find All button finds all LDML 7 tags in the LDML 7 Reference.
Selecting the Clear button resets all search fields for a new search.

Search Results

Search results are displayed in the Tags Listing panel, which appears to the
right. The Prev and Next buttons are shown if more results are returned than
can be shown. Selecting the name of a tag takes one to the Detail > Tag
page for that particular tag.

Advanced Searching

The Advanced page provides the same search fields and functionality as
the Basic page. The results from the Advanced page include deprecated
and unsupported tags in addition to the preferred tags returned by basic
searches.

LAsso 7.1 LANGUAGE GUIDE

F

CHAPTER 5 — LDML 7 REFERENCE 95

igure 3: Advanced Search Page

Eﬂkﬁu Browse Detail List blueworld
Advanced m

LDML 7 Tag Search Tags Listing
Name Type Set Support
Tag array [Array->Find] Member LDML60 Preferred
Category [Array->Get] Member LDML60 Preferred
= 5
— oy = [Array->Insert] Member LDML60 Preferred
[Array->Last] Member LDML60 Preferred
Ratalsotics) [Array->Merge] Member LDML60 Preferred
Description [Array->Removeall] Member LDML60 Preferred
Output Type [Array->Remove] Member LDML60 Preferred
= [Array->Size]
st o 7] Array->Siz Member LDML60 Preferred
L rt] Member LDML60 Preferred
Support Any L4 [Array] Substitution LDML60 Preferred
caiton
Version oo e b e
Showing 1 to 10 of 10 tags.
Change Any :
-

© 1996-2003 Blue World Communications. Inc.

Many additional search options are available including:

Data Source - Specifies the data source for which the tag is used.
Description - Allows searching within the tag description.

Output Type - Allows searching for tags that output a value of a partic-
ular data type, e.g. Array.

Version - Specifies the version of Lasso from which the tag originated
(e.g. 7.0,6.0,50, 3.6.6.2, etc.).

Change - Specifies whether a tag is new, updated, or unchanged
between the last major release and the current release.

Security Options — Specifies whether the tag is controlled by Lasso
Security. The options are Classic Lasso for tags that are disabled when
Classic Lasso support is disabled, Tag Permissions for tags that can be
enabled or disabled by tag permissions, File Permissions for tags that can
be enabled or disabled by file permissions, Database Permissions for tags
that depend on database or table-level security settings, and LJAPI for
tags that are disabled when LJAPI support is disabled.

Implementation — Specifies the implementation of the tag. This can be
one of the following:

LDML - Implemented in LDML as part of the in Startup.LassoApp file.
LCAPI — Implemented in C++.

LJAPI - Implemented in Java. Will not work without a JRE installed on te
system.

LAsso 7.1 LANGUAGE GUIDE

96

CHAPTER 5 — LDML 7 REFERENCE

Internal - Implemented in C++ as a core internal language construct.
These tags have the lowest-level implementation in LDML.

¢ Source Available - Specifies whether or not the tag source code is avail-
able.

Selecting the Find All button finds all LDML 7 tags in the LDML 7 Reference.
Selecting the Clear button resets all search fields for a new search.

Search Results

Search results are displayed in the Tags Listing panel, which appears to the
right. The Prev and Next buttons are shown if more results are returned than
can be shown. Selecting the name of a tag takes one to the Detail > Tag
page for that particular tag.

Comments Searching

The Comments page allows any of the visitor-entered comments to be
searched.

Figure 4: Comments Search Page

Em'-e}:lm Browse Detail List blueworld

| comments

Comments Listing
Subject Tag Date

Comment Search

e Uoloaded file name {File_Uploads) 02/27/02
Author | o0gaing a SQL query [Log] ... 02/27/02
Subject Little Example [Decimal->Set... 03/02/02
Comment | Value retains its value for m... [Decimal->Set... 03/02/02
= Variable does not hold setfor... [Decimal->Set... 03/02/02

Sort Results by Date B ==
roupChar work with inte... [Integer->Set... 03/02/02
feature! client side javascri... [1 square Br... 03/05/02
Refresh_required... [Database_Cre... 03/09/02

[datasource_reload] usage [Database_Cre... 03/09/02
Search sorted by Name.
Showing 1 to 10 of 33 comments.

© 1996-2003 Blue World Communications. Inc.

The following search options are available.

e Tag - Specifies the tag for which the comment was entered.
e Author - The name of the author of the comment.

¢ Subject - The subject of each comment can be searched.

e Comment - The text of each comment can be searched.

Selecting the Find All button finds all comments which have been entered in
the LDML 7 Reference. Selecting the Clear button resets all search fields for
a new search.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 5 — LDML 7 REFERENCE 97

Search Results

Search results are displayed in the Comments Listing panel, which appears to
the right. The Prev and Next buttons are shown if more results are returned
than can be shown. Selecting the subject of a comment takes one to the
Detail > Comments page for that particular comment.

Examples Searching
The Examples page allows any of the tag examples to be searched.
Figure 5: Examples Search Page

TALDMLT7
L% Reference

blueworld

Examples Listing

Example Search

Title Tag
Tag T — T AT AT, [
Title To find an element in an array of pairs: [Array->Find]
Descptioy and remove an element from an array: [BrazeRsmos
Example To_insert a new element into an array: [Array->Insert]
Results To_merge two_arrays: [Array->Merge]
Sort Results by Title 3 To_remove an element from an array: [Array->Remove]

To return an element from an array: [Array->Get]

T v A e
T i ray: [Array->Size]
To sort the elements in an array: [Array->Sort]

Search sorted by Title.
Showing 1 to 10 of 10 examples.

© 1996-2003 Blue World Communications. Inc.

The following search options are available.

e Tag - Specifies the tag for which the example is shown.

e Title - The title of each example can be searched.

¢ Description - The description of each example can be searched.
e Example - The text of each example’s code can be searched.

¢ Results - The text of each example’s results can be searched.

Selecting the Find All button finds all examples which have been entered in
the LDML 7 Reference. Selecting the Clear button resets all search fields for
a new search.

Search Results

Search results are displayed in the Examples Listing panel, which appears to
the right. The Prev and Next buttons are shown if more results are returned
than can be shown. Selecting the title of an example takes one to the
Detail > Tag page for that particular example.

LAasso 7.1 LANGUAGE GUIDE

98

CHAPTER 5 — LDML 7 REFERENCE

Quick Search

A Quick Search field appears in the upper right corner of every page. Entering
text in the Quick Search field and pressing Return or Enter on the keyboard
performs a basic search on the tag name field and returns results to the
Tags Listing panel in the Search > Basic page. The last search term entered

is displayed in the Quick Search field until a new term is entered or a new
search is performed.

Browse

The Browse page allows one to browse the LDML 7 Reference by tag cate-
gory and tag name for information about LDML tags.

Browsing by Category

The Category page allows one to browse the LDML 7 Reference by tag cate-
gory and tag name for information about LDML tags.

Figure 6: Category Tags Page

LDML7
Elhferenm Search - Detail List blueworld
Category

Tag Categories Listing Tags Listing for Action
Category Category DEtS Type Set Support
-Add Command LDMLS0, ... Preferred
Action Lnclude -Delete Command LDMLS50, .. Preferred
Administration Link -Duplicate Command LDMLSO, Preferred
=FindAll Command LDMLSD, Preferred
zImage Command LDMLSD, Preferred
ilen Operator -Nothing Command LDML50, Preferred
Conditional Qutput -Random Command LDMLS, .. Preferred
Search Command LDMLS0, ... Preferred
Custom Tag Response
Show Command LDMLSO, ... Preferred
Data Type Results -SQL Command LDML50 Preferred
@ Frrrm -Update Command LDMLS0, ... Preferred
Date String
Delimiter Symbol Showing 1 to 11 of 11 tags.
Encoding Technical
Encryption Utility
Error Variable
File

© 1996-2003 Blue World Communications. Inc.

Viewing Tag Categories

The Tag Categories Listing panel shows a listing of all the 29 tag categories in
LDML 7, except legacy tags, which are covered in the next section.

LAasso 7.1 LANGUAGE GUIDE

CHAPTER 5 — LDML 7 REFERENCE 99

Tags Listing

When a category is selected in the Tag Categories Listing panel, it shows all
tags in that category in the Tags Listing panel, which appears to the right.
Prev and Next buttons appear for navigation if there are more than ten tags
in a selected category. Selecting the name of a tag takes one to the Tag page
with the current tag selected, which is described later in this chapter.

Browsing Legacy Tags

The Legacy page allows one to browse all legacy tags in the LDML 7
Reference.

Figure 7: Legacy Tags Page

LDML7
Reference Search Detail List blueworld
—
Tag Categories Listing Tags Listing for Database
Category Category Name Type Equivalent

Datasource Command - -Database
— -D ript Command .. =FMScript

Client Operator -DoScript.Post Command ~EMScriptPost
Conditional Output EamEEd
=DoScript.PreSort Command =FMScriptPreSort
Database Response -RecID Command . -Keyvalue
Delimiter Results -RecordID Command LDML3x -KeyValue
i [ChoiceListitem] Substitution LDML3x [Value_Listitem]
IChoice_ListItem] Substitution LDML3x
Eile Technical
IChoice List] Container LDML3x
s il Substitution LDML3x
List [DB L 1 itution LDML3x [Database_T: 1
[DB LavoutNames] ... Container LDML3x [Database TableNames] ...
DB 1 LDML3x [Database. 1
[DB_Names] Container LDML3x [Database Names] ...
Showing 1 to 15 of 21 tags.

I lessoProfessional 7 « LDML 7 Reference
© 1996-2003 Blue World Communications. Inc.

Legacy tags include all deprecated tags from LDML 3 and earlier. As

support for select legacy tags may be dropped in future releases of Lasso
Professional, using these tags to build Lasso solutions is not recom-
mended.

One is able to browse all legacy tags in the Legacy page in the same manner
as in the Category page, covered in the previous section.

LAasso 7.1 LANGUAGE GUIDE

100 CHAPTER 5 — LDML 7 REFERENCE

Detail

The Detail section shows information and comments about any selected tag.

Tag Detail

The Tag page shows all information about a selected tag. One is taken here

after selecting a tag from the Search, Browse, or List sections. All information

is shown in the left panel, and includes the following:

e Description - Defines what a tag does, and how and where it is used.

e Syntax - Shows the syntax for the tag.

e Parameters - Lists all parameters or modifiers that can be used with the

tag. Required Parameters must be present in the tag syntax for the tag to

work properly, while Optional Parameters do not.

e Examples - Provides examples of how the tag can be used to perform a

specific function within a Lasso solution.

¢ Change Notes - Provides information about how a tag has changed

from different versions of Lasso, and if applicable, what tag

Figure 8: Tag Detail Page

[Array->Find]
A Tag Link
Description
p Category
[Array->Find] returns an array of elements that match the parameter. Accepts a single parameter of Type
any data type. G
If the array contains any pair values, only the first part of the pair is compared with the parameter of Support
the [Array->Find] tag. BT
If no elements in the array match the parameter to the [Array->Find] tag then an empty array is
returned. Version
Change
Syntax
Y Data Source
[Array->(Find: 'Find Value')] Output Type
Security
Parameters Page Number
Required Parameters Comments
Array The array which should be searched.
Related Tags
Find Value The value which should be searched for in the array. [Array->Get,
TArray’
[Map->Find]
Examples

To find an element in an array of pairs:

Use the [Array->Find] tag with the value of the first element of the pairs that should be returned
from the array. The following example shows an array of pairs returned from the tag, each of which
has a first element of 'John Doe'

[Var: 'People_Array'=(Array: ‘John Doe'='Person One', 'Jane Doe'='Person Two', ‘Joe Surname'=

'Person Three', 'John Doe'='Person Four')]

[Output: $People_Array->(Find: 'John Doe")]

= (Array: (Pair: (John Doe)=(Person One), (John Doe)=(Person Four)))

it replaces.

Reference Search Browse List blueworld
Tag M

Array->Find
Array
Member
LDML60
Preferred

Standard,
Developer

6.0
New
Any
Any
None
294
0

© 1996-2003 Blue World Communications. Inc.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 5 — LDML 7 REFERENCE 101

The top panel shows the current tag selected. If a search was performed,
one can navigate through the found set by selecting the Prev and Next
buttons. If no search was performed, the Prev and Next buttons will navi-
gate through the tags in each category alphabetically.

The right panel lists the following tag information:

e Category - Specifies the tag category (e.g. Array, Encoding, etc.). Selecting
the tag category displays the Browse > Category page.

Type - Specifies the tag type (e.g. Command, Container, etc.).

e Set - Specifies the versions of LDML in which the tag is supported. All
native Lasso Professional 7 tags belong to the LDML 7.0 set.

Support - Specifies the tag support in Lasso Professional 7. A Preferred
tag is part of the core syntax for LDML 7. An Abbreviation is an abbrevia-
tion of a preferred tag. A Synonym is a synonym of a preferred tag. A
Deprecated tag is supported in LDML 7, but support may be dropped in a
future version of Lasso. Deprecated tags are not recommended for use in
new projects. Any returns all support types.

Version - Specifies the version of Lasso from which the tag originated
(e.g. 7.0, 6.0,5.0, 3.6.6.2, etc.).

Change - Specifies whether a tag is new, updated, or unchanged
between the last major release and the current release.

¢ Data Source - Specifies the data source with which the tag can be used.

Output Type - Specifies what data type the tag will output. Many tags
output multiple data types in which case each data type or Any is shown.

Security - Specifies whether access to the tag can be controlled through
Lasso Administration. Options include Classic for tags that are disabled
with Classic Lasso, Tag for tags that are controlled by tag permissions,
File for tags that are controlled by file permissions, Database for tags

that are controlled by database permissions, and LJAPI for tags that are
disabled if LJAPI support is disabled.

Page Number - Specifies what page number in the Lasso 7 Language
Guide contains the primary reference for the tag. Some tags are also
documented in the Extending Lasso Guide. These tags are marked ELG.

e Comments - Indicates the number of comments that have been entered
for the tag. Selecting the link takes the visitor to the Comments page.

The lower right panel contains links to other tags in the database. The
following types of tags are listed.

e Synonyms - Lists any tags that are synonyms of the current tag.
Synonyms accept the same parameters and can be used interchangeably.

e Abbreviations - Lists any abbreviations for the current tag.

LAsso 7.1 LANGUAGE GUIDE

102

CHAPTER 5 — LDML 7 REFERENCE

Related Tags - Lists any related tags, which are tags that have similar
functions or are used in a similar manner.

Required Tags - Lists all tags and technologies (e.g. Java) that are
required for the selected tag to work.

LDML 3 Equivalent - For tags which have been updated since LDML 3,
an LDML 3 tag is listed that provides similar functionality to the current
tag.

e LDML 7 Equivalent - For tags which are not preferred LDML 7 syntax,
an equivalent LDML 7 tag is listed that provides similar functionality to
the current tag.

Tag Comments

The Comments page allows users to add their own notes and comments

about a tag to the LDML Reference. The top panel shows the current tag
selected. One can navigate through the tags alphabetically by selecting the
Prev and Next buttons.

Figure 9: Tag Comments Page

" @:‘;ﬁm Search Browse List blueworld
Comments Jarray |

[File_Uploads]

Comments Listing Comment Detail
Subject From Date Author Kyle
file n Kyle 02/27/2002 15:42:50 Date 02/27/2002 15:42:50

Subject Uploaded file name

Comment This custom tag will return just the name part of the
uploaded file no matter which file path delimiter is used.
It takes one parameter which is the uploaded file's path.

Add Comment [define_tag: 'getName']
[return: (p get:1)->(split:"/' plit:*\\")->
 — last]
Your Name (e —
Your Email Address |
Subject
Comment

Note: Comments will be publicly accessible on this Web site.
Posted comments may be edited for accuracy or content.

© 1996-2003 Blue World Communications. Inc.

Comments Listing

The Comments Listing panel shows a list of all comments about a selected

tag. Prev and Next buttons appear at the bottom of this panel for navigation

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 5 — LDML 7 REFERENCE 103

if there are more then five comments. Selecting the subject name under
Subject shows the comment in the Comment Detail panel. Selecting the name
of the author under From will display the author’s email address. The date
and time of when the comment was added is shown under Date.

Adding Comments

The Add Comment panel allow users of the LDML Reference LassoApp to add
comments about the selected tag.

To add a comment:

1 Enter your name in the Your Name field.

2 Enter your email address in the Your Email field.

3 Enter the subject of the comment in the Subject field.
4 Enter your comment in the Comment field.

5 Select Add Comment.

Comment Detail

The Comment Detail panel displays the comment author, the date of the
comment, the subject, and the comment.

The LDML 7 Reference stores all user comments locally, and only
comments from users of the LDML Reference LassoApp on that machine
are shown. A version of the LDML 7 Reference can also be accessed on the
OmniPilot Web site at:

http://ldml.blueworld.com/

This version contains the same information as the locally-stored LDML 7
Reference, however it also contains comments from other users and devel-
opers. This is useful for finding further examples and information about
particular tags.

LAsso 7.1 LANGUAGE GUIDE

104 CHAPTER 5 — LDML 7 REFERENCE

List

The List section provides a listing of all LDML tags by category.

Preferred Tags

The Preferred page provides a listing of all preferred tags, which represent
the core syntax for Lasso Professional 7.

Figure 10: Preferred Tags Page

LDML 7 Preferred Tags
Action Administration (Continued)

Name Type Set Support Name Type Set Support
-Add Command LDML6O, ... Preferred [Admin Gr Jser] itution LDML60 Preferred
Delete Command LDML60, ... Preferred [Admin_ListGroups] Substitution LDML60 Preferred
-Duplicate Command LDML6O, ... Preferred [Auth] Process LDML60 Preferred
=FindAll Command LDML6O, ... Preferred [Auth_Admin] Process LDML60, ... Preferred
zImage Command LDML60, ... Preferred [Lasso_DatasourcelsFileMaker] itution LDML6O, ... Preferred
~Nothing. Command LDML6O, ... Preferred [Lasso D. MySQL] itution LDML60 Preferred
-Random Command LDML6O, ... Preferred [Lasso D. oL LDMLE0 Preferred
Search Command LDML6O, ... Preferred [Lasso] LDML60, ... Preferred
Show Command LDML60, ... Preferred [Lasso_TagExists] Substitution LDML6O, ... Preferred
-soL Command LDML60 Preferred [Lasso T 1 itution LDML6O, ... Preferred
-Update Command LDML6O, ... Preferred ILasso_Version] Substitution LDML6O, ... Preferred
- [Tags] Substitution LDML60 Preferred
Name Type Set Support ArSY

[Admin_CI 1 itution LDML60 Preferred Name Type Set Support
[Admin_C 1 itution LDML60 Preferred [Array->Find] Member LDML60 Preferred
[Admin_Gr Jser] LDML60 Preferred [Array->Get] Member LDML60 Preferred
[Admin_GroupListUsers] ~ Substitution ~LDML60 Preferred [Array->Insert] Member LDML60 Preferred

© 1996-2003 Blue World Communications. Inc.

All tags are listed alphabetically beneath their category name (e.g. Array,
Database, etc.) and the list spans both panels. The listing can be navigated
by selecting the Prev and Next buttons at the top of the page. Selecting a tag
name takes one to the Tag page, covered in the previous section.

LAasso 7.1 LANGUAGE GUIDE

CHAPTER 5 — LDML 7 REFERENCE 105

Legacy Tags

The Legacy page provides a listing of all legacy tags, which are deprecated
tags from LDML 6, LDML 5, and LDML 3.

Figure 11: Legacy Tags Page

E ﬂl‘rglc! Search Browse Detail - blueworld
Legacy

LDML 7 Legacy Tags

Database (Continued)
Name Type Set Equivalent

Administration

R Type e Ediialens -DoScript.Post Command LDML25, ... -FMScriptPost

[Lasso D D1 N -DoScript.Pre Command

ILasso D ODBEC] itution LDMESX -DoScript.PreSort. Command

ILasso_DataType] Substitution LDML3x [Null->Type] RecID Command

Client -RecordID Command
IChoiceListitem] Substitution LDML3x [Value_ListItem]

amss Type e Eaiivalens IChoice_ListItem] Substitution LDML3x

[Client_Addr] Substitution LDML1x, ... [Client_Address] [Choice_List] ... Container LDML3x

Conditional [Datasource Name] Substitution LDML3x [Database_Name]
[DB_LayoutNameltem] Substitution LDML3x [Database_TableNameltem]

Name Type Set Equivalent

[Else:If] Substitution LDML25, ... [Else]

[Lasso Abort] Process LDML3x [Abort]

LoopAbort] Process LDML3x [Loop_Abort]

[LoopCount] LDML3x [Loop_Count]

Database

Name Type Set Equivalent

-Datasource Command LDML25, ... -Database

-DoScript Command LDML25, ... -FMScript

© 1996-2003 Blue World Communications. Inc.

All tags are listed alphabetically beneath their category name (e.g. Array,
Database, etc.) and the list spans both panels. The listing can be navigated
by selecting the Prev and Next buttons at the top of the page. Selecting a tag
name takes one to the Tag page, covered earlier in this chapter.

All Tags

The All page provides a listing of all LDML tags available in LDML 7
including preferred tags and legacy tags. All tags are listed alphabetically,
and span both panels. The listing can be navigated by selecting the Prev
and Next buttons at the top of the page. Selecting a tag name takes one to
the Tag page, covered earlier in this chapter.

LAasso 7.1 LANGUAGE GUIDE

106 CHAPTER 5 — LDML 7 REFERENCE

LAsso 7.1 LANGUAGE GUIDE

107

Section |l
Database Interaction

This section includes an introduction to interacting with databases in Lasso
Professional 7 and more specific discussions of particular database actions
and tags and techniques particular to Lasso MySQL and FileMaker Pro
databases.

Chapter 6: Database Interaction Fundamentals introduces the
concepts required to work with databases in Lasso Professional 7.

Chapter 7: Searching and Displaying Data discusses how to create
search queries and display the results of those queries.

Chapter 8: Adding and Updating Records discusses how to create
queries to add, update, and delete database records.

Chapter 9: MySQL Data Sources documents tags specific to the Lasso
MySQL data source connector and MySQL data source connector
including tags to create database schema programmatically.

Chapter 10: FileMaker Data Sources documents tags specific to the
FileMaker Pro and FileMaker Server Advanced data source connector
including tags to execute FileMaker scripts, return images from a
FileMaker database, and display information in repeating fields and
portals.

Chapter 11: JDBC Pro Data Sources documents tags specific to the
JDBC data source connector.

LAsso 7.1 LANGUAGE GUIDE

108 SECTION Il — DATABASE INTERACTION

LAsso 7.1 LANGUAGE GUIDE

109

Chapter 6
Database Interaction
Fundamentals

One of the primary purposes of LDML is to perform database actions
which are a combination of pre-defined and visitor-defined parameters and
to format the results of those actions. This chapter introduces the funda-
mentals of specifying database actions in LDML.

Inline Database Actions includes full details for how to use the [Inline]
tag to specify database actions.

Action Parameters describes how to get information about an action.

Results includes information about how to return details of an LDML
database action.

Showing Database Schema describes the tags that can be used to
examine the schema of a database.

SQL Statements describes the -SQL command tag and how to issue raw
SQL statements to SQL-compliant data sources.

SQL Transactions describes how to perform reversible SQL transactions
using Lasso.

Inline Database Actions

The [Inling] ... [/Inline] container tags are used to specify a database action and
to present the results of that action within a Lasso format file. The database

action is specified using parameters as keyword/value parameters within
the opening [Inline] tag. Additional name/value parameters specify the user-
defined parameters of the database action. A single action can be specified

LAsso 7.1 LANGUAGE GUIDE

110

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS

in an [Inline]. Additional actions can be performed in subsequent or nested
[Inling] ... [/Inline] tags.

Table 1: Inline Tag

Tag Description

[Inline] ... [/Inline] Performs the database action specified in the opening
tag. The results of the database action are available
inside the container tag.

The results of the database action can be displayed within the contents of
the [Inline] ... [/Inline] container tags using the [Records] ... [[Records] container
tags and the [Field] substitution tag. Alternately, the [Inline] can be named
and the results can be displayed later.

The entire database action can be specified directly in the opening

[Inline] tag or visitor-defined aspects of the action can be retrieved from an
HTML form submission. [Link_...] tags can be used to navigate a found set
in concert with the use of [Inline] ... [/Inline] tags. Nested [Inline] ... [/Inline] tags
can be used to create complex database actions.

An inline can be named by specifing an -InlineName parameter within the
opening [Inline] tag. A subsequent [Records] ... [[Records] tag with the same
-InlineName in the opening [Records] parameter will then return the results
for the inline. Each -InlineName value should be unique within a single page.

Database Actions

A database action is performed to retrieve data from a database or to
manipulate data which is stored in a database. Database actions can be
used in Lasso to query records in a database that match specific criteria, to
return a particular record from a database, to add a record to a database,
to delete a record from a database, to fetch information about a database,
or to navigate through the found set from a database search. In addition,
database actions can be used to execute SQL statements in compliant data-
bases.

The database actions in Lasso are defined according to what action param-
eter is used to trigger the action. The following table lists the parameters
which perform database actions that are available in LDML.

Table 2: Inline Database Action Parameters

Tag Description

-Search Finds records in a database that match specific criteria,
returns detail for a particular record in a database, or
navigates through a found set of records.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS 111

-FindAll Returns all records in a specific database table.
-Random Returns a single, random record from a database table.
-Add Adds a record to a database table.

-Update Updates a specific record from a database table.

-Duplicate Duplicates a specific record in a database table. Only
works with FileMaker Pro databases.

-Delete Removes a specified record from a database table.

-Show Returns information about the tables and fields within a
database.

-SQL Executes a SQL statement in a compatible data
source. Only works with Lasso MySQL and other SQL
databases.

-Nothing The default action which performs no database
interaction, but simply passes the parameters of the
action.

Note: The Database Action Parameters table lists all of the database actions
that Lasso supports. Individual data source connectors may only support a
subset of these parameters. The Lasso Connector for Lasso MySQL and the
Lasso Connector for MySQL do not support the -Duplicate action. The Lasso
Connector for FileMaker Pro does not support the -SQL action. See the docu-
mentation for third party data source connectors for information about what
parameters they support.

Each database action parameter requires additional parameters in order to
execute the proper database action. These parameters are specified using
additional parameters and name/value pairs. For example, a -Database
parameter specifies the database in which the action should take place
and a -Table parameter specifies the specific table from that database in
which the action should take place. Name/value pairs specify the query
for a -Search action, the initial values for the new record created by an -Add
action, or the updated values for an -Update action.

Full documentation of which [Inline] parameters are required for each action
are detailed in the section specific to that action in this chapter, Chapter

7: Searching and Displaying Data, or Chapter 8: Adding and Updating
Records.

Example of specifying a -FindAll action within an [Inline]:

The following example shows an [Inline] ... [/Inline] tag that has a -FindAll data-
base action specified in the opening tag. The [Inline] tag includes a -FindAll
parameter to specify the action, -Database and -Table parameters to specify
the database and table from which records should be returned, and a

LAsso 7.1 LANGUAGE GUIDE

112

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS

-KeyField parameter which specifies the key field for the table. The entire
database action is hard-coded within the [Inline] tag.

The tag [Found_Count] returns how many records are in the database. The
[Records] ... [[Records] container tags repeat their contents for each record in
the found set. The [Field] tags are repeated for each found record creating a
listing of the names of all the people stored in the Contacts database.
[Inline: -FindAll,
-Database="Contacts',
-Table='People’,
-KeyField="1D']
There are [Found_Count] record(s) in the People table.
[Records]

[Field: 'First_Name'"] [Field: 'Last_Name']
[/Records]
[/Inline]

=> There are 2 record(s) in the People table.
John Doe
Jane Doe

Example of specifying a -Search action within an [Inline]:

The following example shows an [Inline] ... [/Inline] tag that has a -Search data-
base action specified in the opening tag. The [Inline] tag includes a -Search
parameter to specify the action, -Database and -Table parameters to specify
the database and table records from which records should be returned,
and a -KeyField parameter which specifies the key field for the table. The
subsequent name/value parameters, 'First_Name'="John' and 'Last_Name'='Doe’,
specify the query which will be performed in the database. Only records
for John Doe will be returned. The entire database action is hard-coded
within the [Inline] tag.

The tag [Found_Count] returns how many records for John Doe are in the data-
base. The [Records] ... [[Records] container tags repeat their contents for each
record in the found set. The [Field] tags are repeated for each found record
creating a listing of all the records for John Doe stored in the Contacts data-
base.
[Inline: -Search,

-Database="Contacts',

-Table='People’,

-KeyField="1D',

'First_Name'='John’,

'Last_Name'='Doe’]

There were [Found_Count] record(s) found in the People table.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS 113

[Records]

[Field: 'First_Name'"] [Field: 'Last_Name']
[/Records]
[/Inline]

=> There were 1 record(s) found in the People table.
John Doe

Using HTML Forms

The previous two examples show how to specify a hard-coded database
action completely within an opening [Inline] tag. This is an excellent way to
embed a database action that will be the same every time a page is loaded,
but does not provide any room for visitor interaction.

A more powerful technique is to use values from an HTML form or URL
to allow a site visitor to modify the database action which is performed
within the [Inline] tag. The following two examples demonstrate two
different techniques for doing this using the singular [Action_Param] tag and
the array-based [Action_Params] tag.

Example of using HTML form values within an [Inline] with [Action_
Param]:

An inline-based database action can make use of visitor specified param-
eters by reading values from an HTML form which the visitor customizes
and then submits to trigger the page containing the [Inline] ... [/Inline] tags.

The following HTML form provides two inputs into which the visitor
can type information. An input is provided for First_Name and one for
Last_Name. These correspond to the names of fields in the Contacts data-
base. The action of the form is set to response.lasso which will contain
the [Inline] ... [/Inline] tags that perform the actual database action. The action
tag specified in the form is -Nothing which instructs Lasso to perform no
database action when the form is submitted.
<form action="/response.lasso" method="POST">

First Name: <input type="text" name="First_Name" value="">

Last Name: <input type="text" name="Last_Name" value="">

<input type="submit" value="Search">
<[form>

The [Inline] tag on response.lasso contains the name/value parameter
'First_Name'=(Action_Param: 'First_Name'). The [Action_Param] tag instructs Lasso
to fetch the input named First_Name from the action which resulted in
the current page being served, namely the form shown above. The [Inline]
contains a similar name/value parameter for Last_Name.

LAsso 7.1 LANGUAGE GUIDE

114 CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField="ID',
'First_Name'=(Action_Param: 'First_Name'),
'Last_Name'=(Action_Param: 'Last_Name')]
There were [Found_Count] record(s) found in the People table.
[Records]

[Field: 'First_Name'] [Field: 'Last_Name']

[/Records]

[/Inline]

If the visitor entered Jane for the first name and Doe for the last name then
the following results would be returned.

=» There were 1 record(s) found in the People table.
Jane Doe

As many parameters as are needed can be named in the HTML form and
then retrieved in the response page and incorporated into the [Inline] tag.

Note: The [Action_Param] tag is equivalent to the [Form_Param] tag used in prior
versions of Lasso.

Example of using an array of HTML form values within an [Inline] with
[Action_Params]:

Rather than specifying each [Action_Param] individually, an entire set of
HTML form parameters can be entered into an [Inline] tag using the array-
based [Action_Params] tag. Inserting the [Action_Params] tag into an [Inline]
functions as if all the parameters and name/value pairs in the HTML form
were placed into the [Inline] at the location of the [Action_Params] parameter.

The following HTML form provides two inputs into which the visitor
can type information. An input is provided for First_Name and one for
Last_Name. These correspond to the names of fields in the Contacts data-
base. The action of the form is set to response.lasso which will contain
the [Inline] ... [/Inline] tags that perform the actual database action. The data-
base action is -Nothing which instructs Lasso to perform no database action
when the HTML form is submitted.
<form action="/response.lasso" method="POST">

First Name: <input type="text" name="First_Name" value="">

Last Name: <input type="text" name="Last_Name" value="">

<input type="submit" value="Search">
<[form>

The [Inline] tag on response.lasso contains the array parameter [Action_Params].
This instructs Lasso to take all the parameters from the HTML form or URL
which results in the current page being loaded and insert them in the [Inling]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS 115

as if they had been typed at the location of [Action_Params]. This will result
in the name/value pairs for First_Name, Last_Name, and the -Nothing action
to be inserted into the [Inline]. The latest action specified has precedence so
the -Search tag specified in the actual [Inline] tag overrides the -Nothing which
is passed from the HTML form.
[Inline: (Action_Params),
-Search,
-Database="Contacts',
-Table='People',
-KeyField="1D']
There were [Found_Count] record(s) found in the People table.
[Records]

[Field: 'First_Name'"] [Field: 'Last_Name']
[/Records]
[/Inline]

If the visitor entered Jane for the first name and Doe for the last name then
the following results would be returned.

=> There were 1 record(s) found in the People table.
Jane Doe

As many parameters as are needed can be named in the HTML form.
They will all be incorporated into the [Inline] tag at the location of the
[Action_Params] tag. Any parameters in the [Inline] after the [Action_Params] tag
will override conflicting settings from the HTML form.

Note: [Action_Params] is a replacement for the -ReUseFormParams keyword in
prior versions of Lasso. See Chapter 31: Upgrading Your Solutions for more
information.

HTML Form Response Pages

Every HTML form or URL needs to have a response page specified so Lasso
knows what format file to process and return as the result of the action.
The referenced format file could contain simple HTML or complex LDML
calculations, but some format file must be specified.

To specify a format file within an HTML form or URL:

e The HTML form action can be set to the location of a format file. For
example, the following HTML <form> tag references the file /response.lasso
in the root of the Web serving folder.

<form action="/response.lasso" method="POST"> ... </form>

e The URL can reference the location of a format file before the question
mark ? delimiter. For example, the following anchor tag references the

LAsso 7.1 LANGUAGE GUIDE

116 CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS

file response.lasso in the same folder as the page in which this anchor is
contained.

 Link

e The HTML form can reference /Action.Lasso and then specify the path
to the format file in a -Response tag. For example, the following HTML
<form> tag references the file response.lasso in the root of the Web
serving folder. The path is relative to the root because the placeholder
/Action.Lasso is specified with a leading forward slash /.

<form action="/Action.Lasso" method="POST">

<input type="hidden" name="-Response" value="response.lasso">
<[form>

e The URL can reference Action.Lasso and then specify the path to the
format file in a -Response tag. For example, the following anchor tag
references the file response.lasso in the same folder as the page in which
the link is specified. The path is relative to the local folder because the
placeholder Action.Lasso is specified without a leading forward slash /.

 Link

The -Response tag can be used on its own or action specific response tags
can be used so a form is sent to different response pages if different actions
are performed using the form. Response tags can also be used to send

the visitor to different pages if different errors happen when the database
action is attempted by Lasso. The following table details the available
response tags.

Table 3: Response Parameters

Tag Description

-Response Default response tag. The value for this response tag is
used if no others are specified.

-ResponseAnyError Default error response tag. The value for this response
tag is used if any error occurs and no more specific
error response tag is set.

-ResponseReqFieldMissingError Error to use if a -Required field is not given a value by
the visitor.

-ResponseSecurityError Error to use if a security violation occurs because the
current visitor does not have permission to perform the
database action.

See Chapter 21: Error Control for more information about using the error
response pages.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS 117

Setting HTML Form Values

If the format file containing an HTML form is the response to an HTML
form or URL, then the values of the HTML form inputs can be set to values
retrieved from the previous format file using [Action_Param].

For example, if a form is on default.lasso and the action of the form is
default.lasso then the same page will be reloaded with new form values each
time the form is submitted. The following HTML form uses [Action_Param]
tags to automatically restore the values the user specified in the form previ-
ously, each time the page is reloaded.
<form action="default.lasso" method="POST">

First Name:
<input type="hidden" name="First_Name" value="[Action_Param: 'First_Name']">

First Name:
<input type="hidden" name="Last_Name" value="[Action_Param: 'Last_Name']">

<input type="submit" value="Submit">
<[form>

Tokens

Tokens can be used with HTML forms and URLs to order to pass data
along with the action. Tokens are useful because they do not affect the
operation of a database action, but allow data to be passed along with the
action. For example, meta-data could be associated with a visitor to a Web
site without using sessions or cookies.

e Tokens can be set in a form using the -Token.TokenName=TokenValue param-
eter. Multiple named tokens can be set in a single form.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Token.TokenName" value="TokenValue">
</form>

Tokens can be set in a URL using the -Token.TokenName=TokenValue param-
eter. Multiple named tokens can be set in a single URL.

 Link

Tokens set in an HTML form or URL are available in the response page
of the database action. Tokens are not available inside [Inline] ... [/Inline]
tags on the responses page unless they are explicitly set within the [Inline]
tag itself.

Tokens can be set in an [Inline] using the -Token.TokenName=TokenValue
parameter. Multiple named tokens can be set in a single [Inline].

Tokens set in an [Inline] are only available immediately inside the [Inline].
They are not available to nested [Inlines] unless they are set specifically
within each [Inling].

LAsso 7.1 LANGUAGE GUIDE

118

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS

¢ By default, tokens are included in the [Link_...] tags and in [Action_Params].
Unless specifically set otherwise, tokens will be redefined on pages which
are returned using the [Link_...] tags.

Nesting Inline Database Actions

Database actions can be combined to perform compound database actions.
All the records in a database that meet certain criteria could be updated

or deleted. Or, all the records from one database could be added to a
different database. Or, the results of searches from several databases could
be merged and used to search another database.

Database actions are combined by nesting [Inline] ... [/Inline] tags. For example,
if [Inline] ... [/Inline] tags are placed inside the [Records] ... [[Records] container
tag within another set of [Inline] ... [/Inline] tags then the inner [Inline] will
execute once for each record found in the outer [Inline].

All database results tags function for only the innermost set of

[Inline] ... [/Inline] tags. Variables can pass through into nested [Inline] ... [/Inline]
tags, but tokens cannot, these need to be reset in each [Inline] tag in the hier-
archy.

SQL Note: Nested inlines can also be used to perform reversible SQL trans-
actions in transaction-compliant SQL data sources. See the SQL Transactions
section at the end of this chapter for more information.

Example of nesting [Inline] ... [/Inline] tags:

This example will use nested [Inline] ... [/Inline] tags to change the last name

of all people whose last name is currently Doe in a database to Person. The
outer [Inline] ... [/Inline] tags perform a hard-coded search for all records with
Last_Name equal to Doe. The inner [Inline] ... [/Inline] tags update each record

so Last_Name is now equal to Person. The output confirms that the conver-

sion went as expected by outputting the new values.

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField="ID',
'Last_Name'='Doe',
-MaxRecords="All']
[Records]

[Inline: -Update,
-Database="'Contacts',
-Table='People’,
-KeyField="ID',
-KeyValue=(KeyField_Value),
'Last_Name'="Person’]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS 119

Name is now [Field: 'First_Name'] [Field: 'Last_Name']
[/Inline]
[/Records]
[/Inline]

=>» Name is now Jane Person
Name is now John Person

Array Inline Parameters

Most LDML parameter can be used within an [Inline] tag to specify an
action. In addition, parameters and name/value parameters can be stored
in an array and then passed into an [Inline] as a block. Any single value

in an [Inline] which is an array data type will be interpreted as a series of
parameters inserted at that location in the array. This technique is useful
for programmatically assembling database actions.

Many parameters can only take a single value within an [Inline] tag. For
example, only a single action can be specified and only a single database
can be specified. The last action parameter defines the value that will be
used for the action. The last, for example, -Database parameter defines the
value that will be used for the database of the action. If an array parameter
comes first in an [Inline] then all subsequent parameters will override any
conflicting values within the array parameter.

Example of using an array to pass values into an [Inline]:

The following LassoScript performs a -FindAll database action with the
parameters first specified in an array and stored in the variable Params, then
passed into the opening [Inline] tag all at once. The value for -MaxRecords in
the [Inline] tag overrides the value specified within the array parameter since
it is specified later. Only the number of records found in the database are
returned using the [Outpuf] tag.
<?LassoScript
Variable: 'Params'=(Array:
-FindAll=",
-Database="Contacts',
-Table='People’,
-MaxRecords=50
I)nline: (Var: 'Params'), -MaxRecords=100;
Output: "There are ' + (Found_Count) + 'record(s) in the People table.";

/Inline;
»

=> There are 2 record(s) in the People table.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS

Action Parameters

LDML has a set of substitution tags which allow for information about the
current action to be returned. The parameters of the action itself can be
returned or information about the action’s results can be returned.

The following table details the substitution tags which allow informa-

tion about the current action to be returned. If these tags are used within
an [Inline] ... [/Inline] container tag they return information about the action
specified in the opening [Inline] tag. Otherwise, these tags return informa-
tion about the action which resulted in the current format file being served.

Even format files called with a simple URL such as
http://www.example.com/response.lasso have an implicit -Nothing action. Many of
these substitution tags return default values even for the -Nothing action.

Table 4: Action Parameter Tags

Tag

Description

[Action_Param]
[Action_Params]

[Database_Name]
[KeyField_Name]
[KeyField_Value]

[Lasso_CurrentAction]
[MaxRecords_Value]

[Operator_LogicalValue]
[Response_FilePath]
[SkipRecords_Value]
[Table_Name]

[Token_Value]
[Search_Arguments]

[Search_Fieldltem]
[Search_Operatorltem]

[Search_Valueltem]

Returns the value for a specified name/value parameter.
Equivalent to [Form_Param].

Returns an array containing all of the parameters and
name/value parameters that define the current action.

Returns the name of the current database.
Returns the name of the current key field.

Returns the name of the current key value if defined.
Equivalent to [RecordID_Value].

Returns the name of the current Lasso action.

Returns the number of records from the found set that
are currently being displayed.

Returns the value for the logicial operator.
Returns the path to the current format file.
Returns the current offset into a found set.

Returns the name of the current table. Equivalent to
[Layout_Name].

Returns the value for a specified token.

Container tag repeats once for each name/value
parameter of the current action.

Returns the name portion of a name/value parameter of
the current action.

Returns the operator associated with a name/value
parameter of the current action.

Returns the value portion of a name/value parameter of
the current action.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS 121

[Sort_Arguments] Container tag repeats once for each sort parameter.
[Sort_Fieldltem] Returns the field which will be sorted.
[Sort_Orderltem] Returns the order by which the field will be sorted.

The individual substitution tags can be used to return feedback to site
visitors about what database action is being performed or to return
debugging information. For example, the following code inserted at the
top of a response page to an HTML form or URL or in the body of an
[Inling] ... [/Inline] tag will return details about the database action that was
performed.

Action: [Lasso_CurrentAction]

Database: [Database_Name]

Table: [Table_Name]

Key Field: [KeyField_Name]

KeyValue: [KeyField_Value]

MaxRecords: [MaxRecords_Value]

SkipRecords: [SkipRecords_Value]

Logical Operator: [Operator_LogicialValue]

=>» Action: Find All
Database: Contacts
Table: People
Key Field: ID
KeyValue: 100001
MaxRecords: 50
SkipRecords: 0
Logical Operator: AND

The [Action_Params] tag can be used to return information about the entire
Lasso action in a single array. Rather than assembling information using
the individual substitution tags it is often easier to extract informa-

tion from the [Action_Params] array. The schema of the array returned by
[Action_Params] is detailed in Table 5: [Action_Params] Array Schema.

The schema shows the names of the values which are returned in the array.
Even if -Layout is used to specify the layout for a database action, the value
of that tag is returned after -Table in the [Action_Params] array.

To output the parameters of the current database action:

The value of the [Action_Params] tag in the following example is formatted
to show the elements of the returned array clearly. The [Action_Params] array
contain values for -MaxRecords, -SkipRecords, and -OperatorLogical even though
these aren't specified in the [Inline] tag.

LAsso 7.1 LANGUAGE GUIDE

122

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS

[Inline: -Search,

-Database="Contacts',

-Table='People’,

-KeyField="1D]
[Action_Params]

[/Inline]

=> (Array:

(Pair: (-Search) = ()),
(Pair: (-Database) = (Contacts)),
(Pair: (-Table) = (People)),

(Pair: (-KeyField) = (D)),

(Pair: (-MaxRecords) = (50)),
(Pair: (-SkipRecords) = (0))
(Pair: (-OperatorLogical) =

(AND))

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS 123

Table 5: [Action_Params] Array Schema

Name Description

Action The action parameter is always returned first. The name
of the first item is set to the action parameter and the
value is left empty.

-Database If defined, the name of the current database.

-Table If defined, the name of the current table.

-KeyField If defined, the name of the field which holds the primary
key for the specified table.

-KeyValue If defined, the particular value for the primary key.

-MaxRecords Always included. Defaults to 50.

-SkipRecords Always included. Defaults to 0.

-OperatorLogical Always included. Defaults to AND.

-ReturnField If defined, can have multiple values.

-SortOrder, -SortField

-Token

Name/Value Parameter
-Required

-Operator
-OperatorBegin

-OperatorEnd

If defined, can have multiple values. -SortOrder
is always defined for each -SortField. Defaults to
ascending.

If defined, can have multiple values each specified as
-Token.TokenName with the appropriate value.

If defined, each name/value parameter is included.

If defined, can have multiple values. Included in order
within name/value parameters.

If defined, can have multiple values. Included in order
within name/value parameters.

If defined, can have multiple values. Included in order
within name/value parameters.

If defined, can have multiple values. Included in order
within name/value parameters.

The [Action_Params] array contains all the parameters and name/value
parameters required to define a database action. It does not include any
-Response... parameters, the -Username and -Password parameters, -FMScript...
parameters, -InlineName keyword or any legacy or unrecognized parameters.

To output the name/value parameters of the current database action:

Loop through the [Action_Params] tag and display only name/value pairs for
which the name does not start with a hyphen, i.e. any name/value pairs
which do not start with a keyword. The following example shows a search
of the People table of the Contacts database for a person named John Doe.

LAsso 7.1 LANGUAGE GUIDE

124 CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField="ID',
'First_Name'="John’,
'Last_Name'='Doe’]
[Loop: (Action_Params)->Size]
[If: 1(Action_Params)->(Get: Loop_Count)->(First)->(BeginsWith: '-')]

[Output: (Action_Params)->(Get: Loop_Count)]
(/]
[/Loop]
[/Inline]

=>»
(Pair: (First_Name) = (John))

(Pair: (Last_Name) = (Doe))

To display action parameters to a site visitor:

The [Search_Arguments] ... [/Search_Arguments] container tag can be

used in conjunction with the [Search_Fieldltem], [Search_Valueltem] and

[Search_Operatorltem] substitution tags to return a list of all name/value

parameters and associated operators specified in a database action.
[Search_Arguments]

[Search_Operatorltem] [Search_Fleldltem] = [Search_Valueltem]
[/Search_Arguments]

The [Sort_Arguments] ... [/Sort_Arguments] container tag can be used in
conjunction with the [Sort_Fieldltem] and [Sort_Orderltem] substitution tags to
return a list of all name/value parameters and associated operators speci-
fied in a database action.
[Sort_Arguments]

[Sort_Operatorltem] [Sort_Fleldltem] = [Sort_Valueltem]
[/Sort_Arguments]

Results

The following table details the substitution tags which allow information
about the results of the current action to be returned. These tags provide
information about the current found set rather than providing data from
the database or providing information about what database action was
performed.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS 125

Table 6: Results Tags

Tag Description

[Field] Returns the value for a specified field from the result set.
[Found_Count] Returns the number of records found by Lasso.
[Records] ... [/Records] Loops once for each record in the found set. [Field] tags

within the [Records] ... [/Records] tags will return the
value for the specified field in each record in turn.

[Records_Array] Returns the complete found set in an array of arrays.
The outer array contains one item for every record in
the found set. The item for each record is an array
containing one item for each field in the result set.

[Shown_Count] Returns the number of records shown in the current
found set. Less than or equal to [MaxRecords_Value].

[Shown_First] Returns the number of the first record shown from the
found set. Usually [SkipRecords_Value] plus one.

[Shown_Last] Returns the number of the last record shown from the
found set.

[Total_Records] Returns the total number of records in the current table.

Works with FileMaker Pro databases only.

The found set tags can be used to display information about the current
found set. For example, the following code generates a status message that
can be displayed under a database listing.

Found [Found_Count] records of [Total_Records] Total.

Displaying [Shown_Count] records from [Shown_First] to [Shown_Last].

=» Found 100 records of 1500 Total.
Displaying 10 records from 61 to 70.

These tags can also be used to create links that allow a visitor to navigate
through a found set. See Chapter 7: Searching and Displaying Data for
more information.

Showing Database Schema

The schema of a database can be inspected using the [Database_...] tags

or the -Show parameter which allows information about a database to be
returned using the [Field_Name] tag. Value lists within FileMaker Pro data-
bases can also be accessed using the -Show parameter. This is documented
fully in Chapter 10: FileMaker Pro Data Sources.

LAsso 7.1 LANGUAGE GUIDE

126 CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS

Table 7: -Show Parameter

Tag Description

-Show Allows information about a particular database and table
to be retrieved.

The -Show parameter functions like the -Search parameter except that no
name/value parameters, sort tags, results tags, or operator tags are required.
-Show actions can be specified in [Inline] ... [/Inline] tags, HTML forms, or
URLs.

Table 8: -Show Action Requirements

Tag Description

-Show The action which is to be performed. Required.

-Database The database which should be searched. Required.

-Table The table from the specified database which should be
searched. Required.

-KeyField The name of the field which holds the primary key for

the specified table. Recommended.

The tags detailed in Table 9: Schema Tags allow the schema of a database
to be inspected. The [Field_Name] tag must be used in concert with a -Show
action or any database action that returns results including -Search, -Add,
-Update, -Random, or -FindAll. The [Database_Names] ... [[Database_Names] and
[Database_TableNames] ... [/Database_TableNames] tags can be used on their
own.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS 127

Table 9: Schema Tags

Tag

Description

[Database_Names]

[Database_Nameltem]

[Database_RealName]
[Database_TableNames]

[Database_TableNameltem]

[Field_Name]

[Field_Names]

[Required_Field]

[Table_RealName]

Container tag repeats for every database available to
Lasso. Requires internal [Database_Nameltem] tag to
show results.

When used inside [Database_Names] ... [/Database_
Names] container tags returns the name of the current
database.

Returns the real name of a database given an alias.

Container tag repeats for every table within a database.
Accepts one required parameter, the name of the

database. Requires internal [Database_Nameltem] tag
to show results. Synonym is [Database_LayoutNames].

When used inside [Database_TableNames] ...
[/Database_TableNames] container tags returns the
name of the current table. Synonym is [Database_
LayoutNameltem].

Returns the name of a field in the current database and
table. A number parameter returns the name of the field
in that position within the current table. Other parameters
are described below. Synonym is [Column_Name].

Returns an array containing all the field names in the
current result set. This is the same data as returned by
[Field_Name], but in a format more suitable for iterating
or other data processing. Synonym is [Column_Names].

Returns the name of a required field. Requires one
parameter which is the number of the field name to
return or a -Count keyword to return the total number of
required fields.

Returns the real name of a table given an alias.
Requires a -Database parameter which specifies the
database in which the table or alias resides.

To list all the databases available to Lasso:

The following example shows how to list the names of all avail-
able databases using the [Database_Names] ... [/Database_Names] and

[Database_Nameltem] tags.

[Database_Names]

[Loop_Count]: [Database_Nameltem]

[/Database_Name]

=»
1: Contacts

2: Examples

3: Site

LAsso 7.1 LANGUAGE GUIDE

128 CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS

To list all the tables within a database:

The following example shows how to list the names of all the tables within

a database using the [Database_TableNames] ... [[Database_TableNames] and

[Database_TableNameltem] tags. The tables within the Site database are listed.
[Database_TableNames: 'Site']

[Loop_Count]: [Database_TableNameltem]
[/Database_TableName]

=»
1: _outgoingemail

2: _outgoingemailprefs

3: _schedule

4: _sessions

To list all the fields within a table:

The [Field_Name] tag accepts a number of optional parameters which allow
information about the tags in the current table to be returned. These
parameters are detailed in Table 10: [Field_Name] Parameters.

Table 10: [Field_Name] Parameters

Parameter Description

Number The position of the field name to be returned. Required
unless -Count is specified.

-Count Returns the number of fields in the current table.

-Type Returns the type of the field rather than the name.

Types include Text, Number, Image, Date/Time, Boolean,
or Unknown. Requires that a number parameter be
specified.

-Protection Returns the protection status of the field rather than the
name. Protection statuses include None or Read Only.
Requires that a number parameter be specified.

To return information about the fields in a table:

The following example demonstrates how to return information about
the fields in a table using the [Inline] ... [/Inline] tags to perform a -Show
action. [Loop] ... [/lLoop] tags loop through the number of fields in the table
and the name, type, and protection status of each field is returned. The
fields within the Contacts Web table are shown.
[Inline: -Show,

-Database="Contacts',

-Table='People’,

-KeyField="1D']

[Loop: (Field_Name: -Count)]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS 129

[Loop_Count]: [Field_Name: (Loop_Count)]
([Field_Name: (Loop_Count), -Type], [Field_Name: (Loop_Count), -Protection])
[/Loop]
[/Inline]

=>»
1: Creation Date (Date, None)

2: ID (Number, Read Only)

3: First_Name (Text, None)

4: Last_Name (Text, None)

To list all the required fields within a table:

The [Required_Field] tag accepts a number of optional parameters which
allow information about the tags in the current table to be returned. These
parameters are detailed in Table 11: [Required_Field] Parameters.

Table 11: [Required_Field] Parameters

Parameter Description

Number The position of the field name to be returned. Required
unless -Count is specified.

-Count Returns the number of required fields in the current
table.

The [Required_Field] substitution tag can be used to return a list of all
required fields for the current action. A -Show action is used to retrieve
the information from the database and then [Loop] ... [/Loop] tags are
used to loop through all the required fields. In the example that follows
the People table of the Contacts database has only one required field, the
primary key field ID.
[Inline: -Show,
-Database="Contacts',
-Table='People’]
[Loop: (Required_Field: -Count)]

[Required_Field: (Loop_Count)]
[/Loop]
[/Inline]

=>
ID

SQL Statements

LDML 7 provides the ability to issue SQL statements directly to SQL-
compliant data sources, including the built-in Lasso MySQL data source.
SQL statements are specified within the [Inline] tag using the -SQL command

LAsso 7.1 LANGUAGE GUIDE

130 CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS

tag. Many third-party databases that support SQL statements also support
the use of the -SQL command tag.

SQL inlines can be used as the primary method of database interaction in
Lasso 7, or they can be used along side standard inline actions (e.g. -Search,
-Add, -Update, -Delete) where a specific SQL function is desired that cannot
be replicated using standard database commands.

SQL Language Note: Documentation of SQL itself is outside the realm
of this manual. Please consult the documentation included with your data
source for information on what SQL statements are supported by it.

FileMaker Note: The -SQL inline parameter is not supported for FileMaker
data sources.

Table 12: SQL Inline Parameters

Tag Description

-SQL Issues one or more SQL command to a compatible
data source. Multiple commands are delimited by a
semicolon. When multiple commands are used, all will
be executed, however only the last command issued will
return results to the [Inling] ... [/Inline] tags..

-Database A database in the data source in which to execute the
SQL statement.

-MaxRecords The maximum number of records to return. Optional,
defaults to 50.

-SkipRecords The offset into the found set at which to start returning

records. Optional, defaults to 1.

The -Database parameter can be any database within the data source in
which the SQL statement should be executed. The -Database parameter
will only be used to determine the data source, all table references within
the statement must include both a database name and a table name, e.g.
Contacts.People. For example, to create a new database in Lasso MySQL, a
CREATE DATABASE statement can be executed with -Database set to Site.

When referencing the name of a database and table in a SQL statement
(e.g. Contacts.People), only the true file names of a database or table can
be used as MySQL does not recognize Lasso aliases in a SQL command.
LDML 7 contains two SQL helper tags that return the true file name of a
SQL database or table, as shown in Table 13: SQL Helper Tags.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS 131

Table 13: -SQL Helper Tags

Tag Description

[Database_RealName] Returns the actual name of a database from an alias.
Useful for determining the true name of a database for
use with the -SQL tag.

[Table_RealName] This tag returns the actual name of a table from an
alias. Useful for determining the true name of a table for
use with the -SQL tag.

To determine the true database and table name for a SQL statement:

Use the [Database_RealName] and [Table_RealName] tags. When using the
-SQL tag to issue SQL statements to a MySQL host, only true database
and tables may be used (bypassing the alias). The [Database_RealName] and
| Table_RealName] tags can be used to automatically determine the true name
of a database and table, allowing them to be used in a valid SQL state-
ment.
[Var_Set:'Real_DB' = (Database_RealName:'Contacts_Alias')]
[Var_Set:'Real_TB' = (Table_RealName:'Contacts_Alias')]
[Inline: -Database ='Contacts_Alias', -SQL="select * from ((Var:'Real_DB') +"." + (Var:
'Real_TB"))]

Results from a SQL statement are returned in a record set within the

[Inline] ... [/Inline] tags. The results can be read and displayed using the
[Records] ... [/Records] container tags and the [Field] substitution tag. However,
many SQL statements return a synthetic record set that does not corre-
spond to the names of the fields of the table being operated upon. This is
demonstrated in the examples that follow.

To issue a SQL statement:

Specify the SQL statement within [Inline] ... [/Inline] tags in a -SQL command

tag.

¢ The following example calculates the results of a mathematical expres-
sion 1+ 2 and returns the value as a [Field] value named Result. Note
that even though this SQL statement does not reference a database, a
-Database tag is still required so Lasso knows to which data source to
send the statement.

[Inline: -Database="Example', -SQL="SELECT 1+2 AS Result|

The result is: [Field: 'Result].
[/Inline]

=»
The result is 3.

LAsso 7.1 LANGUAGE GUIDE

132 CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS

¢ The following example calculates the results of several mathematical
expressions and returns them as field values One, Two, and Three.
[Inline: -Database="Example',
-SQL="SELECT 1+2 AS One, sin(.5) AS Two, 5%2 AS Three]

The results are: [Field: 'One"], [Field: 'Two'], and [Field: 'Three'].
[/Inling]

=>»
The results are 3, 0.579426, and 1.

¢ The following example calculates the results of several mathematical
expressions using LDML and returns them as field values One, Two, and
Three. It demonstrate how the results of LDML expressions and substitu-
tion tags can be used in a SQL statement.
[Inline: -Database="Example’,
-SQL="SELECT ' + (1+2) + ' AS One, ' + (Math_Sin: .5) +
"AS Two, ' + (Math_Mod: 5, 2) + " AS Three]

The results are: [Field: 'One'], [Field: "Two'], and [Field: 'Three".
[/Inline]

=» <pbr>The results are 3, 0.579426, and 1.

¢ The following example returns records from the Phone_Book table where
First_Name is equal to John. This is equivalent to a -Search using LDML.
[Inline: -Database="Example’,
-SQL="SELECT * FROM Phone_Book WHERE First_Name = "John"]
[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inling]

=» <pr>John Doe

John Person

To issue a SQL statement with multiple commands:

Specify the SQL statements within [Inline] ... [/Inline] tags in a -SQL command
tag, with each SQL command separated by a semi-colon. The following
example adds three unique records to the Contacts database. Note that all
single quotes within the SQL statement have been properly escaped using
the \ character, as described at the beginning of this chapter.

[Inline: -Database="Contacts',
-SQL='INSERT INTO Contacts.People (First_Name, Last_Name) VALUES
(\"John\', \'Jakob\');
INSERT INTO Contacts.People (First_Name, Last_Name) VALUES
(\'Tom\', \'Smith\");
INSERT INTO Contacts.People (First_Name, Last_Name) VALUES
('Sally\', 'Brown\')]
[/Inline]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS 133

To automatically format the results of a SOL statement:

Use the [Field_Name] tag and [Loop] ... [/Loop] tags to create an HTML table
that automatically formats the results of a -SQL command. The -MaxRecords

tag should be set to All so all records are returned rather than the default
(50).

The following example shows a REPAIR TABLE Contacts.People SQL state-
ment being issued to a MySQL database, and the result is automatically
formatted. The statement returns a synthetic record set which shows the
results of the repair.

Notice that the database Contacts is specified explicitly within the SQL state-
ment. Even though the database is identified in the -Database command tag
within the [Inline] tag it still must be explicitly specified in each table refer-
ence within the SQL statement.

[Inline: -Database="Contacts',
-SQL='REPAIR TABLE Contacts.People',
-MaxRecords="All']
<table border="1">
<tr>
[Loop: (Field_Name: -Count)]
<td>[Field_Name: (Loop_Count)]</td>
[/Loop]
</tr>
[Records]
<tr>
[Loop: (Field_Name: -Count)]
<td>[Field: (Field_Name: Loop_Count)]</td>
[/Loop]
<Jtr>
[/Records]
</table>
[/Inline]

The results are returned in a table with bold column headings. The
following results show that the table did not require any repairs. If repairs
are performed then many records will be returned.
=» Table=»>Op Msg_Type Msg_Text

People Check Status OK

SQL Transactions

LDML 7 supports the ability to perform reversible SQL transactions
provided that the data source used (e.g. MySQL 4 .x) supports this func-

LAsso 7.1 LANGUAGE GUIDE

134

CHAPTER 6 — DATABASE INTERACTION FUNDAMENTALS

tionality. See your data source documentation to see if transactions are
supported.

FileMaker Note: SQL transactions are not supported for FileMaker Pro data
sources.

SQL transactions can be achieved within nested [Inline] ... [/Inline] tags. A
single connection to MySQL or JDBC data sources will be held open from
the opening [Inline] tag to the closing [/Inline] tag. Any nested inlines that use
the same data source will make use of the same connection.

Note: When using named inlines, the connection is not available in subse-
quent [Records: -InlineName="Name1 ... [/Records] tags.

To open a transaction and commit or rollback in MySQL:

Used nested -SQL inlines, where the outer inline performs a transaction,
and the inner inline commits or rolls back the transaction depending on
the results of a conditional statement.
[Inline: -Database="Contacts', -SQL="START TRANSACTION
INSERT INTO Contacts.People (Title, Company) VALUES (YMr.\', Y'OmniPilot\');']
[If: (Error_CurrentError) != (Error_NoError)]
[Inline: -Database="Contacts', -SQL="ROLLBACK;']
[/Inline]
[Else]
[Inline: -Database="Contacts', -SQL="COMMIT;]
[/Inline]
[/

[nline]

To fetch the last inserted ID in MySQL:

Used nested -SQL inlines, where the outer inline performs an insert query,
and the inner inline retrieves the ID of the last inserted record using the
MySQL last_insert_id() function. Because the two inlines share the same
connection, the inner inline will always return the value added by the
outer inline.
[Inline: -Database="Contacts',
-SQL='INSERT INTO People (Title, Company) VALUES ('Mr.\", 'OmniPilot\);]
[Inline: -SQL="SELECT last_insert_id()]
[Field: 'last_insert_id()]
[/Inline]
[/Inline]

=23

LAsso 7.1 LANGUAGE GUIDE

135

Chapter 7
Searching and
Displaying Data

This chapter documents the LDML command tags which search for records
and data within Lasso compatible databases and display the results.

e Overview provides an introduction to the database actions described in
this chapter and presents important security considerations.

Searching Records includes instructions for searching records within a
database.

Displaying Data describes the tags that can be used to display data that
result from database searches.

Linking to Data includes requirements and instructions for navigating
through found sets and linking to particular records within a database.

Overview

LDML provides command tags for searching records within Lasso compat-
ible databases. These command tags are used in conjunction with addi-
tional command tags and name/value parameters in order to perform the
desired database action in a specific database and table or within a specific
record.

The command tags documented in this chapter are listed in Table

1: Command Tags. The sections that follow describe the additional
command tags and name/value parameters required for each database
action.

LAsso 7.1 LANGUAGE GUIDE

136

CHAPTER 7 — SEARCHING AND DISPLAYING DATA

Table 1: Command Tags

Tag Description

-Search Searches for records within a database.

-FindAll Finds all records within a database.

-Random Returns a random record from a database. Only works

with FileMaker Pro databases.

How Searches are Performed

This section describes the steps that take place each time a search is
performed using Lasso.

1 Lasso checks the database, table, and field name specified in the search
to ensure that they are all valid.

2 Lasso security is checked to ensure that the current user has permis-
sion to perform a search in the desired database, table, and field.
Filters are applied to the search criteria if they are defined within Lasso
Administration.

3 The search query is formatted and sent to the database application.
FileMaker Pro search queries are formatted as URLs and submitted to
the Web Companion. Lasso MySQL search queries are formatted as SQL
statements and submitted directly to Lasso MySQL.

4 The database application performs the desired search and assembles a
found set. The database application is responsible for interpreting search
criteria, wild cards in search strings, field operators, and logical opera-
tors.

5 The database application sorts the found set based on sort criteria
included in the search query. The database application is responsible for
determining the order of records returned to Lasso.

6 A subset of the found set is sent to Lasso as the result set. Only the
number of records specified by -MaxRecords starting at the offset specified
by -SkipRecords are returned to Lasso. If any -ReturnField command tags
are included in a search then only those fields named by the -ReturnField
command tags are returned to Lasso.

7 The result set can be displayed and manipulated using LDML tags that
return information about the result set and LDML tags that return fields
or other values.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DispLAYING DaTA 137

Character Encoding

Lasso stores and retrieves data from data sources based on the preferences
established in the Setup > Data Sources section of Lasso Administration.
The following rules apply for each standard data source.

Lasso MySQL and MySQL - By default all communication is in the
Latin-1 (ISO 8859-1) character set. This is to preserve backwards compat-
ibility with prior versions of Lasso. The character set can be changed to
the Unicode standard UTE-8 character set in the Setup > Data Sources >
Tables section of Lasso Administration.

FileMaker Pro - By default all communication is in the MacRoman char-
acter set when Lasso Professional is hosted on Mac OS X or in the Latin-1
(ISO 8859-1) character set when Lasso Professional is hosted on Windows.
The preference in the Setup > Data Sources > Databases section of Lasso
Administration can be used to change the character set for cross-platform
communications.

JDBC - All communication with JDBC data sources is in the Unicode stan-
dard UTF-8 character set.

See the Lasso Professional 7 Setup Guide for more information about how
to change the character set settings in Lasso Administration.

Error Reporting

After a database action has been performed, Lasso reports any errors which
occurred via the [Error_CurrentError] tag. The value of this tag should be
checked to ensure that the database action was successfully performed.

To display the current error code and message:

The following code can be used to display the current error message. This
code should be placed in a format file which is a response to a database
action or within a pair of [Inline] ... [/Inline] tags.

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

If the database action was performed successfully then the following result
will be returned.

=» 0: No Error

To check for a specific error code and message:

The following example shows how to perform code to correct or report
a specific error if one occurs. The following example uses a conditional
[If] ... [if] tag to check the current error message and see if it is equal to
[Error_NoRecordsFound].

LAsso 7.1 LANGUAGE GUIDE

138 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

[If: (Error_CurrentError) == (Error_NoRecordsFound)]
No records were found!

/]

Full documentation about error tags and error codes can be found in
Chapter 21: Error Control. A list of all Lasso error codes and messages can
be found in Appendix B: Error Codes.

Classic Lasso

If Classic Lasso support has been disabled within Lasso Administration
then database actions will not be performed automatically if they are speci-
fied within HTML forms or URLs. Although the database action will not
be performed, the -Response tag will function normally. Use the following
code in the response page to the HTML forms or URL to trigger the data-
base action.

[Inline: (Action_Params)]

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
[/Inline]

See Chapter 6: Database Interaction Fundamentals in this Lasso 7
Language Guide and Chapter 6: Setting Global Preferences in the Lasso
Professional 7 Setup Guide for more information.

Note: The use of Classic Lasso has been deprecated. All solutions should be
transitioned over to the [Inline] ... [/inline] tag based methods described in this
chapter.

Security

Lasso has a robust internal security system that can be used to restrict
access to database actions or to allow only specific users to perform data-
base actions. If a database action is attempted when the current visitor has
insufficient permissions then they will be prompted for a username and
password. An error will be returned if the visitor does not enter a valid
username and password.

An [Inling] ... [/Inline] can be specified to execute with the permissions of a
specific user by specifying -Username and -Password command tags within
the [Inline] tag. This allows the database action to be performed even though
the current site visitor does not necessarily have permissions to perform
the database action. In essence, a valid username and password are
embedded into the format file.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DispLAYING DAaTA 139

Table 2: Security Command Tags

Tag Description

-Username Specifies the username from Lasso Security which
should be used to execute the database action.

-Password Specifies the password which corresponds to the
username.

To specify a username and password in an [Inline]:

The following example shows a -FindAll action performed within an [Inline]
tag using the permissions granted for username SiteAdmin with password
Secret.
[Inline: -FindAll,

-Database="'Contacts',

-Table='People’,

-Username="SiteAdmin’,

-Password="Secret']

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
[/Inline]

A specified username and password is only valid for the [Inline] ... [/Inline] tags
in which it is specified. It is not valid within any nested [Inling] ... [/Inline] tags.
See Chapter 8: Setting Up Security of the Lasso Professional 7 Setup
Guide for additional important information regarding embedding
usernames and passwords into [Inline] tags.

Searching Records

Searches can be performed within any Lasso compatible database using
the -Search command tag. The -Search command tag is specified within
[Inline] ... [/Inline] tags. The -Search command tag requires that a number
of additional command tags be defined in order to perform the search.
The required command tags are detailed in Table 3: -Search Action
Requirements.

Note: If Classic Lasso syntax is enabled then the -Search command tag can
also be used within HTML forms or URLs. The use of Classic Lasso syntax has
been deprecated so solutions which rely on it should be updated to use the
inline methods described in this chapter.

Additional command tags are described in Table 4: Operator Command
Tags and Table 6: Results Command Tags in the sections that follow.

LAsso 7.1 LANGUAGE GUIDE

140 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

Table 3: -Search Action Requirements

Tag Description

-Search The action which is to be performed. Required.

-Database The database which should be searched. Required.

-Table The table from the specified database which should be
searched. Required.

-KeyField The name of the field which holds the primary key for
the specified table. Recommended.

-KeyValue The particular value for the primary key of the record

which should be returned. Using -KeyValue overrides
all the other search parameters and returns the single
record specified. Optional.

Name/Value Parameters A variable number of name/value parameters specify the
query which will be performed.

Any name/value parameters included in the search action will be used to
define the query that is performed in the specified table. All name/value
parameters must reference a field within the database. Any fields which are
not referenced will be ignored for the purposes of the search.

To search a database using [Inline] ... [/Inline] tags:

The following example shows how to search a database by specifying the
required command tags within an opening [Inline] tag. -Database is set to
Contacts, -Table is set to People, and -KeyField is set to ID. The search returns
records which contain John with the field First_Name.

The results of the search are displayed to the visitor inside the
[Inline] ... [/Inline] tags. The tags inside the [Records] ... [/Records] tags will repeat
for each record in the found set. The [Field] tags will display the value for
the specified field from the current record being shown.
[Inline: -Search,

-Database="'Contacts',

-Table='People’,

-KeyField="1D",

'First_Name'='John']

[Records]

[Field: 'First_Name'"] [Field: 'Last_Name']
[/Records]

[/Inline]

If the search was successful then the following results will be returned.

=»
John Person

John Doe

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DiIsPLAYING DAaTA 141

Additional name/value parameters and command tags can be used to
generate more complex searches. These techniques are documented in the
following section on Operators.

To search a database using visitor-defined values:

The following example shows how to search a database by specifying the
required command tags within an opening [Inline] tag, but allow a site
visitor to specify the search criteria in an HTML form.

The visitor is presented with an HTML form in the format file
default.lasso. The HTML form contains two text inputs for First_Name and
Last_Name and a submit button. The action of the form is the response page
response.lasso which contains the [Inline] ... [/Inline] tags that will perform the
search. The contents of the default.lasso file include the following.
<form action="response.lasso" method="POST">

First Name: <input type="text" name="First_Name" value="">

Last Name: <input type="text" name="Last_Name" value="">

<input type="submit" name="-Nothing" value="Search Database">
</form>

The search is performed and the results of the search are displayed to the
visitor inside the [Inling] ... [/Inline] tags in response.lasso. The values entered by
the visitor in the HTML form in default.lasso are inserted into the [Inline] tag
using the [Action_Param] tag. The tags inside the [Records] ... [[Records] tags will
repeat for each record in the found set. The [Field] tags will display the value
for the specified field from the current record being shown. The contents of
the response.lasso file include the following.
[Inline: -Search,

-Database="Contacts',

-Table='People’,

-KeyField="1D",

'First_Name'=(Action_Param: 'First_Name'),

'Last_Name'=(Action_Param: 'Last_Name')]

[Records]

[Field: 'First_Name'"] [Field: 'Last_Name']
[/Records]

[/Inling]

If the visitor entered John for First_Name and Person for Last_Name then the
following result would be returned.

=»
John Person

LAsso 7.1 LANGUAGE GUIDE

142 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

Operators

LDML includes a set of command tags that allow operators to be used to
create complex database queries. These command tags are summarized in
Table 4: Operator Command Tags.

Table 4: Operator Command Tags

Tag Description

-OperatorLogical Specifies the logical operator for the search.
Abbreviation is -OpLogical. Defaults to and.

-Operator When specified before a name/value parameter,

establishes the search operator for that name/value
parameter. Abbreviation is -Op. Defaults to bw.

-OperatorBegin Specifies the logical operator for all search parameters
until -OperatorEnd is reached. Abbreviation is -OpBegin.
-OperatorEnd Specifies the end of a logical operator grouping started

with -OperatorBegin. Abbreviation is -OpEnd.

The operator command tags are divided into two categories.

¢ Field Operators are specified using the -Operator command tag before
a name/value parameter. The field operator changes the way that the
named field is searched for the value. If no field operator is specified
then the default begins with bw operator is used. See Table 5: Field
Operators for a list of the possible values for this tag.

Logical Operators are specified using the -OperatorLogical, -OperatorBegin,
and -OperatorEnd tags. These tags specify how the results of different
name/value parameters are combined to form the full results of the
search.

Field Operators

The possible values for the -Operator command tag are listed in Table 5:
Field Operators. The default operator is begins with bw. Each operator
can be used in its short form cn or in its long form Contains. Case is unim-
portant when specifying operators.

Field operators are interpreted differently depending on which database
application is being accessed. For example, FileMaker Pro interprets bw to
mean that any word within a field can begin with the value specified for
that field. MySQL interprets bw to mean that the first word within the field
must begin with the value specified. See the chapters on each data source
or the documentation that came with a third-party data source connector
for more information.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DiIsPLAYING DAaTA 143

Several of the field operators are only supported in Lasso MySQL or
other MySQL databases. These include the ft full text operator and the
rx nrx regular expression operators.

Table 5: Field Operators

Operator Description

bw Begins With. Default if no operator is set.

cn Contains.

ew Ends With.

eq Equals.

ft Full Text. MySQL databases only.

gt Greater Than.

gte Greater Than or Equals.

It Less Than.

Ite Less Than or Equals.

neq Not Equals.

nrx Not RegExp. Opposite of RegExp. MySQL databases
only.

rx RegExp. Regular expression search. MySQL databases
only.

Note: In previous versions of Lasso the field operators could be specified
using either a short form, e.g. bw or a long form, e.g. Begins With. In Lasso
Professional 7 only the short form is preferred. Use of the long form is depre-
cated. It is supported in this version, but may not work in future versions of
Lasso Professional.

To specify a field operator in an [Inline] tag:

Specify the field operator before the name/value parameter which it will
affect. The following [Inline] ... [/Inline] tags search for records where the
First_Name begins with J and the Last_Name ends with son.
[Inline: -Search,

-Database="Contacts',

-Table='People’,

-KeyField="1D',

-Operator="bw", 'First_Name'='J',

-Operator="ew', 'Last_Name'="son]

LAsso 7.1 LANGUAGE GUIDE

144 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

[Records]

[Field: 'First_Name'"] [Field: 'Last_Name']
[/Records]
[/Inline]

The results of the search would include the following records.

=»
John Person

Jane Person

Logical Operators

The logical operator command tag -OperatorLogical can be used with a value
of either AND or OR. The command tags -OperatorBegin, and -OperatorEnd can
be used with values of AND, OR, or NOT. -OperatorLogical applies to all search
parameters specified with an action . -OperatorBegin applies to all search
parameters until the matching -OperatorEnd tag is reached. The case of the
value is unimportant when specifying a logical operator.

e AND specifies that records which are returned should fulfill all of the
search parameters listed.

¢ OR specifies that records which are returned should fulfill one or more
of the search parameters listed.

e NOT specifies that records which match the search criteria contained
between the -OperatorBegin and -OperatorEnd tags should be omitted from
the found set. NOT cannot be used with the -OperatorLogical tag.

Note: In lieu of a NOT option for -OperatorLogical, many field operators can
be negated individually by substituting the opposite field operator. The
following pairs of field operators are the opposites of each other: eq and
neq, It and gte, gt and Ite.

FileMaker Note: The -OperatorBegin and -OperatorEnd tags do not work with
Lasso Connector for FileMaker Pro.

To perform a search using an AND operator:

Use the -OperatorLogical command tag with an AND value. The following
[Inline] ... [/Inline] tags return records for which the First_Name field begins
with John and the Last_Name field begins with Doe. The position of the
-OperatorLogical command tag within the [Inline] tag is unimportant since it
applies to the entire action.
[Inline: -Search,

-Database="Contacts',

-Table='People’,

-KeyField="1D',

-OperatorLogical='AND",

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DisPLAYING DATA 145

'First_Name'="John’,
'Last_Name'='Doe’]
[Records]

[Field: 'First_Name'"] [Field: 'Last_Name']
[/Records]
[/Inline]

To perform a search using an OR operator:

Use the -OperatorLogical command tag with an OR value. The following
[Inline] ... [/Inline] tags return records for which the First_Name field begins with
either John or Jane. The position of the -OperatorLogical command tag within
the [Inline] tag is unimportant since it applies to the entire action.
[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField="1D',
-OperatorLogical="OR',
'First_Name'="John’,
'First_Name'='Jane']
[Records]

[Field: 'First_Name'] [Field: 'Last_Name]
[/Records]
[/Inline]

To perform a search using a NOT operator:

Use the -OperatorBegin and -OperatorEnd command tags with a NOT value. The
following [Inline] ... [/Inline] tags return records for which the First_Name field
begins with John and the Last_Name field is not Doe. The operators tags must
surround the parameters of the search which are to be negated.

[Inline: -Search,
-Database="Contacts',
-Table='People',
-KeyField="ID',
'First_Name'='John',
-OperatorBegin="NOT',

'Last_Name'='Doe’,
-OperatorEnd='NOT]

LAsso 7.1 LANGUAGE GUIDE

146 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

[Records]

[Field: 'First_Name'"] [Field: 'Last_Name']
[/Records]
[/Inline]

To perform a search with a complex query:

Use the -OperatorBegin and -OperatorEnd tags to build up a complex query. As
an example, a query can be constructed to find records in a database whose
First_Name and Last_Name both begin with the same letter J, or M. The
desired query could be written in pseudo-code as follows.

((First_Name begins with J) AND (Last_Name begins with J)) OR
((First_Name begins with M) AND (Last_Name begins with M))

The pseudo code is translated into a URL as follows. Each line of the query
becomes a pair of -OpBegin=AND and -OpEnd=AND tags with a name/value
parameter for First_Name and Last_Name contained inside. The two lines are
then combined using a pair of -OpBegin=OR and -OpEnd=0OR tags. The nesting
of the command tags works like the nesting of parentheses in the pseudo
code above to clarify how Lasso should combine the results of different
name/value parameters.

<a href="/response.lasso?-Search&
-Database=Contacts&
-Table=People&
-KeyField=ID&
-OpBegin=0R&
-OpBegin=AND&
First_Name=J&
Last_Name=J&
-OpEnd=AND&
-OpBegin=AND&
First_Name=M&
Last_Name=M&
-OpEnd=AND&
-OpEnd=0R">
First Name and Last Name both begin with J or M
<fa>

The following results might be returned when this link is selected.
=>»
Johnny Johnson

Jimmy James

Mark McPerson

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DiIsPLAYING DAaTA 147

Results

LDML includes a set of command tags that allow the results of a search

to be customized. These command tags do not change the found set of
records that are returned from the search, but they do change the data that
is returned to Lasso for formatting and display to the visitor. The results
command tags are summarized in Table 6: Results Command Tags.

Table 6: Results Command Tags

Tag Description

-Distinct Specifies that only records with distinct values in all
returned fields should be returned. MySQL databases
only.

-LayoutResponse Specifies what layout should be used to return values

from a database action for FileMaker Server Advanced
data sources only.

-MaxRecords Specifies how many records should be shown from the
found set. Optional, defaults to 50.
-SkipRecords Specifies an offset into the found set at which records

should start being shown. Optional, defaults to 1.

-ReturnField Specifies a field that should be returned in the results
of the search. Multiple -ReturnField tags can be used to
return multiple fields. Optional, defaults to returning all
fields in the searched table.

-SortField Specifies that the results should be searched based on
the data in the named field. Multiple -SortField tags can
be used for complex sorts. Optional, defaults to returning
data in the order it appears in the database.

-SortOrder When specified after a -SortField parameter, specifies
the order of the sort, either ascending, descending
or custom. Optional, defaults to ascending for each -

SortField.

-SortRandom Sorts the returned results randomly. MySQL databases
only.

-UseLimit Specifies that a MySQL LIMIT should be used instead

of Lasso's built-in tools for limiting the found set. MySQL
databases only.

The results command tags are divided into three categories.

e Sorting is specified using the -SortField and -SortOrder command tags.
These tags change the order of the records which are returned by the
search. The sort is performed by the database application before Lasso
receives the record set.

LAsso 7.1 LANGUAGE GUIDE

148 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

The -SortRandom tag can be used to perform a random sort on the found
set from MySQL databases. Note that the sort will be random each time
a set of records is returned so -MaxRecords and -SkipRecords cannot be used
to navigate a found set that is sorted randomly.

The portion of the Found Set being shown is specified using the
-MaxRecords and -SkipRecords tags. -MaxRecords sets the number of records
which will be shown between the [Records] ... [[Records] tags that format
the results for the visitor. The -SkipRecords tag sets the offset into the
found set which is shown. These two tags define the window of records
which are shown and can be used to navigate through a found set.

The -UseLimit tag instructs MySQL data sources to use a SQL LIMIT tag

to restrict the found set based on the values of the -MaxRecords and
-SkipRecords tags. This may increase performance when many records are
being found, but -MaxRecords is set to a low value.

The Fields which are available are specified using the -ReturnField tag.
Normally, all fields in the table that was searched are returned. If any
-ReturnField tags are specified then only those fields will be available to
be returned to the visitor using the [Field] tag. Specifying -ReturnField tags
can improve the performance of Lasso by not sending unnecessary data
between the database and the Web server.

Note: In order to use the [KeyField_Value] tag within an inline the keyfield
must be specified as one of the -ReturnField values.

e The -Distinct tag instructs MySQL data sources to return only records
which contain distinct values across all returned fields. This tag is useful
when combined with a single -ReturnField tag and a -FindAll to return all
distinct values from a single field in the database.

To return sorted results:

Specify -SortField and -SortOrder command tags within the search param-
eters. The following inline includes sort command tags. The records are
first sorted by Last_Name in ascending order, then sorted by First_Name in
ascending order.
[Inline: -Search,

-Database="Contacts',

-Table='People',

-KeyField="1D",

'First_Name'='J',

-SortField="Last_Name', -SortOrder='Ascending’,

-SortField="First_Name', -SortOrder="Descending’]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DiIsPLAYING DAaTA 149

[Records]

[Field: 'First_Name']
[/Records]
[/Inline]

The following results could be returned when this inline is run. The
returned records are sorted in order of Last_ Name. If the Last_Name of two
records are equal then those records are sorted in order of First_Name.
=>
Jane Doe

John Doe

Jane Person

John Person

To return a portion of a found set:

A portion of a found set can be returned by manipulating the values
for -MaxRecords and -SkipRecords. In the following example, a search is
performed for records where the First_Name begins with J. This search
returns four records, but only the second two records are shown.
-MaxRecords is set to 2 to show only two records and -SkipRecords is set to
2 to skip the first two records.
[Inline: -Search,
-Database="Contacts',
-Table='People',
-KeyField="1D",
'First_Name'='J',
-MaxRecords=2,
-SkipRecords=2]
[Records]

[Field: 'First_Name']
[/Records]
[/Inline]

The following results could be returned when this inline is run. Neither
of the Doe records from the previous example are shown since they are
skipped over.

=»
Jane Person

John Person

To limit the fields returned in search results:

Use the -ReturnField command tag. If a single -ReturnField command tag

is used then only the fields that are specified will be returned. If no
-ReturnField command tags are specified then all fields within the current
table will be shown. In the following example, only the First_Name field is
shown since it is the only field specified within a -ReturnField command tag.

LAsso 7.1 LANGUAGE GUIDE

150 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField="ID',
'First_Name'='J',
-ReturnField="First_Name']

[Records]

[Field: 'First_Name']
[/Records]
[/Inline]

The following results could be returned when this link is selected. The
Last_Name field cannot be shown for any of these records since it was not
specified in a -ReturnField command tag.
=>
Jane

John

Jane

John

If [Field: 'Last_Name'] were specified inside the [Inline] ... [/Inline] tags and not
specified as a -ReturnField then an error would be returned rather than the
indicated results.

Finding All Records

All records can be returned from a database using the -FindAll command tag.
The -FindAll command tag functions exactly like the -Search command tag
except that no name/value parameters or operator tags are required. Sort
tags and tags which sort and limit the found set work the same as they do
for -Search actions. -FindAll actions can be specified in [Inline] ... [/Inline] tags.

Note: If Classic Lasso syntax is enabled then the -FindAll command tag can
also be used within HTML forms or URLs. The use of Classic Lasso syntax has
been deprecated so solutions which rely on it should be updated to use the
inline methods described in this chapter.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DispLAYING DAaTA 151

Table 7: -FindAll Action Requirements

Tag Description

-FindAll The action which is to be performed. Required.

-Database The database which should be searched. Required.

-Table The table from the specified database which should be
searched. Required.

-KeyField The name of the field which holds the primary key for

the specified table. Recommended.

To find all records within a database:

The following [Inline] ... [/Inline] tags find all records within a database
Contacts and displays them. The results are shown below.

[Inline: -FindAll,
-Database="'Contacts',
-Table='People’,
-KeyField='1D'"]
[Records]

[Field: 'First_Name'"] [Field: 'Last_Name']
[/Records]
[/Inline]

=» <pr>Jane Doe

John Person

Jane Person

John Doe

To return all unique field values:

The unique values from a field in a MySQL database can be returned
using the -Distinct tag. Only records which have distinct values across all
fields will be returned. In the following example, a -FindAll action is used
on the People table of the Contacts database. Only distinct values from the
Last_Name field are returned.
[Inline: -FindAll,

-Database="Contacts',

-Table='People’,

-Distinct,

-SortField="First_Name',

-ReturnField="First_Name]

LAsso 7.1 LANGUAGE GUIDE

152 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

[Records]

[Field: 'First_Name']
[/Records]
[/Inline]

The following results are returned. Even though there are multiple
instances of John and Jane in the database, only one record for each name
is returned.
=»
Jane

John

Finding Random Records

A random record can be returned from a database using the

-Random command tag. The -Random command tag functions exactly like the
-Search command tag except that no name/value parameters or operator
tags are required. -Random actions can be specified in [Inline] ... [/Inline] tags.

Note: If Classic Lasso syntax is enabled then the -Random command tag can
also be used within HTML forms or URLs. The use of Classic Lasso syntax has
been deprecated so solutions which rely on it should be updated to use the
inline methods described in this chapter.

Table 8: -Random Action Requirements

Tag Description

-Random The action which is to be performed. Required.
-Database The database which should be searched. Required.
-Table The table from the specified database which should be

searched. Required.

-KeyField The name of the field which holds the primary key for
the specified table. Recommended.

To find a single random record from a database:

The following inline finds a single random record from a FileMaker Pro

database Contacts.fp3 and displays it. -MaxRecords is set to 1 to ensure that

only a single record is shown. One potential result is shown below. Each
time this inline is run a different record will be returned.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DispLAYING DaTA 153

[Inline: -Random,
-Database="Contacts',
-Table='People’,
-KeyField="ID',
-MaxRecords=1]
[Records]

[Field: 'First_Name'"] [Field: 'Last_Name']
[/Records]
[/Inline]

=»
Jane Person

To return multiple records sorted in random order:

The -SortRandom tag can be used with the -Search or -FindAll actions to return
many records from a MySQL database sorted in random order. In the
following example, all records from the People table of the Contacts database
are returned in random order.
[Inline: -FindAll,
-Database="Contacts',
-Table='People’,
-KeyField="ID',
-SortRandom]
[Records]

[Field: 'First_Name'] [Field: 'Last_Name]
[/Records]
[/Inline]

=»
John Doe

Jane Doe

Jane Person

John Person

Displaying Data

The examples in this chapter have all relied on the

[Records] ... [/[Records] tags and [Field] tag to display the results of the search
that have been performed. This section describes the use of these tags in
more detail.

LAsso 7.1 LANGUAGE GUIDE

154 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

Table 9: Field Display Tags

Tag Description

[Records] ... [/Records] Loops through each record in a found set. Optional
-InlineName parameter specifies that results should
be returned from a named inline. Synonym is [Rows]
... [[Rows].

[Field] Returns the value for a database field. Requires
one parameter, the field name. Optional parameter
-Recordindex specifies what record in the current found
set a field should be shown from. Synonym is [Column].

The [Field] tag always returns the value for a field from the current record
when it is used within [Records] ... [/Records] tags. If the [Field] tag is used
outside of [Records] ... [[Records] tags then it returns the value for a field from
the first record in the found set. If the found set is only one record then the
[Records] ... [/Records] tags are optional.

FileMaker Note: Lasso Connector for FileMaker Pro includes a collection of
FileMaker Pro specific tags which return database results. See Chapter 10:
FileMaker Pro Data Sources for more information.

To display the results from a search:

Use the [Records] ... [[Records] tags and [Field] tag to display the results of
a search. The following [Inline] ... [/Inline] tags perform a -FindAll action in
a database Contacts. The results are returned each formatted on a line by
itself. The [Loop_Count] tag is used to indicate the order within the found
set.
[Inline: -FindAll,
-Database="Contacts',
-Table='People',
-KeyField="1D']
[Records]

[Loop_Count]: [Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inline]

=»
1: Jane Doe

2: John Person

3: Jane Person

4: John Doe

To display the results for a single record:

Use [Field] tags within the contents of the [Inline] ... [/Inline] tags. The
[Records] ... [[Records] tags are unnecessary if only a single record is returned.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DispLAYING DaTA 155

The following [Inline] ... [/Inline] tags perform a -Search for a single record
whose primary key ID equals 1. The [KeyField_Value] is shown along with the
[Field] values for the record.
[Inline: -Search,
-Database="Contacts',
-Table='People’,
-KeyField="ID',
-KeyValue=1]

[KeyField_Value]: [Field: 'First_Name"] [Field: 'Last_Name']
[/Inline]

=» <pbr>1: Jane Doe

To display the results from a named inline:

Use the -InlineName parameter in both the opening [Inline] tag and in the
opening [Records] tag. The [Records] ... [/Records] tags can be located anywhere
in the page after the [Inline] ... [/Inline] tags that define the database action.
The following example shows a -FindAll action at the top of a page in a
LassoScript with the results formatted later.
<?LassoScript
Inline: -FindAll,

-Database="Contacts',

-Table='People’,

-KeyField="1D',

-InlineName="FindAll Results";

/Inline;
»

... Page Contents ...

[Records: -InlineName="FindAll Results']

[Loop_Count]: [Field: 'First_Name'] [Field: 'Last_Name']
[/Records]

=» <pr>1: Jane Doe

2: John Person

3: Jane Person

4: John Doe

To display the results from a search out of order:

The -Recordindex parameter of the [Field] tag can be used to show results out
of order. Instead of using [Records] ... [[Records] tags to loop through a found
set, the following example uses [Loop] ... [/lLoop] tags to loop down through
the found set from [MaxRecords_Value] to 1. The [Field] tags all reference the
[Loop_Count] in their -RecordIndex parameter.

LAsso 7.1 LANGUAGE GUIDE

156 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

[Inline: -FindAll,
-Database="Contacts',
-Table='People’,
-KeyField="1D"]
[Loop: -LoopFrom=(MaxRecords_Value), -LoopTo=1, -Looplncrement=-1]

[Loop_Count]: [Field: 'First_Name', -Recordindex=(Loop_Count)]
[Field: 'Last_Name', -RecordIndex=(Loop_Count)]
[/Loop]
[/Inline]

=»
4: John Doe

3: Jane Person

2: John Persion

1: Jane Doe

Linking to Data

This section describes how to create links which allow a visitor to manipu-
late the found set. The following types of links can be created.

¢ Navigation - Links can be created which allow a visitor to page through
a found set. Only a portion of the found set needs to be shown, but the
entire found set can be accessed.

¢ Detail - Links can be created which allow detail about a particular
record to be shown in another format file.

e Sorting - Links can be provided to re-sort the current found set on a
different field.

Note: If Classic Lasso syntax is enabled then the links tags can be used to
trigger actions using command tags embedded in URLs. The use of Classic
Lasso syntax has been deprecated so solutions which rely on it should be
updated to use the inline methods described in this chapter.

Most of the link techniques implicitly assume that the records within the
database are not going to change while the visitor is navigating through the
found set. The database search is actually performed again for every page
served to a visitor and if the number of results change then the records
being shown to the visitor can be shifted or altered as soon as another link
is selected.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DispLAYING DaTA 157

Link Tags

LDML 7 includes many tags which make creating detail links and naviga-
tion links easy within Lasso solutions. The general purpose link tags are
specified in Table 10: Link Tags. The common parameters for all link tags
are specified in Table 11: Link Tag Parameters.

The remainder of the chapter lists and demonstrates the link URL,
container, and parameter tags. Tags which generate URLs for links automat-
ically are listed in Table 12: Link URL Tags. Container tags which generate
entire HTML anchor tags <a> automatically are listed in Table 13: Link
Container Tags. Tags which provide parameter arrays for each link option
are listed in Table 14: Link Parameter Tags.

Table 10: Link Tags

Tag Description

[Link] ... [/Link] General purpose link tag that provides an anchor tag
with the specified parameters. The -Response parameter
is used as the URL for the link.

[Link_Params] General purpose link tag that processes a set of
parameters using the common rules for all link tags.

[Link_SetFormat] Sets a standard set of options that will be used for all
link tags that follow in the current format file.

[Link_URL] General purpose link tag that provides a URL based on
the specified parameters. The -Response parameter is
used as the URL for the link.

Each of the general purpose link tags implement the basic behavior of all
the link tags, but are not usually used on their own. The section on Link
Tag Parameters below describes the common parameters that all link
tags interpret. The following sections include the link URL, container, and
parameter tags and examples of their use.

Note: The [Link_...] tags do not include values for the -SQL, -Username,
-Password or the -ReturnField tags in the links they generate.

Link Tag Parameters

All of the link tags accept the same parameters which allow the link

that is being formed to be customized. These parameters include all the
command tags which can be passed to the opening [Inline] tag and a series
of parameters detailed in Table 11: Link Tag Parameters which allow
various command tags to be removed from the generated link tags.

LAsso 7.1 LANGUAGE GUIDE

158 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

The link tags interpret their parameters as follows.

The parameters are processed in the order they are specified within the
link tag. Later parameters override earlier parameters.

Most link tags process [Action_Params] first, then any parameters specified
in [Link_SetFormat], and finally the parameters specified within the link
tag itself. The general purpose link tags do not include [Action_Params]
autoamtically.

Parameters of type array are inserted into the parameters as if each item
of the array was specified in order at the location of the array.

Many command tags will only be included once in the resulting link.
These include -Database, -Table, -KeyField, -MaxRecords, and any other
command tags that can only be specified once within an inline. The last
value for the command tag will be included in the resulting link.

Only one action such as -Search, -FindAll, or -Nothing will be included in
the resulting link. The last action specified in the link tag will be used.

Command tags such as -Required, -Op, -OpBegin, -OpEnd, -SortField,
-SortOrder, and -Token will be included in the order they are specified
within the tag.

The resulting link will consist of the action followed by all command
tags specified once in alphabetical order, and finally all name/value
parameters and command tags that are specified multiple times in the
same order they were specified in the parameters.

All -No... parameters are interpreted at the location they occur in the
parameters. If a -NoDatabase parameter is specified early in the parameter
list and a -Database command tag is included later then the -Database
command tag will be included in the resulting link.

The -NoClassic parameter removes all command tags that are not
essential to specifying the search and location in the found set to an
[Inline] tag. The -Database, -Table, -KeyField, and action are all removed. All
name/value parameters, -Sort... tags, -Op tags, and either -MaxRecords and
-SkipRecords or -KeyValue are included.

The value of the -Response command tag will be used as the URL for the
resulting link. The link tags always link to a response file on the same
server they are called. If not specified the -Response will be the same as
[Response_FilePath].

The -SQL, -Username, -Password, and -ReturnField tags are never returned by
the link tags.

Note: The [Referrer] and [Referrer_URL] tags are special cases which simply
return the referrer specified in the HTTP request header. They do not accept
any parameters.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DispLAYING DAaTA 159

Table 11: Link Tag Parameters

Tag

Description

Command Tag

Name/Value Pair
Array Parameter

-NoAction
-NoClassic

-NoDatabase
-NoTable

-NoKeyField
-NoKeyValue
-NoOperatorLogical
-NoResponse
-NoMaxRecords
-NoSkipRecords
-NoParams

-NoSort
-NoToken, -NoToken.Name

-NoTokens
-NoSchema

-No.Name
-Response

Inserts the specified command tag. Either appends the
command tag or overrides an existing command tag with
the new value.

Inserts the specified name/value pair.

An array of pairs is inserted as if each name/value pair
in the array was specified in the tag parameters at the
location of the array.

Removes the action command tag.

Removes all parameters required to specify an action in
Classic Lasso leaving only those parameters required to
specify the query and current location in the found set.

Removes the -Database command tag.

Removes the -Table or -Layout command tag. -NoLayout
is a synonym.

Removes the -KeyField command tag.

Removes the -KeyValue command tag.

Removes the -OperatorLogical command tag.

Removes the -Response command tag.

Removes the -MaxRecords command tag.

Removes the -SkipRecords command tag.

Removes name/value pairs, -Operator, -OperatorBegin,
-OperatorEnd, and -Required tags.

Removes all -Sort... command tags.

Removes the -Token command tag. With a parameter as
-NoToken.Name removes the specified token command
tag.

Removes all -Token... command tags.

Removes the -Schema command tag for JDBC data
sources.

Removes a specified nam/value parameter.

Specifies the file that will be used as the URL for the
link tag. The link tags always link to a file on the current
Server.

LAsso 7.1 LANGUAGE GUIDE

160

Link URL Tags

CHAPTER 7 — SEARCHING AND DISPLAYING DATA

The tags listed in Table 12: Link URL Tags each return a URL based on the
current database action. Each of these tags accepts the same parameters

as specified in Table 11: Link Tag Parameters above and corresponds

to matching container and parameter tags. Examples of the link tags are
included in the Link Examples section that follows.

Table 12: Link URL Tags

Tag

Description

[Link_CurrentActionURL]
[Link_FirstGroupURL]

[Link_PrevGroupURL]
[Link_NextGroupURL]
[Link_LastGroupURL]
[Link_CurrentRecordURL]

[Link_FirstRecordURL]

[Link_PrevRecordURL]

[Link_NextRecordURL]

[Link_LastRecordURL]

[Link_DetailURL]

[Referrer_URL]

Returns a link to the current Lasso action.

Returns a link to the first group of records based on the
current Lasso action. Sets -SkipRecords to 0.

Returns a link to the next group of records based on the
current Lasso action. Changes -SkipRecords.

Returns a link to the next group of records based on the
current Lasso action. Changes -SkipRecords.

Returns a link to the last group of records based on the
current Lasso action. Changes -SkipRecords.

Returns a link to the current record. Sets -MaxRecords
to 1 and changes -SkipRecords.

Returns a link to the first record based on the current
Lasso action. Sets -MaxRecords to 1 and -SkipRecords
to 0.

Returns a link to the next record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

Returns a link to the next record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

Returns a link to the last record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

Returns a link to the current record using the primary
key and key value. Changes -KeyValue.

Returns a link to the previous page which the visitor was
at before the current page. [Referer_URL] is a synonym.

Note: The [Referrer_URL] tag is a special case which simply returns the referrer
specified in the HTTP request header. It does not accept any parameters.

LAsso 7.1 LANGUAGE GUIDE

Link Container Tags

CHAPTER 7 — SEARCHING AND DiIsPLAYING DAaTA 161

The tags listed in Table 13: Link Container Tags each return an anchor
tag based on the current database action. The anchor tags surround the
contents of the container tag. If the link tag is not valid then no result is
returned. Each of these tags accepts the same parameters as specified in
Table 11: Link Tag Parameters above and corresponds to matching URL
and parameter tags. Examples of the link tags are included in the Link
Examples section that follows.

Table 13: Link Container Tags

Tag

Description

[Link_CurrentAction]
[Link_FirstGroup]

[Link_PrevGroup]
[Link_NextGroup]
[Link_LastGroup]
[Link_CurrentRecord]

[Link_FirstRecord]

[Link_PrevRecord]

[Link_NextRecord]

[Link_LastRecord]

[Link_Detail

[Referrer]

t

Returns a link to the current Lasso action.

Returns a link to the first group of records based on the
current Lasso action. Sets -SkipRecords to 0.

Returns a link to the previous group of records based on
the current Lasso action. Changes -SkipRecords.

Returns a link to the next group of records based on the
current Lasso action. Changes -SkipRecords.

Returns a link to the last group of records based on the
current Lasso action. Changes -SkipRecords.

Returns a link to the current record. Sets -MaxRecords
to 1 and changes -SkipRecords.

Returns a link to the first record based on the current
Lasso action. Sets -MaxRecords to 1 and -SkipRecords
to 0.

Returns a link to the previous record based on the
current Lasso action. Sets -MaxRecords to 1 and
changes -SkipRecords.

Returns a link to the next record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

Returns a link to the last record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

Returns a link to the current record using the -KeyField
and -KeyValue. Changes -KeyValue.

Returns a link to the previous page which the visitor was
at before the current page. [Referer] is a synonym.

Note: The [Referrer] ... [[Referrer] tag is a special case which simply returns the
referrer specified in the HTTP request header. It does not accept any param-

eters.

LAsso 7.1 LANGUAGE GUIDE

162 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

Link Parameter Tags

The tags listed in Table 14: Link Parameter Tags each return an array of
parameters based on the current database action. Each of these tags accepts
the same parameters as specified in Table 11: Link Tag Parameters above
and corresponds to matching container and URL tags. Examples of the link
tags are included in the Link Examples section that follows.

Table 14: Link Parameter Tags

Tag Description

[Link_CurrentActionParams] Returns a link to the current Lasso action.

[Link_FirstGroupParams] Returns a link to the first group of records based on the
current Lasso action. Sets -SkipRecords to 0.

[Link_PrevGroupParams] Returns a link to the next group of records based on the
current Lasso action. Changes -SkipRecords.

[Link_NextGroupParams] Returns a link to the next group of records based on the
current Lasso action. Changes -SkipRecords.

[Link_LastGroupParams] Returns a link to the last group of records based on the

current Lasso action. Changes -SkipRecords.

[Link_CurrentRecordParams] Returns a link to the current record. Sets -MaxRecords
to 1 and changes -SkipRecords.

[Link_FirstRecordParams] Returns a link to the first record based on the current
Lasso action. Sets -MaxRecords to 1 and -SkipRecords
to 0.

[Link_PrevRecordParams] Returns a link to the next record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

[Link_NextRecordParams] Returns a link to the next record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

[Link_LastRecordParams] Returns a link to the last record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

[Link_DetailParams] Returns a link to the current record using the primary
key and key value. Changes -KeyValue.

Note: There is no link parameter tag equivalent to the referrer tags.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DisPLAYING DATA 163

Link Examples

The basic technique for using the link tags is the same as that which was
described to allow site visitors to enter values into HTML forms and then
use those values within an [Inline] ... [/Inline] action. The [Inline] tags can have
some command tags and search parameters specified explicitly, with vari-
ables, an array, [Action_Params], or one of the link tags defining the rest.

For example, an [Inling] ... [/Inline] could be specified to find all records
within a database as follows. The entire action is specified within the
opening [Inline] tag. Each time a page with the code on it is visited the
action will be performed as written.
[Inline: -FindAll,

-Database="Contacts',

-Table='People',

-KeyField="ID',

-MaxRecords=10]

[/Iﬁllline]

The same inline can be modified so that it can accept parameters from
an HTML form or URL which is used to load the page it is on, but
can still act as a standalone action. This is accomplished by adding an
[Action_Params] tag to the opening [Inline] tag.
[Inline: (Action_Params),

-Search,

-Database="'Contacts',

-Table='People’,

-KeyField="1D",

-MaxRecords=4]

[/Iﬁllline]

Any command tags or name/value pairs in the HTML form or URL that
triggers the page with this inline will be passed into the inline through

the [Action_Params] tag as if they had been typed directly into the [Inline].
However, the command tags specified directly in the [Inline] tag will override
any corresponding tags from the [Action_Params].

Since the action -Search is specified after the [Action_Params] array it

will override any other action from the array. The action of this inline
will always be -Search. Similarly, all of the -Database, -Table, -KeyField, or
-MaxRecords tags will have the values specified in the [Inline] overriding any
values passed in through [Action_Params].

The various link tags can be used to generate URLs which work with the
specified inline in order to change the set of records being shown, the sort
order and sort field, etc. The link tags are able to override any command

LAsso 7.1 LANGUAGE GUIDE

164 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

tags not specified in the opening [Inline] tag, but the basic action is always
performed exactly as specified.

Navigation Links

Navigation links are created by manipulating the value for -SkipRecords so
that the visitor is shown a different portion of the found set each time they
follow a link or by setting -KeyValue to an appropriate value to show one
record in a database.

To create next and previous links:

The [Link_NextGroup] ... [/Link_NextGroup] and [Link_PrevGroup] ... [/Link_PrevGroup]
tags can be used with the inline specified above to page through a set of
found records.

The [Link_SetFormat] tag is used to include a -NoClassic parameter in each link
tag that follows. This ensures that the -Database, -Table, and -KeyField are not
included in the links generated by the link tags.

The full inline is shown below. It uses the [Records] ... [/Records] tags to show
the people that have been found in the database and includes next and
previous links to page through the found set.
[Inline: (Action_Params),

-Search,

-Database="Contacts',

-Table='People’,

-KeyField="1D",

-MaxRecords=4]

<p>[Found_Count] records were found, showing [Shown_Count]
records from [Shown_First] to [Shown_Last].

[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]

[Link_SetFormat: -NoClassic]

[Link_PrevGroup]
Previous [MaxRecords_Value] Records [/Link_PrevGroup]

[Link_NextGroup]
Next [MaxRecords_Value] Records [/Link_NextGroup]
[/Inline]

The first time this page is loaded the first four records from the database
are shown. Since this is the first group of records in the database only the
Next 4 Records link is displayed.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DISPLAYING DATA

=>» <p>16 records were found, showing 4 records from 1 to 4.

Jane Doe

John Person

Jane Person

John Doe

Next 4 Records

If the Next 4 Records link is selected then the same page is reloaded.
The value for -SkipRecords is taken from the link tag and passed into
the opening [Inline] tag through the [Action_Params] array. The following
results are displayed. This time both the Next 4 Records and the
Previous 4 Records links are displayed.
=>» <p>16 records were found, showing 4 records from 5 to 8.

Jane Surname

John Last_Name

Mark Last_Name

Tom Surname

Previous 4 Records

Next 4 Records

To create first and last links:

Links to the first and last groups of records in the found set
can be added using the [Link_FirstGroup] ... [/Link_FirstGroup] and

165

[Link_LastGroup] ... [/Link_LastGroup] tags. The following inline includes both

next/previous links and first/last links.

[Inline: (Action_Params),
-Search,
-Database="Contacts',
-Table='People’,
-KeyField="ID',
-MaxRecords=4]

<p>[Found_Count] records were found, showing [Shown_Count]
records from [Shown_First] to [Shown_Last].

[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]

[Link_SetFormat: -NoClassic]
[Link_FirstGroup]
First [MaxRecords_Value] Records [/Link_FirstGroup]

[Link_PrevGroup]
Previous [MaxRecords_Value] Records [/Link_PrevGroup]

[Link_NextGroup]
Next [MaxRecords_Value] Records [/Link_NextGroup]
[Link_LastGroup]
Last [MaxRecords_Value] Records [/Link_LastGroup]
[/Inline]

The first time this page is loaded the first four records from the data-
base are shown. Since this is the first group of records in the data-

LAsso 7.1 LANGUAGE GUIDE

166 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

base only the Next 4 Records and Last 4 Records links are displayed. The
Previous 4 Records and First 4 Records links will automatically appear if either
of these links are selected by the visitor.

=» <p>16 records were found, showing 4 records from 1 to 4.

Jane Doe

John Person

Jane Person

John Doe

Next 4 Records

Last 4 Records

To create links to page through the found set:

Many Web sites include page links which allow the visitor to jump directly
to any set of records within the found set. The example -FindAll returns

16 records from Contacts so four page links would be created to jump to the
1st, 5th, 9th, and 13th records.

A set of page links can be created using the [Link_CurrentActionURL] tag as a
base and then customizing the -SkipRecords value as needed. The following
loop creates as many page links as are needed for the current found set.

[Inline: (Action_Params),
-Search,
-Database="Contacts',
-Table='People’,
-KeyField="ID',
-MaxRecords=4]

<p>[Found_Count] records were found, showing [Shown_Count]
records from [Shown_First] to [Shown_Last].

[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]

[Link_SetFormat: -NoClassic]
[Variable: 'Count' = 0]
[While: $Count < (Found_Count)]

Page [Loop_Count]
<fa>
[Variable: 'Count' = $Count + (MaxRecords_Value)]
[/While]

[nline]

The results of this code for the example -Search would be the following.
There are four page links. The first is equivalent to the First 4 Records link

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DisPLAYING DAaTA 167

created above and the last is equivalent to the Last 4 Records link created
above.

=» <p>16 records were found, showing 4 records from 1 to 4.

Jane Doe

John Person

Jane Person

John Doe

Page 1

Page 2

Page 3

Page 4

Sorting Links

Sorting links are created by adding or manipulating -SortField and
-SortOrder command tags. The same found set is shown, but the order is
determined by which link is selected. Often, the column headers in a table
of results from a database will represent the sort links that allow the table
to be resorted by the values in that specific column.

To create links that sort the found set:

The following code performs a -Search in an inline and formats the results
as a table. The column heading at the top of each table column is a link
which re-sorts the results by the field values in that column. The links for
sorting the found set are created by specifing -NoSort and -SortField param-
eters to the [Link_FirstGroup] ... [/Link_FirstGroup] tags.

[Inline: (Action_Params),
-Search,
-Database="Contacts',
-Table='People',
-KeyField='ID',
-MaxRecords=4]

[Link_SetFormat: -NoClassic]
<table>
<tr>
<th>
[Link_FirstGroup: -NoSort, -SortOrder='First_Name']
First Name
[/Link_FirstGroup]
</th>
<th>
[Link_FirstGroup: -NoSort, -SortOrder="Last_Name']

LAsso 7.1 LANGUAGE GUIDE

168 CHAPTER 7 — SEARCHING AND DISPLAYING DATA

Last Name
[/Link_FirstGroup]
</th>
</tr>

[Records]
<tr>
<td>[Field: 'First_Name'|</td>
<td>[Field: 'Last_Name']</td>
</tr>
[/Records]

</table>
[/Inline]

Detail Links

Detail links are created in order to show data from a particular record in
the database table. Usually, a listing format file will contain only limited
data from each record in the found set and a detail format file will contain
significantly more information about a particular record.

A link to a particular record can be created using the

[Link_Detail] ... [/Link_Detail] tags to set the -KeyField and -KeyValue fields. This
method is guaranteed to return the selected record even if the database is
changing while the visitor is navigating. However, it is difficult to create
next and previous links on the detail page. This option is most suitable if
the selected database record will need to be updated or deleted.

Alternately, a link to a particular record can be created using
[Link_CurrentAction] ... [/Link_CurrentAction] and setting -MaxRecords to 1. This
method allows the visitor to continue navigating by records on the detail

page.

To create a link to a particular record:

There are two format files involved in most detail links. The listing
format file default.lasso includes the [Inline] ... [/Inline] tags that define the
search for the found set. The detail format file response.lasso includes the
[Inline] ... [/Inline] tags that find and display the individual record.

1 The [Inline] tag in default.lasso simply performs a -FindAll action. Each record
in the result set is displayed with a link to response.lasso created using the
[Link_Detail] ... [/Link_Detail] tags.

[Inline:-FindAll,
-Database="Contacts',
-Table='People’,
-KeyField="1D',

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 7 — SEARCHING AND DiIsPLAYING DATA 169

-MaxRecords=4]

[Link_SetFormat: -NoClassic]

[Records]

[Link_Detail: -Response="response.lasso’]

[Field: 'First_Name'"] [Field: 'Last_Name']

[/Link_Detail]

[/Records]

[/Inline]

=»
Jane Doe

John Person

Jane Person

John Doe

2 The [Inline] tag on response.lasso uses [Action_Params] to pull the values from
the URL generated by the link tags. The results contain more information
about the particular records than is shown in the listing. In this case, the
Phone_Number field is included as well as the First. Name and Last_Name.

[Inline:(Action_Params),
-Search,
-Database="Contacts',
-Table='People’,
-KeyField='1D']

[Field: 'First_Name'"] [Field: 'Last_Name']

[Field: 'Phone_Number']

[nling]

=» <pr>Jane Doe

555-1212

To create a link to the current record in the found set:

There are two format files involved in most detail links. The listing
format file default.lasso includes the [Inline] ... [/Inline] tags that define the
search for the found set. The detail format file response.lasso includes

the [Inline] ... [/Inline] tags that find and display the individual record. The
[Link_CurrentAction] ... [/Link_CurrentAction] tags are used to create a link from
default.lasso to response.lasso showing a particular record.

1 The [Inline] tag on default.lasso simply performs a -FindAll action. Each
record in the result set is displayed with a link to response.lasso created
using the [Link_CurrentAction] ... [/Link_CurrentAction] tag.

[Inline:-FindAll,
-Database="Contacts',
-Table='People’,
-KeyField="ID',
-MaxRecords=4]

LAsso 7.1 LANGUAGE GUIDE

170

CHAPTER 7 — SEARCHING AND DISPLAYING DATA

[Link_SetFormat: -NoClassic]
[Records]

[Link_CurrentAction: -Response="response.lasso’, -MaxRecords=1]
[Field: 'First_Name'"] [Field: 'Last_Name']
[/Link_CurrentAction]
[/Records]
[/Inline]

=»
Jane Doe

John Person

Jane Person

John Doe

2 The [Inline] tag in response.lasso uses [Action_Params] to pull the values from
the URL generated by the link tags. The results contain more information
about the particular records than is shown in the listing. In this case, the
Phone_Number field is included as well as the First. Name and Last_Name.

The detail page can also contain links to the previous

and next records in the found set. These are created

using the [Link_PrevRecord] ... [/Link_PrevRecord] and
[Link_NextRecord] ... [/Link_NextRecord] tags. The visitor can continue
naviging the found set record by record.

[Inline:(Action_Params),
-Search,
-Database="Contacts',
-Table='People’,
-KeyField="1D]

[Field: 'First_Name'"] [Field: 'Last_Name']

[Field: 'Phone_Number]

[Link_SetFormat: -NoClassic]

[Link_PrevRecord] Previous Record [/Link_PrevRecord]

[Link_NextRecord] Next Record [/Link_NextRecord]
[/Inline]

=»
Jane Last_Name

555-1212

Previous Record

Next Record

LAsso 7.1 LANGUAGE GUIDE

171

Chapter 8

Adding and
Updating Records

This chapter documents the LDML command tags which add, update,
delete, and duplicate records within Lasso compatible databases.

e Overview provides an introduction to the database actions described in
this chapter and presents important security considerations.

¢ Adding Records includes requirements and instructions for adding
records to a database.

e Updating Records includes requirements and instructions for updating
records within a database.

Deleting Records includes requirements and instructions for deleting
records within a database.

Duplicating Records includes requirements and instructions for dupli-
cating records within a database.

Overview

LDML provides command tags for adding, updating, deleting, and dupli-
cating records within Lasso compatible databases. These command tags
are used in conjunction with additional command tags and name/value
parameters in order to perform the desired database action in a specific
database and table or within a specific record.

The command tags documented in this chapter are listed in Table

1: Command Tags. The sections that follow describe the additional
command tags and name/value parameters required for each database
action.

LAsso 7.1 LANGUAGE GUIDE

172 CHAPTER 8 — ADDING AND UPDATING RECORDS

Table 1: Command Tags

Tag Description

-Add Adds a record to a database.

-Update Updates a record within a database.

-Delete Removes a record from a database.

-Duplicate Duplicates a record within a database. Works with

FileMaker Pro databases.

Character Encoding

Lasso stores and retrieves data from data sources based on the preferences
established in the Setup > Data Sources section of Lasso Administration.
The following rules apply for each standard data source.

Lasso MySQL and MySQL - By default all communication is in the
Latin-1 (ISO 8859-1) character set. This is to preserve backwards compat-
ibility with prior versions of Lasso. The character set can be changed to
the Unicode standard UTF-8 character set in the Setup > Data Sources >
Tables section of Lasso Administration.

FileMaker Pro - By default all communication is in the MacRoman char-
acter set when Lasso Professional is hosted on Mac OS X or in the Latin-1
(ISO 8859-1) character set when Lasso Professional is hosted on Windows.
The preference in the Setup > Data Sources > Databases section of Lasso
Administration can be used to change the character set for cross-platform
communications.

JDBC - All communication with JDBC data sources is in the Unicode stan-
dard UTF-8 character set.

See the Lasso Professional 7 Setup Guide for more information about how
to change the character set settings in Lasso Administration.

Error Reporting

After a database action has been performed, Lasso reports any errors which
occurred via the [Error_CurrentError] tag. The value of this tag should be
checked to ensure that the database action was successfully performed.

To display the current error code and message:

The following code can be used to display the current error message. This
code should be placed in a format file which is a response to a database
action or within a pair of [Inline] ... [/Inline] tags.

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 8 — ADDING AND UPDATING RECORDS 173

If the database action was performed successfully then the following result
will be returned.

0: No Error

To check for a specific error code and message:

The following example shows how to perform code to correct or report
a specific error if one occurs. The following example uses a conditional
[If] ... [if] tag to check the current error message and see if it is equal to
[Error_AddError].

[If: (Error_CurrentError) == (Error_AddError)]
An Add Error has occured!

/]

Full documentation about error tags and error codes can be found in
Chapter 21: Error Control. A list of all Lasso error codes and messages can
be found in Appendix B: Error Codes.

Classic Lasso

If Classic Lasso support has been disabled within Lasso Administration
then database actions will not be performed automatically if they are speci-
fied within HTML forms or URLs. Although the database action will not
be performed, the -Response tag will function normally. Use the following
code in the response page to the HTML forms or URL to trigger the data-
base action.

[Inline: (Action_Params)]

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
[/Inline]

See Chapter 6: Database Interaction Fundamentals and Chapter 6:
Setting Global Preferences of the Lasso Professional 7 Setup Guide for
more information.

Security

Lasso has a robust internal security system that can be used to restrict
access to database actions or to allow only specific users to perform data-
base actions. If a database action is attempted when the current visitor has
insufficient permissions then they will be prompted for a username and
password. An error will be returned if the visitor does not enter a valid
username and password.

An [Inling] ... [/Inline] can be specified to execute with the permissions of a

specific user by specifying -Username and -Password command tags within
the [Inline] tag. This allows the database action to be performed even though

LAsso 7.1 LANGUAGE GUIDE

174 CHAPTER 8 — ADDING AND UPDATING RECORDS

the current site visitor does not necessarily have permissions to perform
the database action. In essence, a valid username and password are
embedded into the format file.

Table 2: Security Command Tags

Tag Description

-Username Specifies the username from Lasso Security which
should be used to execute the database action.

-Password Specifies the password which corresponds to the
username.

To specify a username and password in an [Inline]:

The following example shows a -Delete action performed within an [Inline]
tag using the permissions granted for username SiteAdmin with password
Secret.
[Inline: -Delete,

-Database="Contacts',

-Table='People’,

-KeyField="ID',

-KeyValue=137,

-Username='SiteAdmin’,

-Password="Secret']

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
[/Inline]

A specified username and password is only valid for the [Inline] ... [/Inline] tags
in which it is specified. It is not valid within any nested [Inline] ... [/Inline] tags.
See Chapter 8: Setting Up Security of the Lasso Professional 7 Setup
Guide for additional important information regarding embedding
usernames and passwords into [Inline] tags.

Adding Records

Records can be added to any Lasso compatible database using the -Add
command tag. The -Add command tag requires that a number of additional
command tags be defined in order to perform the -Add action. The required
command tags are detailed in Table 4: -Add Action Requirements.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 8 — ADDING AND UPDATING RECORDS 175

Table 3: -Add Action Requirements

Tag Description

-Add The action which is to be performed. Required.

-Database The database in which the record should be added.
Required.

-Table The table from the specified database in which the

record should be added. Required.

-KeyField The name of the field which holds the primary key for

the specified table. Recommended.

Name/Value Parameters A variable number of name/value parameters specify the

initial field values for the added record. Optional.

Any name/value parameters included in the -Add action will be used to set
the starting values for the record which is added to the database. All name/
value parameters must reference a writable field within the database. Any
fields which are not referenced will be set to their default values according
to the database’s configuration.

Lasso returns a reference to the record which was added to the database.
The reference is different depending on what type of database to which the
record was added.

Lasso MySQL and MySQL - The -KeyField tag should be set to the
primary key field or auto-increment field of the table. Lasso will return
the added record as the result of the action by checking the specified key
field for the last insterted record. The [KeyField_Value] tag can be used to
inspect the value of the auto-increment field for the inserted record.

If no -KeyField is specified, the specified -KeyField is not an auto-increment
field, or -MaxRecords is set to 0 then no record will be returned as a result
of the -Add action. This can be useful in situations where a large record
is being added to the database and there is no need to inspect the values
which were added.

FileMaker Pro - The [KeyField_Value] tag is set to the value of the internal
Record ID for the new record. The Record ID functions as an auto-incre-
ment field that is automatically maintained by FileMaker Pro for all
records.

FileMaker Pro automatically performs a search for the record which was

added to the database. The found set resulting from an -Add action is
equivalent to a search for the single record using the [KeyField_Value].

The value for -KeyField is ignored when adding records to a FileMaker Pro
database. The value for [KeyField_Value] is always the internal Record ID
value.

LAsso 7.1 LANGUAGE GUIDE

176 CHAPTER 8 — ADDING AND UPDATING RECORDS

Note: Consult the documentation for third-party data sources to see what
behavior they implement when adding records to the database.

To add a record using [Inline] ... [/Inline] tags:

The following example shows how to perform an -Add action by speci-
fying the required command tags within an opening [Inline] tag. -Database
is set to Contacts, -Table is set to People, and -KeyField is set to ID. Feedback
that the -Add action was successful is provided to the visitor inside the
[Inline] ... [/Inline] tags using the [Error_CurrentError] tag. The added record will
only include default values as defined within the database itself.
[Inline: -Add,

-Database="'Contacts',

-Table='People’,

-KeyField="1D"]

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
[/Inline]

If the -Add action is successful then the following will be returned.
=> 0: No Error

To add a record with data using [Inline] ... [/Inline] tags:

The following example shows how to perform an -Add action by specifying
the required command tags within an opening [Inline] tag. In addition, the
[Inline] tag includes a series of name/value parameters that define the values
for various fields within the record that is to be added. The First_Name field
is set to John and the Last_Name field is set to Doe. The added record will
include these values as well as any default values defined in the database
itself.
[Inline: -Add,

-Database="Contacts',

-Table='People’,

-KeyField="1D",

'First_Name'="John’,

‘Last_Name'='Doe']

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: ‘Last_Name'].

[/Inline]

The results of the -Add action contain the values for the record that was just
added to the database.

=>» 0: No Error
Record 2 was added for John Doe.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 8 — ADDING AND UPDATING RECORDS 177

To add a record using an HTML form:

The following example shows how to perform an -Add action using an
HTML form to send values into an [Inline] tag through [Action_Params]. The
text inputs provide a way for the site visitor to define the initial values for
various fields in the record which will be added to the database. The site
visitor can set values for the fields First_Name and Last_Name.
<form action="response.lasso" method="POST">

First Name: <input type="text" name="First_Name" value="">

Last Name: <input type="text" name="Last_Name" value="">

<input type="submit" name="-Nothing" value="Add Record">
<[form>

The response page for the form, response.lasso, contains the following code
that performs the action using an [Inline] tag and provides feedback that
the record was successfully added to the database. The field values for
the record that was just added to the database are automatically available
within the [Inline] ... [/Inline] tags.
[Inline: (Action_Params),
-Add,
-Database="Contacts',
-Table='People’,
-Keyfield="ID']
<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inline]

If the form is submitted with Mary in the First Name input and Person in the
Last Name input then the following will be returned.

=» 0: No Error
Record 3 was added for Mary Person

To add a record using a URL:

The following example shows how to perform an -Add action using a URL
to send values into an [Inline] tag through [Action_Params]. The name/value
parameters in the URL define the starting values for various fields in the
database: First_Name is set to John and Last_Name is set to Person.

Add John Person

The response page for the URL, response.lasso, contains the following code
that performs the action using [Inline] tag and provides feedback that the
record was successfully added to the database. The field values for the

LAsso 7.1 LANGUAGE GUIDE

178

CHAPTER 8 — ADDING AND UPDATING RECORDS

record that was just added to the database are automatically available
within the [Inline] ... [/Inline] tags.
[Inline: (Action_Params),
-Add,
-Database="Contacts',
-Table='People',
-Keyfield='D"]
<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inline]

If the link for Add John Person is selected then the following will be returned.

=» 0: No Error
Record 4 was added for John Person.

Updating Records

Records can be updated within any Lasso compatible database using the
-Update command tag. The -Update command tag requires that a number of
additional command tags be defined in order to perform the -Update action.
The required command tags are detailed in Table 5: -Update Action
Requirements.

Table 4: -Update Action Requirements

Tag Description

-Update The action which is to be performed. Required.

-Database The database in which the record should be added.
Required.

-Table The table from the specified database in which the
record should be added. Required.

-KeyField The name of the field which holds the primary key for
the specified table. Required.

-KeyValue The value of the primary key of the record which is to be
updated. Required.

Name/Value Parameters A variable number of name/value parameters specyifing

the field values which need to be updated. Optional.

Lasso identifies the record which is to be updated using the values for the
command tags -KeyField and -KeyValue. -KeyField must be set to a field in the
table which has a unique value for every record in the table. Usually, this

is the primary key field for the table. -KeyValue must be set to a valid value

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 8 — ADDING AND UPDATING RECORDS 179

for the -KeyField in the table. If no record can be found with the specified
-KeyValue then an error will be returned.

Any name/value parameters included in the update action will be used to
set the field values for the record which is updated. All name/value param-
eters must reference a writable field within the database. Any fields which
are not referenced will maintain the values they had before the update.

Lasso returns a reference to the record which was updated within the
database. The reference is different depending on what type of database is
being used.

¢ Lasso MySQL and MySQL - The [KeyField_Value] tag is set to the value
of the key field which was used to identify the record to be updated. The
-KeyField should always be set to the primary key or auto-increment field
of the table. The results when using other fields are undefined.

If the -KeyField is not set to the primary key field or auto-increment field
of the table or if -MaxRecords is set to 0 then no record will be returned
as a result of the -Update action. This is useful is a large record is being
updated and the results of the update do not need to be inspected.

¢ FileMaker Pro - The [KeyField_Value] tag is set to the value of the internal
Record ID for the updated record. The Record ID functions as an auto-
increment field that is automatically maintained by FileMaker Pro for all
records.

Lasso automatically performs a search for the record which was updated
within the database. The found set resulting from an -Update action is
equivalent to a search for the single record using the [KeyField_Value].

Note: Consult the documentation for third-party data sources to see what
behavior they implement when updating records within a database.

To update a record with data using [Inline] ... [/Inline] tags:

The following example shows how to perform an -Update action by speci-
fying the required command tags within an opening [Inline] tag. The record
with the value 2 in field ID is updated. The [Inline] tag includes a series of
name/value parameters that define the new values for various fields within
the record that is to be updated. The First_Name field is set to Bob and the
Last_Name field is set to Surname. The updated record will include these new
values, but any fields which were not included in the action will be left
with the values they had before the update.

LAsso 7.1 LANGUAGE GUIDE

180

CHAPTER 8 — ADDING AND UPDATING RECORDS

[Inline: -Update,
-Database="Contacts',
-Table='People’,
-KeyField="ID',
-KeyValue=2,
'First_Name'='Bob’,
'Last_Name'="Surname']

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].

[/Inline]

The updated field values from the -Update action are automatically available
within the [Inline].

=» 0: No Error
Record 2 was updated to Bob Surname.

To update a record using an HTML form:

The following example shows how to perform an -Update action using an
HTML form to send values into an [Inline] tag. The text inputs provide a way
for the site visitor to define the new values for various fields in the record
which will be updated in the database. The site visitor can see and update
the current values for the fields First_ Name and Last_Name.
[Inline: -Search,

-Database="Contacts',

-Table='People’,

-KeyField="1D',

-KeyValue=3]

<form action="response.lasso" method="POST">
<input type="hidden" name="-KeyValue" value="[KeyField_Value]">

First Name: <input type="text" name="First_Name"
value="[Field: 'First_Name']">

Last Name: <input type="text" name="Last_Name"
value="[Field: 'Last_Name"">

<input type="submit" name="-Update" value="Update Record">
<[form>

[/Inline]

The response page for the form, response.lasso, contains the following code
that performs the action using an [Inline] tag and provides feedback that the

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 8 — ADDING AND UPDATING RECORDS 181

record was successfully updated in the database. The field values from the
updated record are available automatically within the [Inline] ... [/Inline] tags.
[Inline: (Action_Params),
-Update,
-Database="Contacts',
-Table='People',
-Keyfield='D"]
<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was updated to [Field: 'First_Name'"] [Field: 'Last_Name'].
[/Inline]

The form initially shows Mary for the First Name input and Person for the
Last Name input. If the form is submitted with the Last Name changed
to Peoples then the following will be returned. The First Name field is
unchanged since it was left set to Mary.
=> 0: No Error

Record 3 was updated to Mary Peoples.

To update a record using a URL:

The following example shows how to perform an -Update action using a
URL to send field values to an [Inline] tag. The name/value parameters in the
URL define the new values for various fields in the database: First_Name is
set to John and Last_Name is set to Person.

<a href="response.lasso?-KeyValue=4&
First_Name=John&Last_Name=Person"> Update John Person

The response page for the URL, response.lasso, contains the following code
that performs the action using [Inline] ... [/Inline] tags and provides feedback
that the record was successfully updated within the database.
[Inline: (Action_Params),
-Update,
-Database="Contacts',
-Table='People’,
-Keyfield='1D"]
<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was updated to [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inling]

If the link for Update John Person is submitted then the following will be
returned.
=>» 0: No Error

Record 4 was updated for John Person.

LAsso 7.1 LANGUAGE GUIDE

182 CHAPTER 8 — ADDING AND UPDATING RECORDS

To update several records at once:

The following example shows how to perform an -Update action on several
records at once within a single database table. The goal is to update every
record in the database with the last name of Person to the new last name of
Peoples.

The outer [Inline] ... [/Inline] tags perform a search for all records in the data-
base with Last_Name equal to Person. This forms the found set of records
which need to be updated. The [Records] ... [[Records] tags repeat once for
each record in the found set. The -MaxRecords='All' command tag ensures
that all records which match the criteria are returned.

The inner [Inline] ... [/Inline] tags perform an update on each record in the
found set. Substitution tags are used to retrieve the values for the required
command tags -Database, -Table, -KeyField, and -KeyValue. This ensures that
these values match those from the outer [Inline] ... [/Inline] tags exactly. The
name/value pair 'Last_Name'='Peoples' updates the field to the new value.
[Inline: -Search,

-Database="Contacts',

-Table='People’,

-KeyField="1D',

-MaxRecords="All',

'Last_Name'="Person']

[Records]

[Inline: -Update,
-Database=(Database_Name),
-Table=(Table_Name),
-KeyField=(KeyField_Name),
-KeyValue=(KeyField_Value),
'Last_Name'="Peoples']

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was updated to
[Field: 'First_Name'"] [Field: 'Last_Name'].

[/Inline]

[/Records]
[/Inline]

This particular search only finds one record to update. If the update action
is successful then the following will be returned for each updated record.

=>» 0: No Error
Record 4 was updated to John Peoples.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 8 — ADDING AND UPDATING RECORDS 183

Deleting Records

Records can be deleted from any Lasso compatible database using the
-Delete command tag. The -Delete command tag can be specified within an
[Inline] tag, an HTML form, or a URL. The -Delete command tag requires that
a number of additional command tags be defined in order to perform the
-Delete action. The required command tags are detailed in Table 6: -Delete
Action Requirements.

Table 5: -Delete Action Requirements

Tag Description

-Delete The action which is to be performed. Required.

-Database The database in which the record should be added.
Required.

-Table The table from the specified database in which the
record should be added. Required.

-KeyField The name of the field which holds the primary key for
the specified table. Required.

-KeyValue The value of the primary key of the record which is to be

deleted. Required.

Lasso identifies the record which is to be deleted using the values for the
command tags -KeyField and -KeyValue. -KeyField must be set to a field in the
table which has a unique value for every record in the table. Usually, this
is the primary key field for the table. -KeyValue must be set to a valid value
for the -KeyField in the table. If no record can be found with the specified
-KeyValue then an error will be returned.

Lasso returns an empty found set in response to a -Delete action. Since the
record has been deleted from the database the [Field] tag can no longer be
used to retrieve any values from it. The [Error_CurrentError] tag should be
checked to ensure that it has a value of No Error in order to confirm that the
record has been successfully deleted.

There is no confirmation or undo of a delete action. When a record is
removed from a database it is removed permanently. It is important to set
up Lasso security appropriately so accidental or unauthorized deletes don't
occur. See Chapter 8: Setting Up Security in the Lasso Professional 7
Setup Guide for more information about setting up database security.

To delete a record with data using [Inline] ... [/Inline] tags:

The following example shows how to perform a delete action by specifying
the required command tags within an opening [Inline] tag. The record with
the value 2 in field ID is deleted.

LAsso 7.1 LANGUAGE GUIDE

184 CHAPTER 8 — ADDING AND UPDATING RECORDS

[Inline: -Delete,
-Database="Contacts',
-Table='People’,
-KeyField="ID',
-KeyValue=2]

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]
[/Inline]

If the delete action is successful then the following will be returned.
=> 0: No Error

To delete several records at once:

The following example shows how to perform a -Delete action on several
records at once within a single database table. The goal is to delete every
record in the database with the last name of Peoples.

Warning: This technique can be used to remove all records from a database
table. It should be used with extreme caution and tested thoroughly before
being added to a public Web site.

The outer [Inling] ... [/Inline] tags perform a search for all records in the data-
base with Last_Name equal to Peoples. This forms the found set of records
which need to be updated. The [Records] ... [/Records] tags repeat once for
each record in the found set. The -MaxRecords="All' command tag ensures
that all records which match the criteria are returned.

The inner [Inline] ... [/Inline] tags delete each record in the found set.
Substitution tags are used to retrieve the values for the required command
tags -Database, -Table, -KeyField, and -KeyValue. This ensures that these values
match those from the outer [Inline] ... [/Inline] tags exactly.

[Inline: -Search,
-Database="Contacts',
-Table='People',
-KeyField="ID',
-MaxRecords="All',
'Last_Name'="Peoples’]

[Records]

[Inline: -Delete,
-Database=(Database_Name),
-Table=(Table_Name),
-KeyField=(KeyField_Name),
-KeyValue=(KeyField_Value)]

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

[/Inline]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 8 — ADDING AND UPDATING RECORDS 185

[/Records]
[/Inline]

This particular search only finds one record to delete. If the delete action is
successful then the following will be returned for each deleted record.

=>» 0: No Error

Duplicating Records

Records can be duplicated within any Lasso compatible database using
the -Duplicate command tag. The -Duplicate command tag can be specified
within an [Inline] tag, an HTML form, or a URL. The -Duplicate command tag
requires that a number of additional command tags be defined in order to
perform the -Duplicate action. The required command tags are detailed in
Table 7: -Duplicate Action Requirements.

Note: Lasso Connector for Lasso MySQL and Lasso Connector for MySQL do
not support the -Duplicate command tag.

Table 6: -Duplicate Action Requirements

Tag Description

-Duplicate The action which is to be performed. Required.

-Database The database in which the record should be added.
Required.

-Table The table from the specified database in which the
record should be added. Required.

-KeyField The name of the field which holds the primary key for
the specified table. Required.

-KeyValue The value of the primary key of the record which is to be
duplicated. Required.

Name/Value Parameters A variable number of name/value parameters specifying

field values which should be modified in the duplicated
record. Optional.

Lasso identifies the record which is to be duplicated using the values for
the command tags -KeyField and -KeyValue. -KeyField must be set to a field in
the table which has a unique value for every record in the table. Usually,
this is the primary key field for the table. -KeyValue must be set to a valid
value for the -KeyField in the table. If no record can be found with the speci-
fied -KeyValue then an error will be returned.

Any name/value parameters included in the duplicate action will be used
to set the field values for the record which is added to the database. All

LAsso 7.1 LANGUAGE GUIDE

186

CHAPTER 8 — ADDING AND UPDATING RECORDS

name/value parameters must reference a writable field within the database.
Any fields which are not referenced will maintain the values they had from
the record which was duplicated.

Lasso always returns a reference to the new record which was added to the
database as a result of the -Duplicate action. This is equivalent to performing
a -Search action which returns a single record found set containing just the
record which was added to the database.

To duplicate a record with data using [Inline] ... [/Inline] tags:

The following example shows how to perform a duplicate action within a
FileMaker Pro database by specifying the required command tags within
an opening [Inline] tag. The record with the value 2 for the keyfield value
is duplicated. The [Inline] tag includes a series of name/value parameters
that define the new values for various fields within the record that is to
be updated. The First_Name field is set to Joe and the Last_Name field is set
to Surname. The new record will include these values, but any fields which
were not specified in the action will be left with the values they had from
the source record.
[Inline: -Duplicate,

-Database="Contacts.fp3',

-Table='People’,

-KeyField="1D',

-KeyValue=2,

'First_Name'="Joe',

'Last_Name'='Surname']

<p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was duplicated for [Field: 'First_Name'] [Field: 'Last_Name'].

[nline]

If the duplicate action is successful then the following will be returned.
The values from the [Field] tags are retrieved from the record which was just
added to the database as a result of the duplicate action.

=> 0: No Error
Record 6 was duplicated for Joe Surname.

LAsso 7.1 LANGUAGE GUIDE

187

Chapter 9
MySQL Data Sources

This chapter documents tags and behaviors which are specific to MySQL
data sources, including the built-in Lasso MySQL data source.

e Overview introduces MySQL data sources.
e MySQL Tags describes tags specific to MySQL data sources.

e Searching Records describes unique search operations that can be
performed using MySQL data sources.

Adding and Updating Records describes unique add and update opera-
tions that can be performed using MySQL data sources.

Value Lists describes how to retrieve and show lists of allowed field
values for ENUM and SET fields in MySQL data sources.

Creating Database Tables describes the [Database_...] tags that can be
used to create, change, or remove tables and fields within MySQL data
sources.

Overview

Lasso Professional 7 includes a built-in Lasso MySQL data source and
allows for a connection to a remote MySQL data source to be established.
This chapter primarily documents tags and features unique to Lasso
MySQL or other MySQL data sources.

Since Lasso MySQL is the Lasso Professional 7 default data source, all of
the documentation and examples in this manual are targeted for Lasso
MySQL except when explicitly stated otherwise. All of the procedures
outlined in Chapter 6: Database Interaction Fundamentals, Chapter 7:
Searching and Displaying Data, and Chapter 8: Adding and Updating
Records can be used with Lasso MySQL.

LAsso 7.1 LANGUAGE GUIDE

188 CHAPTER 9 — MYSQL DATA SOURCES

Note: The tags and procedures defined in this chapter are primarily for use
with MySQL data sources including Lasso MySQL. Many of the tags and
procedures will work with any SQL-based data source with minor variations, if
any.

Tips for Using MySQL Data Sources

e Always specify a primary key field using the -KeyField command tag in
-Search, -Add, and -Findall actions. This will ensure that the [KeyField_Value]
tag will always return a value.

Use -KeyField and -KeyValue to reference a particular record for updates,
duplicates, or deletes.

e MySQL data sources are case-sensitive. For best results, reference MySQL
database and table names in the same letter-case as they appear on disk
in your LDML code.

MySQL fields truncate any data beyond the length they are set up to
store. Ensure that all fields in MySQL databases have sufficiently long
fields for the values that need to be stored in them.

Use -ReturnField command tags to reduce the number of fields which are
returned from a -Search action. Returning only the fields that need to
be used for further processing or shown to the site visitor reduces the
amount of data that needs to travel between Lasso Service and Lasso
MySQL.

e When an -Add or -Update action is performed on a MySQL database,

the data from the added or updated record is returned inside the

[Inline] ... [/Inline] tags or alternately to the Classic Lasso response page. If
the -ReturnField parameter is used, then only those fields specified should
be returned from an -Add or -Update action. Setting -MaxRecords=0 can be
used as an indication that no record should be returned.

See Chapter 9: Administration Utilities in the Lasso Professional 7
Setup Guide for information about optimizing tables for optimum
performance and checking tables for damage.

Security Tips

e The -SQL command tag can only be allowed or disallowed at the host
level for users in Lasso Administration. Once the -SQL command tag is
allowed for a user, that user may access any database within the allowed
host inside of a SQL statement. For that reason, only trusted users
should be allowed to issue SQL queries using the -SQL command tag.
For more information, see Chapter 8: Setting Up Security in the Lasso
Professional 7 Setup Guide.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 9 — MYSQL DATA SOURCES 189

¢ SQL statements which are generated using visitor-defined data should be
screened carefully for unwanted commands such as DROP or GRANT. See
Chapter 7: Setting Up Data Sources of the Lasso Professional 7 Setup
Guide for more information.

e Always quote any inputs from site visitors that are incorporated into SQL
statements. For example, the following SQL SELECT statement includes
quotes around the [Action_Param] value. The quotes are escaped \' so they
will be embedded within the string rather than ending the string literal.
The semi-colon at the end of the statement is optional unless multiple
statements are issued.

[Variable: 'SQL_Statement'="SELECT * FROM Contacts.People WHERE ' +
'First_Name LIKE \" + (Action_Param: 'First_Name') +\'}]

If [Action_Param] returns John for First_Name then the SQL statement gener-
ated by this code would appear as follows.

SELECT * FROM Contacts.People WHERE First_Name LIKE 'John";

MySQL Tags

LDML 7 includes tags to identify which type of MySQL data source is being
used. These tags are summarized in Table 1: Enhanced MySQL Tags.

Table 1: Enhanced MySQL Tags

Tag Description

[Lasso_DatasourcelsLassoMySQL] Returns True if a database is hosted by Lasso
MySQL. Requires one string value which is the
name of a database.

[Lasso_DatasourcelsMySQL] Returns True if a database is hosted by MySQL.
Requires one string value which is the name of a
database.

To check whether a database is hosted by Lasso MySQL:

The following example shows how to use [Lasso_DatasourcelsLassoMySQL] to
check whether the database Example is hosted by Lasso MySQL or not.
[If: (Lasso_DatasourcelsLassoMySQL: 'Example’)]
Example is hosted by Lasso MySQL!

[Else]
Example is not hosted by Lasso MySQL.

(/]
=» Example is hosted by Lasso MySQL!

LAsso 7.1 LANGUAGE GUIDE

190

CHAPTER 9 — MYSQL DATA SOURCES

To list all databases hosted by Lasso MySQL:

Use the [Database_Names] ... [[Database_Names] tags to list all databases avail-
able to Lasso. The [Lasso_DatasourcelsLassoMySQL] tag can be used to check
each database and only those that are hosted by Lasso MySQL will be
returned. The result shows two databases, Site and Example, which are avail-
able through Lasso MySQL.

[Database_Names]

[If: (Lasso_DatasourcelsLassoMySQL:(Database_Nameltem))]
<pbr>[Database_Nameltem]

[/1f]
[/Database_Names]
=»
Example

Site

Searching Records

In LDML 7, there are unique search operations that can be performed
using MySQL data sources. These search operations take advantage of
special functions in MySQL such as full-text indexing, regular expres-
sions, record limits, and distinct values to allow optimal performance and
power when searching. These search operations can be used on MySQL
data sources in addition to all search operations described in Chapter 7:
Searching and Displaying Data.

Search Field Operators

Additional field operators are available for the -Operator (or -Op) tag when
searching MySQL data sources. These operators are summarized in Table 2:
MySQL Search Field Operators. Basic use of the -Operator tag is described
in Chapter 7: Searching and Displaying Data.

Table 2: MySQL Search Field Operators

Operator Description

ft Full-Text Search. If used, a MySQL full-text search
is performed on the field specified. Will only work on
fields that are full-text indexed in MySQL. Records
are automatically returned in order of high relevance
(contains many instances of that value) to low relevance
(contains few instances of the value). Only one ft
operator may be used per action, and no -SortField
parameter should be specified.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 9 — MYSQL DATA SOURCES 191

rx Regular Expression. If used, then regular expressions
may be used as part of the search field value. Returns
records matching the regular expression value for that
field.

nrx Not Regular Expression. If used, then regular
expressions may be used as part of the search field
value. Returns records that do not match the regular
expression value for that field.

Note: For more information on full-text searches and regular expressions
supported in MySQL, see the MySQL documentation.

To perform a full-text search on a field:

If a MySQL field is indexed as full-text, then using -Op="ft' before the field
in a search inline performs a MySQL full text search on that field. The
example below performs a full text search on the Jobs field in the Contacts
database, and returns the First_Name field for each record that contain the
word Manager. Records that contain the most instances of the word Manager
are returned first.
[Inline: -Search, -Database='Contacts', -Table="People’,
-Op=1t,
‘Jobs'='Manager’]
[Records]
[Field:'First_Name']

[/Records]
[/Inline]

=> Mike

Jane

To use regular expressions as part of a search:

Regular expressions can be used as part of a search value for a field by
using -Op="rX' before the field in a search inline. The following example
searches for all records where the Last_Name field contains eight characters
using a regular expression.

[Inline: -Search, -Database="Contacts', -Table="People’,
-Op="rx,
'Last_Name'='{8},
-MaxRecords="All']
[Records]
[Field:'Last_Name', [Field:'First_Name']

[/Records]
[/Inling]

LAsso 7.1 LANGUAGE GUIDE

192 CHAPTER 9 — MYSQL DATA SOURCES

=>» Lastname, Mike

Lastname, Mary Beth

The following example searches for all records where the Last_Name field
doesn’t contain eight characters. This is easily accomplished using the same
inline search above using -Op="nrx' instead.
[Inline: -Search, -Database="Contacts', -Table="People’,
-Op="nrx,
'Last_Name'="{8}
-MaxRecords="All
[Records]
[Field:'Last_Name', [Field:'First_Name']

[/Records]
[/Inline]

=» Doe, John

Doe, Jane

Surname, Bob

Surname, Jane

Surname, Margaret

Unknown, Thomas

Search Command Tags

Additional search command tags are available when searching MySQL
data sources using the [Inline] tag. These tags allow special search functions
specific to MySQL to be performed without writing SQL statements. These
operators are summarized in Table 3: MySQL Search Command Tags.

Table 3: MySQL Search Command Tags

Tag Description

-UseLimit Prematurely ends a -Search or FindAll action
once the specified number of records for the
-MaxRecords tag have been found and returns the
found records. Requires the -MaxRecords tag. This
issues an internal LIMIT statement to MySQL to
cause it to search more efficiently.

-SortRandom Sorts returned records randomly. Is used in place
of the -SortField and -SortOrder parameters. Does
not require a value.

-Distinct Causes a -Search action to only output records
that contain unique field values (comparing only
returned fields). Does not require a value. May be
used with the -ReturnField parameter to limit the
fields checked for distinct values.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 9 — MYSQL DATA SOURCES 193

To have MySQL immediately return records once a limit is reached:

Use the -UseLimit tag in the search inline. Normally, Lasso will find all
records that match the inline search criteria and then pair down the results
based on -MaxRecords and -SkipRecords values. The -UseLimit tag instructs
MySQL to terminate the specified search process once the number of
records specified for -MaxRecords is found. The following example searches
the Contacts database with a limit of five records.

[Inline: -FindAll,

-Database="Contacts', -Table='"People’,

-MaxRecords='5'",

-UseLimit]

[Found_Count]

[/Inline]

=5

Note: If the -UselLimit tag is used, the value of the [Found_Count] tag will always
be the same as the -MaxRecords value if the limit is reached. Otherwise, the
[Found_Count] tag will return the total number of records in the specified table
that match the search criteria if -UseLimit is not used.

To sort results randomly:

Use the -SortRandom tag in a search inline. The following example finds all
records and sorts first by last name then randomly.
[Inline: -FindAll, -Database="Contacts', -Table="People’,
Keyfield="ID',
-SortRandom]
[Records]
[Field:'ID
[/Records]
[/Inline]

= 52813647

Note: Due to the nature of the -SortRandom tag, the results of this example will
vary upon each execution of the inline.

To return only unique records in a search:

Use the -Distinct parameter in a search inline. The following example only
returns records that contain distinct values for the Last_Name field.

LAsso 7.1 LANGUAGE GUIDE

194

CHAPTER 9 — MYSQL DATA SOURCES

[Inline: -FindAll, -Database='Contacts', -Table="People’,
-ReturnField="Last_Name',
-Distinct]
[Records]
[Field:'Last_Name']

[/Records]
[/Inline]

=» Doe

Surname

Lastname

Unknown

The -Distinct tag is especially useful for generating lists of values that can be
used in a pull-down menu. The following example is a pull-down menu of
all the last names in the Contacts database.

[Inline: -Findall, -Database="Contacts', -Table="People’,
-ReturnField="Last_Name',
-Distinct]
<select name="Last_Name">
[Records]
<option value="[Field: 'Last_Name']">
[Field: 'Last_Name']
</Option>
[/Records]
</Select>
[/Inline]

Searching Null Values

When searching MySQL tables, NULL values may be explicitly searched for
within fields using the [Null] tag. A NULL value in MySQL designates that
there is no other value stored in that particular field. This is similar to
searching a field for an empty string (e.g. 'fieldname'="), however NULL values
and empty strings are not the same in MySQL. For more information

about NULL values, see the MySQL documentation.

[Inline: -Search,
-Database='Contacts', -Table='"People’,
-Op='eq,
Title'=(Null),
-MaxRecords="All
[Records]
Record [Field:'ID'] does not have a title.

[/Records]
[/Inline]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 9 — MYSQL DATA SOURCES 195

=» Record 7 does not have a title.

Record 8 does not have a title.

Adding and Updating Records

In LDML 7, there are special add and update operations that can be
performed using MySQL data sources in addition to all add and update
operations described in Chapter 8: Adding and Updating Data.

Multiple Field Values

When adding or updating data to a field in MySQL, the same field name
can be used several times in an -Add or -Update inline. The result is that all
data added or updated in each instance of the field name will be concat-
enated in a comma-delimited form. This is particularly useful for adding
data to SET field types.

To add or update multiple values to a field:

The following example adds a record with two comma delimited values in
the Jobs field:

[Inline: -Add, -Database='Contacts', -Table="People’,
-KeyField="D',

'Jobs'="Customer Service',

'Jobs'='Sales']

[Field:Title"

[/Inline]

=» Customer Service, Sales

The following example updates the Jobs field of a record with three
comma-delimited values:

[Inline: -Update, -Database='Contacts', -Table="People',
-KeyField="ID',

-KeyValue='5',

'Jobs'="Customer Service',

'Jobs'='Sales',

'Jobs'='Support']

[Field:'Title"]

[/Inline]

=>» Customer Service, Sales, Support

Note: The individual values being added or updated should not contain
commas.

LAsso 7.1 LANGUAGE GUIDE

196

CHAPTER 9 — MYSQL DATA SOURCES

Adding or Updating Null Values

NULL values can be explicitly added to MySQL fields using the [Null] tag.

A NULL value in MySQL designates that there is no value for a particular
field. This is similar to setting a field to an empty string (e.g. 'fieldname'="),
however the two are different in MySQL. For more information about NULL
values, see the MySQL documentation.

To add or update a null value to a field:

Use the [Null] tag as the field value. The following example adds a record
with a NULL value in the Last_Name field.

[Inline: -Add, -Database='Contacts', -Table="People’,

-KeyField="1D',

‘Last_Name'=(Null)]

[/Inline]

The following example updates a record with a NULL value in the Last_Name
field.

[Inline: -Update, -Database='Contacts', -Table='People’,

-KeyField="1D',

-KeyValue='5',

‘Last_Name'=(Null)]

[/Inline]

Note: If an undefined variable is specified as the value for a field when
adding or updating a record then that field will be added with a value of NULL
or updated to a value of NULL. It is recommended that all varaibles be set to a
default value at the top of the Lasso page in order to avoid this issue.

Value Lists

A value list in Lasso is a set of possible values that can be used for a field.
Value lists in MySQL are lists of pre-defined and stored values for a SET
or ENUM field type. A value list from a SET or ENUM field can be displayed
using the tags defined in Table 4: MySQL Value List Tags.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 9 — MYSQL DATA SOURCES 197

Table 4: MySQL Value List Tags

Tag Description

[Value_List] ... [/Value_List] Container tag repeats each value allowed for ENUM or
SET fields. Requires a single parameter: the name of an
ENUM or SET field from the current table.

[Value_Listltem] Returns the value for the current item in a value list.

Optional -Checked or -Selected parameter returns only
values currently contained in the ENUM or SET field.

[Selected] Displays the word Selected if the current value list item
is contained in the data of the ENUM or SET field.

[Checked] Displays the word Checked if the current value list item
is contained in the data of the ENUM or SET field.

[Option] Generates a series of <option> tags for the value list.

Requires a single parameter: the name of an ENUM or
SET field from the current table.

Note: See Chapter 7: Searching and Displaying Data for information about
the -Show command tag which is used throughout this section.

To display values for an ENUM or SET field:

e Perform a -Show action to return the schema of a MySQL database and
use the [Value_List] tag to display the allowed values for an ENUM or
SET field. The following example shows how to display all values from
the ENUM field Title in the Contacts database. SET field value lists function
in the same manner as ENUM value lists, and all examples in this section
may be used with either ENUM or SET field types.
[Inline: -Show, -Database='Contacts', -Table="People’]
[Value_List: Title']

[Value_Listltem]
[/Value_List]
[/Inling]

=>
Mr.

Mrs.

Ms.

Dr.

¢ The following example shows how to display all values from a value list
using a named inline. The same name Values is referenced by -InlineName
in both the [Inline] tag and [Value_List] tag.

LAsso 7.1 LANGUAGE GUIDE

198 CHAPTER 9 — MYSQL DATA SOURCES

[Inline: -InlineName='Values', -Show, -Database='Contacts', -Table="People’]
[/Inling]

[Value_List: 'Title', -InlineName="Values']

[Value_Listltem]
[/Value_List]

=>
Mr.

Mrs.

Ms.

Dr.

To display an HTML pop-up menu in an -Add form with all values from
a value list:

¢ The following example shows how to format an HTML
<select> ... </select> pop-up menu to show all the values from a value list.
A select list can be created with the same code by including size and/or
multiple parameters within the <select> tag. This code is usually used
within an HTML form that performs an -Add action so the visitor can
select a value from the value list for the record they create.

The example shows a single <select> ... </select> within [Inline] ... [/Inline]
tags with a -Show command. If many value lists from the same database
are being formatted, they can all be contained within a single set of
[Inline] ... [/Inline] tags.
<form action="response.lasso" method="POST">

<input type="hidden" name="-Add" value="">

<input type="hidden" name="-Database" value="Contacts">

<input type="hidden" name="-Table" value="People">

<input type="hidden" name="-KeyField" value="ID">

[Inline: -Show, -Database='Contacts', -Table="People]
<select name="Title">
[Value_List: Title']
<option value="[Value_Listltem]">[Value_Listltem]</option>
[/Value_List]
</select>
[/Inling]

<p><input type="submit" name="-Add" value="Add Record">
<[form>

e The [Option] tag can be used to easily format a value list as an HTML
<select> ... </select> pop-up menu. The [Option] tag generates all of the
<option> ... </option> tags for the pop-up menu based on the value list for
the specified field. The example below generates exactly the same HTML
as the example above.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 9 — MYSQL DATA SOURCES

<form action="response.lasso" method="POST">
<input type="hidden" name="-Add" value="">
<input type="hidden" name="-Database" value="Contacts">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="|D">

[Inline: -Show, -Database='Contacts', -Table="People’]
<select name="Title">
[Option: 'Title']
</select>
[/Inling]

<p><input type="submit" name="-Add" value="Add Record">
<[form>

To display HTML radio buttons with all values from a value list:

199

The following example shows how to format a set of HTML <input> tags to

show all the values from a value list as radio buttons. The visitor will be

able to select one value from the value list. Check boxes can be created
with the same code by changing the type from radio to checkbox.
<form action="response.lasso" method="POST">
<input type="hidden" name="-Add" value="">
<input type="hidden" name="-Database" value="Contacts">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">

[Inline: -Show, -Database='Contacts', -Table='People']
[Value_List: Title']

<input type="radio" name="Title" value="[Value_Listltem]"> [Value_Listltem]
[/Value_List]

[/Inline]
<p><input type="submit" name="-Add" value="Add Record">
<[form>

To display only selected values from a value list:

The following examples show how to display the selected values from a

value list for the current record. The record for John Doe is found within the

database and the selected value for the Title field, Mr. is displayed.

e The -Selected keyword in the [Value_Listltem] tag ensures that only selected
value list items are shown. The following example uses a conditional to

check whether [Value_Listltem: -Selected] is empty.
[Inline: -Search, -Database="Contacts', -Table="People’,
-KeyField='ID",
-KeyValue=126]
[Value_List: Title']

LAsso 7.1 LANGUAGE GUIDE

200 CHAPTER 9 — MYSQL DATA SOURCES

[If: (Value_Listltem: -Selected) ="

[Value_Listltem: -Selected)]
[/
[/Value_List]
[/Inling]

=>
Mr.

¢ The [Selected] tag ensures that only selected value list items are shown.
The following example uses a conditional to check whether [Selected] is
empty and only shows the [Value_Listltem] if it is not.
[Inline: -Search, -Database="Contacts', -Table="People’,
-KeyField='ID',
-KeyValue=126]
[Value_List: Title']
[If: (Selected) !="1]

[Value_Listltem]
[/
[/Value_List]
[/Inline]

=>
Mr.

¢ The [Field] tag can also be used simply to display the current value for a
field without reference to the value list.

[Field: 'Title']
=>
Mr.

To display an HTML pop-up menu in an -Update form with selected
value list values:

¢ The following example shows how to format an HTML
<select> ... </select> select list to show all the values from a value list with
the selected values highlighted. The [Selected] tag returns Selected if the
current value list item is selected in the database or nothing otherwise.
This code will usually be used in an HTML form that performs an -Update
action to allow the visitor to see what values are selected in the database
currently and make different choices for the updated record.
<form action="response.lasso" method="POST">

<input type="hidden" name="-Update" value="">

<input type="hidden" name="-Database" value="Contacts">

<input type="hidden" name="-Table" value="People">

<input type="hidden" name="-KeyField" value="ID">

<input type="hidden" name="-KeyValue" value="127">

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 9 — MYSQL DATA SOURCES

[Inline: -Search, -Database="Contacts', -Table="People’,
-KeyField='ID",
-KeyValue=126]
<select name="Title" multiple size="4">
[Value_List: Title']
<option value="[Value_Listltem]" [Selected]>[Value_Listltem]</option>
[/Value_List]
</select>
[/Inling]

<p><input type="submit" name="-Update" value="Update Record">
<[form>

e The [Option] tag automatically inserts Selected parameters as needed to

201

ensure that the proper options are selected in the HTML select list. The
example below generates exactly the same HTML as the example above.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Update" value="">
<input type="hidden" name="-Database" value="Contacts">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="|D">
<input type="hidden" name="-KeyValue" value="127">

[Inline: -Search, -Database="Contacts', -Table="People’,
-KeyField='ID",
-KeyValue=126]
<select name="Title" multiple size="4">
[Option: 'Title']
</select>
[/Inline]

<p><input type="submit" name="-Update" value="Update Record">
<[form>

To display HTML check boxes with selected value list values:

The following example shows how to format a set of HTML <input> tags to
show all the values from a value list as check boxes with the selected check

boxes checked. The [Checked] tag returns Checked if the current value list

item is selected in the database or nothing otherwise. Radio buttons can be

created with the same code by changing the type from checkbox to radio.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Update" value="">
<input type="hidden" name="-Database" value="Contacts">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">
<input type="hidden" name="-KeyValue" value="127">

LAsso 7.1 LANGUAGE GUIDE

202

CHAPTER 9 — MYSQL DATA SOURCES

[Inline: -Search, -Database='Contacts', -Table="People’,
-KeyField="ID',
-KeyValue=126]

[Value_List: 'Title']

<input type="checkbox" name="Title" value="[Value_Listitem]" [Checked]>
[Value_Listltem]

[/Value_List]

[/Inline]

<p><input type="submit" name="-Update" value="Update Record">
<[form>

Note: Storing multiple values is only supported using SET field types.

Creating Database Tables

LDML 7 includes a set of tags which allow tables and fields to be created,
altered, or deleted within MySQL data sources including Lasso Professional
7's internal Lasso MySQL data source.

e A solution can create its required tables automatically the first time it is
accessed.

e Temporary tables can be created which store data that is eliminated the
next time Lasso MySQL is restarted.

e Interactive tools can be built which allow clients to create their own
tables and populate them with data.

For a visual interface that allows Lasso MySQL databases (in addi-

tion to tables and fields) to be created and altered, see the

Database Builder LassoApp. This interactive tool allows databases, tables,
and fields to be created, altered, or deleted. See Chapter 10: Building and
Browsing Databases in the Lasso Professional 7 Setup Guide for details.

Lasso stores security information about all tables and fields in an internal
cache. This table must be updated whenever a new table is created, new
fields within a table are added, or fields are modified. The security cache
can be updated manually using the Refresh button in the Setup > Data
Sources sections of Lasso Administration, or programatically using

the [DataSource_Reload] tag. Lasso will automatically refresh the security
cache whenever an unknown table or field name is used. Perform an
[Inline] ... [/Inline] database action that references any new or changed tables
and fields to force Lasso to update its security cache.

Warning: These tags can be used to delete entire data tables from MySQL
data sources. These tags should be used with care to ensure that essential

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 9 — MYSQL DATA SOuURrRCES 203

data is not lost. If a table or field is removed there is no way to access the
data that was stored in the table or field without resorting to a backup.

Table 5: Database Creation Tags

Tag Description

[Database_CreateTable] Creates a table. Requires a -Database parameter which
specifies a MySQL database and a -Table parameter
which specifies the name of the table to be created.

[Database_CreateField] Creates a field in a table. Requires -Database and
-Table parameters which specify where the field should
be created and -Field and -Type parameters which
give the name of the field to be created and its type.
[Database_CreateColumn] is a synonym.

[Database_ChangeField] Changes a field definition. Requires the same
parameters as [Database_CreateField] in addition to an
-Original parameter that specifies the field to be altered.
[Database_ChangeColumn] is a synonym.

[Database_RemoveTable] Removes a table from a database. All data in the table
will be lost. Requires -Database and -Table parameters.

[Database_RemoveField] Removes a field from a table. All data in the field will be
lost. Requires -Database, -Table, and -Field parameters.
[Database_RemoveColumn] is a synonym.

Tables

Tables can be created or removed from Lasso MySQL or other MySQL data
sources. The following important points should be kept in mind when
creating or deleting new tables.

e Table names are case sensitive in MySQL, but case insensitive in Lasso.
For best results use a consistent naming convention and never rely on
case to differentiate between two tables.

e Table names should start with a letter and contain only letters, numbers,
and the underscore character _. They should not contain any spaces,
periods, or other punctuation.

New tables must be enabled within Lasso Administration before they
can be accessed through Lasso.

All tables are created with a single field automatically named ID that is
set to be the primary key field and to auto-increment from 0. Usually,
this field should be used as the primary key field for a table unless
another structure is required.

LAsso 7.1 LANGUAGE GUIDE

204

CHAPTER 9 — MYSQL DATA SOURCES

e In terms of data storage, tables are equivalent to FileMaker Pro database
files, not to FileMaker Pro layouts. The equivalent of many FileMaker Pro
databases can be stored in a single MySQL database.

However, within Lasso security and Lasso database actions, FileMaker
Pro databases and MySQL databases are treated as equivalent. FileMaker
Pro layouts are treated as equivalent to MySQL tables. This makes the
security model cleaner and allows for easier transition between data
sources.

e When a table is removed its data is lost forever. There is no undo. See
Chapter 9: Administration Utilities in the Lasso Professional 7 Setup
Guide for information about backing up tables and data recovery.

Table 6: [Database_CreateTable] Parameters:

Parameter Description
-Database The name of the database in which to create the table.
-Table The name of the table to be created. Must be unique

within the database. Should start with a letter and
contain only letters, numbers, or underscores.

-Temporary Creates a temporary table that will be deleted when
MySQL restarts.

To create a table:

Use the [Database_CreateTable] tag to create a new table in the specified data-
base. The [Database_CreateTable] tag will not overwrite an existing table. The
name of the new table must be unique. The following example creates a
new table named Phone_Book in the database Example.

[Database_CreateTable: -Database="Example’, -Table='"Phone_Book]

The table initially contains one field named ID that is set to be the primary
key field and to auto increment. Use the tags described in the Fields
section below to add more fields to the new table.

Note: New tables are initially disabled in Lasso Administration. Use the
Setup > Data Sources tab in Lasso Administration to enable new tables. In
addition, the Extending Lasso Guide includes the complete source code for
Admin.LassoApp which demonstrates how to enable new tables automatically.

To create a temporary table:

Use the [Database_CreateTable] tag with the -Temporary keyword to create a
temporary table in the specified database. The temporary table will be
deleted when MySQL restarts. The following example creates a new table
named Cache in the database Example. This tag could be used in a format

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 9 — MYSQL DATA SOURCES 205

file within LassoStartup to create a table that started empty each time the
server hosting Lasso was restarted.

[Database_CreateTable: -Database="Example’, -Table='Cache', -Temporary]

The table initially contains one field named ID that is set to be the primary
key field and to auto increment. Use the tags described in the Fields
section below to add more fields to the new table.

To remove a table:

Use the [Database_RemoveTable] tag to drop the specified table from its data-
base. This will eliminate all data stored in the table. The following example
will remove the table named Cache from the Example database.

[Database_RemoveTable: -Database="Example’, -Table="Cache’]

Fields

Each table created by the [Database_CreateTable] command starts with only
a single ID field which Lasso creates automatically. Additional fields can be
created, changed, or removed from any table in a MySQL or Lasso MySQL
database. The following important points should be kept in mind when
creating, changing, or removing fields.

e Field names should start with a letter and contain only letters, numbers,
and the underscore character (_). They should not contain any spaces,
periods, or other punctuation. See the MySQL documentation for a list
of reserved names that cannot be used as field names.

Tables can only contain a single primary key field and a single auto-
increment field. Since the ID field is automatically created with both of
these attributes it must be removed if a different field needs to be created
as the primary key field.

Fields should be created with the smallest data type which can hold all
possible values. See the MySQL documentation at http://www.mysgl.com for
information on MySQL data types.

When a field is removed its data is lost forever. There is no undo. See
Chapter 9: Administration Utilities in the Lasso Professional 7 Setup
Guide for information about backing up tables and data recovery.

After many fields have been added, changed, or removed from a table it
is good practice to optimize the table following the instructions in the
Optimizing Tables section below.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 9 — MYSQL DATA SOURCES

Table 7: [Database_CreateField] and [Database_ChangeField]

Parameters:

Parameter Description

-Database The name of the database in which to create the table.

-Table The name of the table in which to create the field.

-Original Used only with [Database_ChangeField]. The name of
the original field which should be changed.

-Field The name of the field to be created. Must be unique
within the table. Should start with a letter and contain
only letters, numbers, or underscores.

-Type The type of the field. See Table 5: MySQL Field Types
for a summary of possible types.

-Default Optional default value for the field. The field will be set

-AutoIncrement

-Key

-Null

-NotNull

-AfterField

-BeforeField

to this value when a new record is created that does not
set this field explicitly.

Sets a field to auto increment. Only one field in each
table can be set to auto increment. The field will be set
to 1 greater than the maximum value of the field each
time a new record is created that does not set this field
explicitly. Optional

Sets a field as the primary key field. Only one field

in each table can be set to be the primary key field.
Optional.

Specifies that a field can contain Null values. The
default.

Specifies that a field cannot contain Null values. Should
be set for primary key or auto-increment fields. Optional.

Specifies where in the table the field should be created.
The new field will be inserted after the named field.
Optional.

Specifies that a field should be created before all other
fields in a table. Optional.

The -Type parameter for [Database_CreateField] and [Database_ChangeField] can
accept any of the values in Table 5: MySQL Field Types.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 9 — MYSQL DATA SOURCES 207

Table 8: MySQL Field Types

Data Type Description

TINYINT Integer less than about one hundred. 8-bit.

SMALLINT Integer less than about 30 thousand. 16-bit.

MEDIUMINT Integer less than 8 million. 24-bit.

INT Integer less than 2 billion. 32-bit. Recommended.

BIGINT Very large integer. Same range as Lasso integer data
type. 64-bit.

FLOAT Short decimal value. 32-bit.

DOUBLE Long decimal value. Same range as Lasso decimal data

DECIMAL(length, precision)
CHAR(length)
VARCHAR(length)

TEXT, BLOB

TINYTEXT, TINYBLOB
MEDIUMTEXT, MEDIUMBLOB
LONGTEXT, LONGBLOB

ENUM ('Value?', 'Value2,, ...)

SET ('Valuet', 'Value2,, ...)

DATETIME

TIMESTAMP
DATE

TIME

YEAR

type. 64-bit. Recommended.

Fixed precision decimal value. Ranges vary depending
on parameters.

Fixed length string of the specified length. Length can be
from 0 to 255.

Variable length string of the specified length. Length can
be from 1 to 255.

Text or binary data up to about 64 KB in length.

Text or binary data up to 255 bytes. Rarely used.

Text or binary data up to about 16 MB. Rarely used.
Text or binary data up to about 4 GB. Practical limit of
about 24 MB. Rarely used.

A field that can contain one of a number of predefined
string values that are indexed numerically. ENUM data
can be text refering to a value, or an integer refering
to the index number of a value. A maximum of 65,535
ENUM values may be predefined.

A field that can contain up to 64 predefined string values.
SET data can be comma-delimited text refering to many
values, or as an integer that is the bit representation of
the values.

Stores a MySQL date and time in YYYY-MM-DD HH:
MM:SS format. Roughly equivalent to a Lasso date
string, but with a different format.

MySQL time stamp for modification date.

Stores a MySQL date string in YYYY-MM-DD format.
Stores a MySQL time string in HH:MM:SS format.
Efficient storage for four digit years. Rarely used.

LAsso 7.1 LANGUAGE GUIDE

208 CHAPTER 9 — MYSQL DATA SOURCES

To create a field:

Use the [Database_CreateField] tag to create a new field. The field will be
inserted as the last field in the specified table.

¢ The following example shows two fields First_Name and Last_Name added
to the People table of the Contacts database. Both fields are set to the data
type VARCHAR with a maximum length of 64 characters.
[Database_CreateField: -Database="Contacts', -Table="People’,
-Field="First_Name', -Type="VARCHAR(64)’]
[Database_CreateField: -Database="Contacts', -Table="People’,
-Field="Last_Name', -Type='"VARCHAR(64)]

e The following example shows a field Amount_Due being added to the
People table. The field will store DECIMAL values with up to 14 digits and
a precision of 2. This is a good data type for dollar amounts (up to
$999,999,999,999.99).

[Database_CreateField: -Database="Contacts', -Table="People’,
-Field="Amount_Due', -Type="DECIMAL(14,2)']

¢ The following example shows a field Notes being added to the
People table. The field can store TEXT values up to 64k worth of text.

[Database_CreateField: -Database='Contacts', -Table='"People’,
-Field="Notes', -Type="TEXT']

e The following example shows a field Job being added to the People table.
The field can store one ENUM value selected from a list of four allowed
values (Sales, Support, Management, or Engineering).

[Database_CreateField: -Database="Contacts', -Table="People’,
-Field="Job", -Type="ENUM('Sales', 'Support', 'Management', 'Engineering’)']

To create a field in an existing table:

A field can be created in an existing table by using the -AfterField or
-BeforeFirst parameters to the [Database_CreateField] tag. The order of fields in
a database is not generally important, but it can be easier to use command
line tools if the fields print out in a specific order.

¢ The following example shows a field Phone_Number being added to
the Phone_Book table immediately after the Last_Name field. The field is
defined as a fixed length CHAR data type which can store up to 16 digits.

[Database_CreateField: -Database='"Example’, -Table='Phone_Book',
-Field="Phone_Number', -Type='CHAR(16)', -AfterField="Last_Name']

¢ The following example shows a field Title being added to the
Phone_Book table before all other fields in the table. The field is defined
as a fixed length CHAR data type which can store up to 8 characters.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 9 — MYSQL DATA SOURCES 209

[Database_CreateField: -Database="Example', -Table='Phone_Book',
-Field="Title', -Type="CHAR(8)', -BeforeFirst]

Note: Perform an [Inling] ... [/Inline] database action after creating a new field in
order to force Lasso Administration to refresh and update its stored database
information.

To change a field:

A field can be changed using the [Database_ChangeField] tag. This tag
accepts all the same parameters as [Database_CreateField] with the addition
of an -Original parameter that specifies the field to be changed. All of the
parameters of the new field should be specified including the required
name and type, any parameters left unspecified will be returned to their
default values.

When a field is changed all the data in the field is translated to the new
field type. Be sure to only change fields to compatible data types, otherwise
there is a potential for data loss. If a field is changed to a smaller data type
then any excess data beyond the size of the new data type will be lost.

The following example shows the Notes field from the

Phone_Book table being changed so that it will only store about 255 charac-
ters in a TINYTEXT data type. Any characters beyond 255 in the records of
Phone_Book will be truncated to 255 characters.

[Database_ChangeField: -Database="Example', -Table='Phone_Book',
-Original="Notes', -Field='Notes', -Type="TINYTEXT]

To remove a field:

Use the [Database_RemoveField] tag to drop the specified field from its table.
This will eliminate all data stored in the field. The following example will
remove a field named Title from the Phone_Book table.

[Database_RemoveField: -Database='"Example', -Table="Phone_Book',
-Field="Title']

Optimizing Tables

After adding, changing, or removing many fields within a table it is good
practice to optimize the table. This will ensure that the indices are up to
date and that MySQL or Lasso MySQL has updated all of its internal infor-
mation about the table.

Please see Chapter 9: Administration Utilities of the Lasso Professional
7 Setup Guide for more information about optimizing tables and auto-
mating database maintenance.

LAsso 7.1 LANGUAGE GUIDE

210 CHAPTER 9 — MYSQL DATA SOURCES

To optimize a table:

Use [Inling] ... [/Inline] tags with a -SQL command that specifies the
OPTIMIZE TABLE and ANALYZE TABLE SQL statements. The following example
optimizes the Phone_Book table of the Example database.

[Inline: -Database="Example’, -SQL="OPTIMIZE TABLE Example.Phone_Book'][/Inline]
[Inline: -Database="Example', -SQL="ANALYZE TABLE Example.Phone_Book'][/Inline]

LAsso 7.1 LANGUAGE GUIDE

Chapter

10

FileMaker
Data Sources

This chapter documents tags and behaviors which are specific to FileMaker
Pro and FileMaker Server Advanced data sources accessed using Lasso
Connector for FileMaker Pro and Lasso Connector for FileMaker SA.

Overview introduces FileMaker data sources.

Performance Tips includes recommendations which will help ensure
that FileMaker is used to its full potential.

Compatibility Tips includes recommendations which help ensure that
FileMaker databases can be transferred to a different back-end data
source.

FileMaker Tags describes tags specific to FileMaker data sources.

Primary Key Field and Record ID describes how the built-in record IDs
in FileMaker can be used as primary key fields.

Sorting Records describes how custom sorts can be performed in
FileMaker databases.

Displaying Data describes methods of returning field values from
FileMaker databases including repeating field values and values from
portals.

Value Lists describes how to retrieve and format value list data from
FileMaker databases.

Container Fields describes how to retrieve images and other data stored
in container fields.

FileMaker Scripts describes how to activate FileMaker scripts in concert
with a Lasso database action.

LAsso 7.1 LANGUAGE GUIDE

212

CHAPTER 10 — FILEMAKER DATA SOURCES

Overview

Lasso Professional 7 allows access to FileMaker Pro data sources through
Lasso Connector for FileMaker Pro and to FileMaker Server Advanced

data sources through Lasso Connector for FileMaker SA. Connections can
be made to any version of FileMaker Pro that includes Web Companion
including FileMaker Pro 4.x and FileMaker Pro 5.x and 6.x Unlimited or to
FlleMaker Server Advanced

Please see Chapter 7: Setting Up Data Sources in the Lasso Professional
7 Setup Guide for information about how to configure FileMaker for access
through Lasso Professional 7.

Lasso Connector for FileMaker Pro cannot access databases hosted by
FileMaker Server directly. All databases must be opened and shared by a
copy of the FileMaker Pro client. FileMaker Pro 3 is not supported since
it does not include the Web Companion. Solutions built using FileMaker
Developer which rely on a runtime engine are not supported.

Lasso Connector for FileMaker SA can only access databases hosted by
FileMaker Server Advanced. All databases must have the appropriate fmxml
extended privileges set. Lasso cannot access databases hosted by FileMaker
Server 7 or by FileMaker Pro 7.

LDML is a predominantly data source-independent language. It does
include many FileMaker Pro specific tags which are documented in this
chapter. However, all of the common procedures outlined in Chapter
6: Data Source Fundamentals, Chapter 7: Searching and Displaying
Data, and Chapter 8: Adding and Updating Records can be used with
FileMaker data sources.

Note: The tags and procedures defined in this chapter can only be used with
FileMaker data sources. Any solution which relies on these tags cannot be
easily retargeted to work with a different back-end database.

Terminology

Since Lasso works with many different data sources this documentation
uses data source agnostic terms to refer to databases, tables, and fields.
The following terms which are used in the FileMaker documentation are
equivalent to their Lasso counterparts.

¢ Database - Database is used to refer to a single FileMaker database file.
Prior to version 7, FileMaker databases contains only a single data file
and one or more layouts. In version 7, FileMaker databases can contain
multiple data files, but data within them is still accessed through the
defined layouts.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 10 — FILEMAKER DATA SOURCES 213

e Layout - Within Lasso a FileMaker layout is treated as equivalent to
a Table. The two terms can be used interchangeably. This equivalence
simplifies Lasso security and makes transitioning between back-end
data sources easier. All FileMaker layouts can be thought of as views of a
single data table. Lasso can only access fields which are contained in the
layout named within the current database action. Note that in FileMaker
7 Lasso can only access tables in a FileMaker databases which are acces-
sible through a layout.

Note: FileMaker Server Advanced data sources can return field values
for a different layout than that used to specify the database action using
-LayoutResponse.

¢ Record - FileMaker records are referenced using a single -KeyValue rather
than a -KeyField and -KeyValue pair. The -KeyField in FileMaker is always the
record ID which is set internally.

e Fields - The value for any field in the current layout in FileMaker can
be returned including the values for related fields, repeating fields, and
fields in portals.

Although the equivalence of FileMaker databases to Lasso MySQL data-

bases and FileMaker layouts to Lasso MySQL tables is imperfect, it is an

essential compromise in order to map both database models onto Lasso
Professional’s two-tier (e.g. database and table) security model.

Performance Tips

This section contains a number of tips which will help get the best perfor-
mance from a FileMaker database. Since queries must be performed
sequentially within FileMaker, even small optimizations can yield signifi-
cant increases in the speed of Web serving under heavy load.

¢ Dedicated FileMaker Machine - For best performance, place the
FileMaker Pro client or FileMaker Server Advanced on a different
machine from Lasso Service and the Web server application.

FileMaker Server - If a FileMaker Pro database must be accessed by a
mix of FileMaker Pro clients and Web visitors through Lasso, it should
be hosted on FileMaker Pro Server. Lasso will access the database
through a single FileMaker Pro client which is connected as a guest to
FileMaker Server or through FileMaker Server Advanced.

Web Companion - For FileMaker version 4, 5, and 6 always ensure that
the latest version of FileMaker Pro Web Companion for the appropriate
version of FileMaker Pro is installed.

LAsso 7.1 LANGUAGE GUIDE

214

CHAPTER 10 — FILEMAKER DATA SOURCES

Index Fields - Any fields which will be searched through Lasso should
have indexing turned on. Avoid searching on unstored calculation fields,
related fields, and summary fields.

Custom Layouts - Layouts should be created with the minimal number
of fields required for Lasso. All the data for the fields in the layout will
be sent to Lasso with the query results. Limiting the number of fields can
dramatically cut down the amount of data which needs to be sent from
FileMaker to Lasso.

Return Fields - Use the -ReturnField tag to limit the number of fields
which are returned to Lasso. If no -ReturnField tag is specified then all of
the data for the fields in the current layout will be sent to Lasso with the
query results.

Return fields are not supported for FileMaker Server Advanced data
sources. Use the -LayoutResponse to specify an alternate layout to use for
the return value of the database action instead.

Sorting - Sorting can have a serious impact on performance if large
numbers of records must be sorted. Avoid sorting large record sets and
avoid sorting on calculation fields, related fields, unindexed fields, or
summary fields.

Contains Searching - FileMaker is optimized for the default

Begins With searches (and for numerical searches). Use of the contains
operator ¢n can dramatically slow down performance since FileMaker
will not be able to use its indices to optimize searches.

Max Records - Using -MaxRecords to limit the number of records
returned in the result set from FileMaker can speed up performance.
Use -MaxRecords and -SkipRecords or the [Link_...] tags to navigate a visitor
through the found set.

Calculation Fields - Calculation fields should be avoided if possible.
Searching or sorting on unindexed, unstored calculation fields can have
a negative effect on FileMaker performance.

FileMaker Scripts - The use of FileMaker scripts should be avoided if
possible. When FileMaker executes a script, no other database actions
can be performed at the same time. FileMaker scripts can usually be
rewritten as LDML to achieve the same effect as the script, often with
greater performance.

In addition to these tips, Lasso MySQL can be used to shift some of the
burden off of FileMaker. Lasso MySQL can usually perform database

searches much faster than FileMaker. Lasso Professional 7 also includes

sessions and compound data types that can be used to perform some of

the tasks of a database, but with higher performance for small amounts of
data.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 10 — FILEMAKER DATA SOURCES 215

Compatibility Tips

Following these tips will help to ensure that it easy to transfer data from
a FileMaker database to another data source, such as the built-in Lasso
MySQL database, at a future date.

e Database Names - Database, layout, and field names should contain
only a mix of letters, numbers, and the underscore character. they should
not contain any punctuation other than spaces..

Calculation Fields - Avoid the use of calculation fields. Instead, perform
calculations within Lasso and store the results back into regular fields if
they will be needed later.

Summary Fields - Avoid the use of summary fields. Instead, summarize
data using [Inline] searches within Lasso.

Scripts - Avoid the use of FileMaker scripts. Most actions which can
be performed with scripts can be performed using the database actions
available within Lasso.

Record ID - Create a calculation field named ID and assign it to the
following calculation. Always use the -KeyField='ID' within [Inline] database
actions, HTML forms, and URLs. This ensures that when moving to a
database that relies on storing the key field value explicitly, a unique key
field value is available.

Status(CurrentRecordID)

FileMaker Tags

LDML 7 includes tags that allow the type of a database to be inspected.

Table 1: FileMaker Data Source Tags

Tag Description

[Lasso_DataSourcelsFileMaker] Returns True if the specified database is hosted by
FileMaker Pro.

[Lasso_DataSourcelsFileMakerSA]
Returns True if the specified database is hosted by
FileMaker Server Advanced.

To check whether a database is hosted by FileMaker Pro:

The following example shows how to use [Lasso_DataSourcelsFileMaker] to
check whether or note the database Example is hosted by FileMaker Pro.

LAsso 7.1 LANGUAGE GUIDE

216

CHAPTER 10 — FILEMAKER DATA SOURCES

[If: (Lasso_DataSourcelsFileMaker: 'Example.fp5')]
Example is hosted by FileMaker Pro!

[Else: (Lasso_DataSourcelsFileMakerSA: 'Example.fp5')]
Example is hosted by FileMaker Server Advanced!

[Else]
Example is not hosted by FileMaker.

i
=» Example is hosted by FileMaker Pro!

To list all databases hosted by FileMaker Server Advanced:

Use the [Database_Names] ... [/[Database_Names] tags to list all databases
available to Lasso. The [Lasso_DataSourcelsFileMakerSA] tag can be used to
check each database and only those that are hosted by FileMaker Server
Advanced will be returned. The result shows two databases, Contacts.fp7 and
Example.fp7, which are available through FileMaker Server Advanced.
[Database_Names]
[If: (Lasso_DataSourcelsFileMakerSA: (Database_Nameltem))]

[Database_Nameltem]

(/1]
[/Dabase_Names]

=>»
Example.fp7

Contacts.fp7

Primary Key Field and Record ID

FileMaker databases include a built-in primary key value called the
Record ID. This value is guaranteed to be unique for any record in a
FileMaker database. It is predominantly sequential, but should not be
relied upon to be sequential. The values of the record IDs within a data-
base may change after an import or after a database is compressed using
Save a Copy As.... Record IDs can be used within a solution to refer to a
record on multiple pages, but should not be stored as permanent refer-
ences to FileMaker records.

Note: The tag [RecordID_Value] can also be used to retrieve the record ID from
FileMaker records. However, for best results, it is recommended that the
[KeyField_Value] tag be used.

To return the current record ID:

The record ID for the current record can be returned using [KeyField_Value].
The following example shows [Inline] ... [/Inline] tags that perform a -FindAll

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 10 — FILEMAKER DATA SOURCES 217

action and return the record ID for each returned record using the
[KeyFleld_Value] tag.
[Inline: -Database="Contacts.fp5', -Layout="People’, -FindAll]
[Records]

[KeyField_Value]: [Field: 'First_Name"] [Field: 'Last_Name']
[/Records]
[/Inline]

=»
126: John Doe

127: Jane Doe

4096: Jane Person

To reference a record by record ID:

For -Update and -Delete command tags the record ID for the record

which should be operated upon can be referenced using -KeyValue. The
-KeyField does not need to be defined or should be set to an empty string if
it is, -KeyField=".

e The following example shows a record in Contacts.fp5 being updated
with -KeyValue=126. The name of the person referenced by the record is
changed to John Surname.

[Inline: -Database='Contacts.fp5',
-Layout="People’,
-KeyValue=126,
'First_Name'="John',
'Last_Name'='Surname’,
-Update]

[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name']
[/Inline]

=»
126: John Surname

e The following example shows a record in Contacts.fp5 being deleted with
-KeyValue=127. The -KeyField command tag is included, but its value is set
to the empty string.

[Inline: -Database="Contacts.fp5',
-Layout="People’,
-KeyField=",

-KeyValue=126,
-Delete]
[/Inline]

To access the record ID within FileMaker:

The record ID for the current record in FileMaker can be accessed using the
calculation value Status(CurrentRecordID) within FileMaker.

LAsso 7.1 LANGUAGE GUIDE

218

CHAPTER 10 — FILEMAKER DATA SOURCES

Sorting Records

In addition to the Ascending and Descending values for the -SortOrder tag,
FileMaker data sources can also accept a Custom value. The Custom value
can be used for any field which is formatted with a value list in the current
layout. The field will be sorted according to the order of values within the
value list.

Note: FileMaker Server Advanced only supports the specification of a
maximum of 9 sort fields in a single database search.

To return custom sorted results:

Specify -SortField and -SortOrder command tags within the search parameters.
The following [Inline] ... [/Inline] tags include sort command tags specified in
hidden inputs. The records are first sorted by title in custom order, then by
Last_Name and First_Name in ascending order. The Title field will be sorted in
the order of the elements within the value list associated with the field in
the database. In this case, it will be sorted as Mr, Mrs., Ms.
[Inline: -FindAll,
-Database='Contacts.fp5',
-Table='People’,
-KeyField="ID',
-SortField="Title', -SortOrder="Custom’,
-SortField="Last_Name', -SortOrder="Ascending’,
-SortField="First_Name', -SortOrder="Ascending']
[Records]

[Field: 'Title"] [Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inline]

The following results could be returned when this page is loaded. Each
of the records with a title of Mr. appear before each of the records with a
title of Mrs. Within each title, the names are sorted in ascending alpha-
betical order.
=>» <pbr>Mr. John Doe

Mr. John Person

Mrs. Jane Doe

Mrs. Jane Person

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 10 — FILEMAKER DATA SOURCES 219

Displaying Data

FileMaker includes a number of container tags and substitution tags that
allow the different types of FileMaker fields to be displayed. These tags are
summarized in Table 2: FileMaker Data Display Tags and then examples
are included in the sections that follow.

See also the sections on Value Lists and Images for more information
about returning values from FileMaker fields.

Table 2: FileMaker Data Display Tags

Tag Description

[Field] Can be used to reference FileMaker fields including
related fields and repeating fields.

[Repeating] ... [/Repeating] Container tag repeats for each defined repetition of a
repeating field. Requires a single parameter, the name of
the repeating field from the current layout.

[Repeating_Valueltem] Returns the value for each repetition of a repeating field.

[Portal] ... [/Portal] Container tag repeats for each record in a portal.
Requires a single parameter, the name of the portal
relationship from the current layout.

Note: All fields which are referenced by Lasso must be contained in the
current layout in FileMaker. For portals and repeating fields only the number
of repetitions shown in the current layout will be available to Lasso.

Related Fields

Related fields are named using the relationship name followed by two
colons :: and the field name. For example, a related field Call_Duration from
a Calls.fp5 database might be referenced as Calls.fp5::Call_Duration. Any related
fields which are included in the layout specified for the current Lasso
action can be referenced using this syntax. Data can be retrieved from
related fields or it can be set in related fields when records are added or
updated.

To return data from a related field:

Specify the name of the related field within a [Field] tag. The related field
must be contained in the current layout either individually or within a
portal. In a one-to-one relationship, the value from the single related
record will be returned. In a one-to-many relationship, the value from the
first related record as defined by the relationship options will be returned.

LAsso 7.1 LANGUAGE GUIDE

220

CHAPTER 10 — FILEMAKER DATA SOURCES

See the section on Portals below for more control over one-to-many rela-
tionships.

The following example shows a -FindAll action being performed in a data-
base Contacts.fp5. The related field Last_Call_Time from the Calls.fp5 databases
is returned for each record through a relationship named Calls.fp5.
[Inline: -Database="Contacts.fp5', -Layout="People’, -FindAll]
[Records]

[KeyField_Value]: [Field: 'First_Name"] [Field: 'Last_Name]
(Last call at: [Field: 'Calls::Last_Call_Time'").
[/Records]
[/Inling]

=>»
126: John Doe (Last call at 12:00 pm).

127: Jane Doe (Last call at 9:25 am).

4096: Jane Person (Last call at 4:46 pm).

To set the value for a related field:

Specify the name of the related field within the action which adds or
updates a record within the database. The related field must be contained
in the current layout either individually or within a portal. In a one-to-
one relationship, the value for the field in a single related record will be
modified. In a one-to-many relationship, the value for the field in the first
related record as defined by the relationship options will be modified. See
the section on Portals below for more control over one-to-many relation-
ships.

The following example shows an -Update action being performed in a data-
base Contacts.fp5. The related field Last_Call_Time from the Calls.fp5 database
is updated for Jane Person. The new value is returned.
[Inline: -Database="Contacts.fp5',
-Layout="People’,
-KeyValue=4096,
'Calls.fp5::Last_Call_Time'="1:45 am’,
-Update]

[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name]
(Last call at: [Field: 'Calls.fp5::Last_Call_Time").
[/Inline]

=>»
4096: Jane Person (Last call at 1:45 pm).

Portals

Portals allow one-to-many relationships to be displayed within FileMaker
databases. Portals allow data from many related records to be retrieved and

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 10 - FILEMAKER DATA SOouRCES 221

displayed in a single format file. A portal must be present in the current
FileMaker layout in order for its values to be retrieved using Lasso.

Only the number of repetitions formatted to display within FileMaker will
be displayed using Lasso. A portal must contain a scroll bar in order for all
records from the portal to be displayed using Lasso.

Fields in portals are named using the same convention as related fields.
The relationship name is followed by two colons :: and the field name. For
example, a related field Call_Duration from a Calls.fp5 database might be refer-
enced as Calls.fp5::Call_Duration.

Note: Everything that is possible to do with portals can also be performed
using nested [Inline] [/Inline] tags to perform actions in the related database.
Portals are unique to FileMaker databases.

To return values from a portal:

Use the [Portal] ... [/Portal] tags with the name of the portal referenced in the
opening [Portal] tag. [Field] tags within the [Portal] ... [/Portal] tags should refer-
ence the fields from the current portal row using related field syntax.

The following example shows a portal Calls.fp5 that is contained in the
People layout of the Contacts.fp5 database. The Time, Duration, and Number of
each call is displayed.
[Inline: -Database="Contacts.fp5', -Layout="People’, -FindAll]
[Records]
<p>Calls for [Field: 'First_Name'] [Field: 'Last_Name]:
[Portal: 'Calls.fp5']

[Field: 'Calls.fp5::Number1] at [Field: 'Calls.fp5::Time']
for [Field: 'Calls.fp5::Duration’] minutes.
[/Portal]
[/Records]
[/Inline]

=» <p>Calls for John Doe:

555-1212 at 12:00 pm for 15 minutes.

<p>Calls for Jane Doe:

555-1212 at 9:25 am for 60 minutes.

<p>Calls for Jane Person:

555-1212 at 2:23 pm for 55 minutes.

555-1212 at 4:46 pm for 5 minutes.

To add a record to a portal:

A record can be added to a portal by adding the record directly to the
related database. In the following example the Calls.fp5 database is related
to the Contacts.fp5 database by virtue of a field Contact_ID that stores the

LAsso 7.1 LANGUAGE GUIDE

222

CHAPTER 10 — FILEMAKER DATA SOURCES

ID for the contact which the calls were made to. New records added to
Calls.fp5 with the appropriate Contact_ID will be shown through the portal to
the next site visitor.

In the following example a new call is added to the Calls.fp5 database for
John Doe. John Doe has an ID of 123 in the Contacts.fp5 database. This is the
value used for the Contact_ID field in Calls.fp5.
[Inline: -Add,
-Database="Calls.fp5',
-Layout="People’,
'Contact_ID'=123,
'Number'='555-1212,
'Time'="12:00 am',
'Duration'=55]
[/Inline]

To update a record within a portal:

In order to update records shown within a portal it is recommended that
you use a field to return the record ID of each record in the portal, then
use that value in nested [Inline] ... [/Inline] tags to update the related record.

Create a calculation field named RecordID within the related database (e.g.
Calls.fp5) that contains the following FileMaker calculation.

Status(CurrentRecordID)

Place that field within the portal shown within the main database (e.g.
Contacts.fp5). To perform an update of a portal row, use [Inline] ... [/Inline] tags
which reference the related database and the RecordID from the portal.

The following example shows how to update every record contained within
a portal. The field Approved is set to Yes for each call from the Calls.fp5 data-
base for all contacts from the Contacts.fpd database.

[Inline: -Database="Contacts.fp5', -Layout='People’, -FindAll]
[Records]
[Portal: 'Calls.fp5']
[Inline: -Database="Calls.fp5',
-Layout="People’,
-KeyField=(Field: 'Calls.fp5::RecordID"),
'Approved'='Yes',
-Update']
[/Inline]
[/Portal]
[/Records]
[/Inline]

The results of the action will be shown the next time the portal is viewed
by a site visitor.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 10 — FILEMAKER DATA SOURCES 223

To delete a record from a portal:

The same method as described above for updating records within a portal
can be used to delete records from a portal. In the following example,
all records from Contacts.fp5 are returned and every record from the
Calls.fp5 portal is deleted.
[Inline: -Database="Contacts.fp5', -Layout='People’, -FindAll]
[Records]
[Portal: 'Calls.fp5']
[Inline: -Database="Calls.fp5',
-Layout="People’,
-KeyField=(Field: 'Calls.fp5::RecordID"),
-Delete]
[/Inline]
[/Portal]
[/Records]
[/Inline]

No records will be contained in the portal the next time the site is viewed
by a site visitor. However, not all records in Calls.fp5 have necessarily

been deleted. Any records which were not associated with a contact in
Contacts.fp5 will still remain in the database.

Repeating Fields

Repeating fields in FileMaker allow many values to be stored in a single
field. Each repeating field is defined to hold a certain number of values.
These values can be retrieved using the tags defined in this section. See the
documentation for FileMaker for more information about how to create
and use repeating fields within FileMaker.

In order to display or set values in a repeating field, the layout referenced
in the current database action must contain the repeating field formatted
to show the desired number of repetitions. If a field is set to store eight
repetitions, but only to show two, then it will appear to be a two-repetition
field to Lasso.

Note: The use of repeating fields is not recommended. Usually a simple text
field which contains multiple values separated by returns can be used for the
same effect through Lasso. For more complex solutions a related database
and [Portal] ... [/Portal] tags or nested [Inling] ... [/Inline] tags can often be easier to
use and maintain than a solution with repeating fields.

To return values from a repeating field:

Use the [Repeating] ... [[Repeating] and [Repeating_Valueltem] tags to return each
of the values from a repeating field. The opening [Repeating] tag takes a

LAsso 7.1 LANGUAGE GUIDE

224 CHAPTER 10 — FILEMAKER DATA SOURCES

single parameter which names a field from the current FileMaker layout
that repeats. The contents of the [Repeating] ... [[Repeating] tags is repeated for
each repetition and the [Repeating_Valueltem] tag is used to return the value
for the current repetition.

The following example shows a repeating field Customer_ID that has four
repetitions. Normally, only the first repetition has a defined value, but for
a contact that has multiple accounts, multiple values are defined. Since
Jane Person has two customer accounts, two repetitions of Customer_ID are
returned.

[Inline: -Database="Contacts', -Layout="People’, 'Last_Name'='Person’, -Search]
[Records]
<p>[Field: 'First_Name'] [Fleld: 'Last_Name']
[Repeating: 'Customer_ID']

Customer ID [Loop_Count]: [Repeating_Valueltem].
[/Repeating]
[/Records]
[/Inline]

=» <p>Jane Person

Customer ID 1: 100123.

Customer ID 2: 123654.

To add a record with a repeating field:

The syntax for adding a record with a repeating field is different depending
on whether a FlleMaker Pro or FileMaker Server Advanced data source is
being used.

¢ FileMaker Pro - A record can be added with values in a repeating
field by referencing the field multiple times within the -Add action. The
following example shows a new contact being added to Contacts.fp5. The
contact Jimmy Last_Name is given three customer ID numbers referenced
by the field Customer_ID multiple times. The added record is returned
showing all three customer IDs are stored.

[Inline: -Database="Contacts',
-Layout="People’,
'First_Name'='Jimmy’,
'Last_Name'="Last_Name',
'‘Customer_ID'="2001',
'‘Customer_ID'="2010",
'‘Customer_|D'="2061',
-Add]
<p>[Field: 'First_Name'] [Field: 'Last_Name']
[Repeating: 'Customer_ID']

Customer ID [Loop_Count]: [Repeating_Valueltem].
[/Repeating]
[/Inling]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 10 — FILEMAKER DATA SOURCES 225

=» <p>Jimmy Last_Name

Customer ID 1: 2001.

Customer ID 2: 2010.

Customer ID 3: 2061.

¢ FileMaker Server Advanced - The syntax is the same except that each
repetition of Customer_ID needs to be labeled with the repetition to
update in parentheses.

'Customer_ID(1)'="2001',
'Customer_ID(2)'='2010',
'Customer_ID(3)'="2061',

To update a record with a repeating field:

The syntax for updating a record with a repeating field is different
depending on whether a FlleMaker Pro or FileMaker Server Advanced data
source is being used.

¢ FileMaker Pro - A repeating field can be updated by referencing
it multiple times within the -Update action. The following example
shows an HTML form which displays four repetitions of the field
Customer_ID and allows each of them to be modified. Notice that the
four repetitions are created using the looping [Repeating] ... [/Repeating]
container tags.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Layout" value="People">
<input type="hidden" name="-KeyValue" value="[KeyField_Value]">

<p>First Name:

<input type="text" name="First_Name" value="[Field: 'First_Name']">

Last Name:

<input type="text" name="Last_Name" value="[Field: 'Last_Name']">

[Repeating: 'Customer ID'

Customer ID:
<input type="text" name="Customer_ID" value="[Repeating_Valueltem]">
[/Repeating]

<p><input type="submit" name="-Update" value="Update this Record">
<[form>

LAsso 7.1 LANGUAGE GUIDE

226

CHAPTER 10 — FILEMAKER DATA SOURCES

¢ FileMaker Server Advanced - The syntax is the same except that each

repetition of Customer_ID needs to be labeled with the repetition to
update in parentheses. This can be done using [Loop_Count] in each input.

[Repeating: 'Customer ID'

Customer ID:
<input type="text" name="Customer_ID([Loop_Count])"
value="[Repeating_Valueltem]">
[/Repeating]

To delete values from a repeating field:

e Records which contain repeating fields can be deleted using the same
technique for deleting any FileMaker records. All repetitions of the
repeating field will be deleted along with the record. The following
[Inling] ... [/Inline] tags will delete the record with a record ID of 127.

[Inline: -Database="Contacts.fp5', -Table="People’, -KeyValue=127, -Delete]
<p>The record was deleted.
[/Inline]

A single repetition of a repeating field can be deleted by setting its value
to an empty string. The other values in the repeating field will not slide
down to fill in the missing repetition. The following [Inling] ... [/Inline] will
set the first repetition of a repeating field Customer_ID to the empty string,
but leave the second and third repetitions unchanged.

The values for the repeating field are first placed in an array so that they
can be referenced by number within the opening [Inline] tag.

[Variable: 'Customer_ID' = (Array: ", ", ")]
[Repeating: 'Customer_ID']

[(Variable: 'Customer_ID')->(Get: Loop_Count) = (Repeating_Valueltem)]
[/Repeating]

[Inline: -Update,
-Database="Contacts.fp5',
-Table='People’,
-KeyValue=127,
'‘Customer_ID'=",
'Customer_ID'=(Variable: 'Customer_ID)->(Get: 2),
'Customer_ID'=(Variable: 'Customer_ID')->(Get: 3),
<p>[Field: 'First_Name'] [Fleld: 'Last_Name']
[Repeating: 'Customer_ID']

Customer ID [Loop_Count]: [Repeating_Valueltem].
[/Repeating]
[/Inling]

In a FileMaker Server Advanced data source each repetition of Customer_
ID must be followed by a number in parentheses specifying the desired
repetition to modify.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 10 — FILEMAKER DATA SOURCES 227

'Customer_ID(1)'=",
'Customer_ID(2)'=(Variable: 'Customer_ID)->(Get: 2),
'Customer_ID(3)'=(Variable: 'Customer_ID')->(Get: 3),

The results show that the value for the first repetition of the repeating field
has been deleted, but the second and third repetitions remain intact.
=» <p>Jimmy Last_Name

Customer ID 1: .

Customer ID 2: 2010.

Customer ID 3: 2061.

Value Lists

Value lists in FileMaker allow a set of possible values to be defined for

a field. The items in the value list associated with a field on the current
layout for a Lasso action can be retrieved using the tags defined in Table 3:
FileMaker Value List Tags. See the documentation for FileMaker for more
information about how to create and use value lists within FileMaker.

In order to display values from a value list, the layout referenced in the
current database action must contain a field formatted to show the desired
value list as a pop-up menu, select list, check boxes, or radio buttons. Lasso
cannot reference a value list directly. Lasso can only reference a value list
through a formatted field in the current layout.

Table 3: FileMaker Value List Tags

Tag Description

[Value_List] ... [/Value_List] Container tag repeats for each value in the named value
list. Requires a single parameter, the name of a field
from the current layout which has a value list assigned to
it.

[Value_Listltem] Returns the value for the current item in a value list.
Optional -Checked or -Selected parameter returns only
currently selected values from the value list.

[Selected] Displays the word Selected if the current value list item
is selected in the field associated with the value list.

[Checked] Displays the word Checked if the current value list item
is selected in the field associated with the value list.

[Option] Generates a series of <option> tags for the value list.

Requires a single parameter, the name of a field from
the current layout which has a value list assigned to it.

LAsso 7.1 LANGUAGE GUIDE

228

CHAPTER 10 — FILEMAKER DATA SOURCES

Note: See Chapter 7: Searching and Displaying Data for information about
the -Show command tag which is used throughout this section.

To display all values from a value list:

The following example shows how to display all values from a value
list using a -Show action within [Inline] ... [/Inline] tags. The field Title in
the Contacts.fp5 database contains five values Mr, Mrs., Ms., and Dr.
The -Show action allows the values for value lists to be retrieved without
performing a database action.
[Inline: -Database="Contacts.fp5', -Layout="People’, -Show]
[Value_List: Title']

[Value_Listltem]
[/Value_List]
[/Inline]

=> <pr>Mr.

Mrs.

Ms.

Dr.

The following example shows how to display all values from a value list
using a named inline. The same name Values is referenced by -InlineName
in both the [Inline] tag and [Value_List] tag.

[Inline: -InlineName="Values', -Database='Contacts.fp5', -Layout="People’, -Show]
[/Inling]

[Value_List: 'Title', -InlineName="Values']

[Value_Listltem]
[/Value_List]

=> <pr>Mr.

Mrs.

Ms.

Dr.

To display an HTML pop-up menu in an -Add form with all values from
a value list:

The following example shows how to format an HTML

<select> ... </select> pop-up menu to show all the values from a value list.
A select list can be created with the same code by including size and/or
multiple parameters within the <select> tag. This code is usually used
within an HTML form that performs an -Add action so the visitor can
select a value from the value list for the record they create.

The example shows a single <select> ... </select> within [Inline] ... [/Inline]
tags with a -Show command. If many value lists from the same database

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 10 — FILEMAKER DATA SOURCES 229

are being formatted, they can all be contained within a single set of
[Inline] ... [/Inline] tags.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Add" value="">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">

[Inline: -Database="Contacts.fp5', -Layout="People’, -Show]
<select name="Title">
[Value_List: Title']

<option value="[Value_Listltem]">[Value_Listltem]</option>
[/Value_List]
</select>
[/Inline]

<p><input type="submit" name="-Add" value="Add Record">
<[form>

e The [Option] tag can be used to easily format a value list as an HTML
<select> ... </select> pop-up menu. The [Option] tag generates all of the
<option> ... <foption> tags for the pop-up menu based on the value list for
the specified field. The example below generates exactly the same HTML
as the example above.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Add" value="">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Table" value="People"?
<input type="hidden" name="-KeyField" value="|D">

[Inline: -Database="Contacts.fp5', -Layout="People', -Show]
<select name="Title">
[Option: 'Title']
</select>
[/Inling]

<p><input type="submit" name="-Add" value="Add Record">
<[form>

To display HTML radio buttons with all values from a value list:

The following example shows how to format a set of HTML <input> tags to
show all the values from a value list as radio buttons. The visitor will be
able to select one value from the value list. Check boxes can be created
with the same code by changing the type from radio to checkbox.

LAsso 7.1 LANGUAGE GUIDE

230 CHAPTER 10 — FILEMAKER DATA SOURCES

<form action="response.lasso" method="POST">
<input type="hidden" name="-Add" value="">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="ID">

[Inline: -Database='Contacts.fp5', -Layout="People’, -Show]
[Value_List: 'Title']
<input type="radio" name="Title" value="[Value_Listltem]"> [Value_Listltem]
[/Value_List]
[/Inline]

<p><input type="submit" name="-Add" value="Add Record">
<[form>

To display only selected values from a value list:

The following examples show how to display the selected values from a
value list for the current record. The record for John Doe is found within the
database and the selected value for the Title field, Mr. is displayed.

e The -Selected keyword in the [Value_Listltem] tag ensures that only selected
value list items are shown. The following example uses a conditional to
check whether [Value_Listltem: -Selected] is empty.

[Inline: -Database="Contacts.fp5', -Layout="People', -KeyValue=126, -Search]
[Value_List: Title']
[If: (Value_Listltem: -Selected) != "]

[Value_Listltem: -Selected)]
[/
[/Value_List]
[/Inling]

=>
Mr.

¢ The [Selected] tag ensures that only selected value list items are shown.
The following example uses a conditional to check whether [Selected] is
empty and only shows the [Value_Listltem] if it is not.
[Inline: -Database="Contacts.fp5', -Layout="People’, -KeyValue=126, -Search]
[Value_List: Title']
[If: (Selected) = "]

[Value_Listltem]
[/
[/Value_List]
[/Inline]

=>
Mr.

e The [Field] tag can also be used simply to display the current value for a
field without reference to the value list.

[Field: 'Title]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 10 — FILEMAKER DATA SourRces 231
=>
Mr.

To display an HTML popup menu in an -Update form with selected
value list values:

e The following example shows how to format an HTML
<select> ... </select> select list to show all the values from a value list with
the selected values highlighted. The [Selected] tag returns Selected if the
current value list item is selected in the database or nothing otherwise.
This code will usually be used in an HTML form that performs an -Update
action to allow the visitor to see what values are selected in the database
currently and make different choices for the updated record.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Update" value="">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="|D">
<input type="hidden" name="-KeyValue" value="127">

[Inline: -Database="Contacts.fp5', -Layout="People’, -KeyValue=126, -Search]
<select name="Title" multiple size="4">
[Value_List: Title']
<option value="[Value_Listltem]" [Selected]>[Value_Listltem]</option>
[/Value_List]
</select>
[/Inling]

<p><input type="submit" name="-Update" value="Update Record">
</form>

e The [Option] tag automatically inserts Selected parameters as needed to
ensure that the proper options are selected in the HTML select list. The
example below generates exactly the same HTML as the example above.

<form action="response.lasso" method="POST">
<input type="hidden" name="-Update" value="">
<input type="hidden" name="-Database" value="Contacts.fp5">
<input type="hidden" name="-Table" value="People">
<input type="hidden" name="-KeyField" value="|D">
<input type="hidden" name="-KeyValue" value="127">

[Inline: -Database="Contacts.fp5', -Layout="People’, -KeyValue=126, -Search]
<select name="Title" multiple size="4">
[Option: 'Title"]
</select>
[/Inline]

<p><input type="submit" name="-Update" value="Update Record">
<[form>

LAsso 7.1 LANGUAGE GUIDE

232

CHAPTER 10 — FILEMAKER DATA SOURCES

To display HTML check boxes with selected value list values:

The following example shows how to format a set of HTML <input> tags to
show all the values from a value list as check boxes with the selected check
boxes checked. The [Checked] tag returns Checked if the current value list
item is selected in the database or nothing otherwise. Radio buttons can be
created with the same code by changing the type from checkbox to radio.
<form action="response.lasso" method="POST">

<input type="hidden" name="-Update" value="">

<input type="hidden" name="-Database" value="Contacts.fp5">

<input type="hidden" name="-Table" value="People">

<input type="hidden" name="-KeyField" value="ID">

<input type="hidden" name="-KeyValue" value="127">

[Inline: -Database='Contacts.fp5', -Layout="People’, -KeyValue=126, -Search]
[Value_List: 'Title']
<input type="checkbox" name="Title" value="[Value_Listitem]" [Checked]>
[Value_Listltem]
[/Value_List]
[/Inline]

<p><input type="submit" name="-Update" value="Update Record">
<[form>

Container Fields

Lasso Professional 7.1 includes a new tag [Database_FMContainer] that allows
the raw contents of a FileMaker container field to be returned. This tag
works with either FileMaker Pro data sources of FileMaker Server Advanced
data sources.

Note: The [Database_FMContainer] tag does not rely on Classic Lasso being
enabled. This functionality offers a replacement for the deprecated
[Image_URL] and [IMG] tags when Classic Lasso is disabled.

Table 4: Container Field Tags

Tag Description

[Database_FMContainer] Returns the raw data contained in a FileMaker container
field. Requires one parameter which is the name of the
field.

The [Database_FMContainer] tag functions differently depending on whether
FileMaker Pro or FileMaker Server Advanced data sources are being
accessed.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 10 — FILEMAKER DATA SOURCES 233

¢ FileMaker Pro - Only image data can be fetched from container fields.
An optional -Type parameter can specify GIF or JPEG along with addi-
tional quality arguments the Web Companion supports.

¢ FileMaker Server Advanced - Any type of data can be fetched from a
container field. The tag automatically handles any data type that can be
stored in FileMaker.

The [Database_FMContainer] tag always returns a byte stream. The results
of this tag will be most typically sent to the current site visitor using
[File_Serve].

To retrieve data from a FileMaker container field:

Use the [Database_FMContainer| tag. In the following example the data in the
Image container field is retrieved and stored in a variable ContainerData. See
the following example for a demonstration of how to serve this data as an
image to the site visitor.
[Inline: -Database="Contacts',

-Layout="People’,

'First_Name'="John’,

‘Last_Name'='Doe’,

-Search]

[Records]
[Variable: '‘ContainerData' = (Database_FMContainer: 'Image’)]

[/Iiécords]
[/Inline]

To serve an image from a FileMaker container field:

Pass the value of the [Database_FMContainer] field to the [File_Serve] tag. In
the following example a single image is fetched from a database based on
the value of the action parameter ID. The contents of the Image field is inter-
preted as a JPEG and passed to [File_Serve]. To the site visitor this file will
serve a file named FileMakerimage.jpg.

[Inline: -Database="Contacts.fp5',
-Layout="People’,
-KeyValue=(Action_Param: 'ID)
-Search]
[File_Serve: (Database_FMContainer: 'Image’),
-Type='image/jpeg’, -File="FileMakerlmage.jpg']
[/Inline]

Note: The [File_Serve] tag replaces the current output of the page with the
image and performs an [Abort]. The code above represents the complete
content of a Lasso page.

LAsso 7.1 LANGUAGE GUIDE

234 CHAPTER 10 — FILEMAKER DATA SOURCES

The code above could be saved into a Lasso page called Image.Lasso. This
page would then be referenced within an HTML tag as follows.

For example, an image from each record in a database could be displayed
as follows:
[Inline: -Database='Contacts',
-Layout="People’,
'First_Name'="John’,
‘Last_Name'='Doe’,
-Search]
[Records]
<p>[Field: 'First_Name'] [Field: 'Last_Name']

</p>
[/Records]
[/Inline]

The result will be the first and last name of each person in the Contacts
database followed by the stored picture on the next line.

FileMaker Scripts

LDML includes command tags which allow scripts in FileMaker databases
to be executed. Scripts are usually executed in concert with a database
action. They can be performed before the database action, after the data-
base action but before the results are sorted, or just before the results are
returned to Lasso. The command tags for executing FileMaker scripts are
described in Table 7: FileMaker Scripts Tags.

FileMaker Tip: It is best to limit the use of FileMaker scripts. Most function-
ality of FileMaker scripts can be achieved in LDML with better performance
especially on a busy Web server.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 10 — FILEMAKER DATA SOURCES 235

Table 7: FileMaker Scripts Tags

Tag Description

-FMScript Specifies a script to be processed after the current
database action has been performed. Requires a single
parameter which names a FileMaker script. Synonym is
-FMScriptPost.

-FMScriptPre Specifies a script to be processed before the current
database action has been performed. Requires a single
parameter which names a FileMaker script.

-FMScriptPreSort Specifies a script to be processed after the current
database action, but before the results are sorted.
Requires a single parameter which names a FileMaker
script.

Conditions for executing a FileMaker script:

1 The script must be defined in the database referenced by the action in
which the -FMScript... tag is called.

2 The current user must have permission to execute scripts. See the
Group section in Chapter 8: Setting Up Security of the Lasso
Professional 7 Setup Guide for more information.

3 The found set should not be empty after performing a FileMaker script.
Scripts should always ensure that they return a non-empty found set
after they execute.

4 All database action on the FileMaker machine must wait until the script
finishes. Scripts should be as fast and efficient as possible.

To execute a FileMaker script within [Inline] ... [/Inline] tags:

The following example shows a FileMaker script named Filter_People being
called after a -FindAll action is performed within a FileMaker database
Contacts.fp5. The script removes certain records from the found set and
returns the results.
[Inline: -Database='Contacts.fp5',

-Layout="People’,

-FMScript="Filter_People',

-FindAll]

[nline]

The results of the [Inline] ... [/Inline] tags will be the result of the script
Filter_People. The record set and its order can be completely determined by
the script.

LAsso 7.1 LANGUAGE GUIDE

236 CHAPTER 10 — FILEMAKER DATA SOURCES

To execute a FileMaker script within an HTML form:

The following example shows a FileMaker script named Clean_Up being
performed before a -FindAll action is performed within Contacts.fp5. The
script deletes invalid records so that the found set will only contain valid
records after the -FindAll is performed. The script is performed before the
database action since it is called with -FMScriptPre.
<form action="response.lasso" method="POST">

<input type="hidden" name="-FindAll">

<input type="hidden" name="-Database" value="Contacts.fp5">

<input type="hidden" name="-Layout" value="People">

<input type="hidden" name="-FMScriptPre" value="Clean_Up">

<input type="submit" name="-FindAll" value="Find All">
<[form>

The results of the script include all valid records that were not deleted by
the Clean_Up script.

To execute a FileMaker script within a URL:

The following example shows a script named Update_Priority which is
performed after the -FindAll database action, but before the results are
sorted. The Update_Priority script could update a field Priority, based on the
records from the current found set, which the sort depends on. The script
is called using the -FMScriptPreSort tag.
<a href="response.lasso?-Database=Contacts.fp5&
-Layout=People&
-FMScriptPreSort=Update_Prioirty&
-SortOrder=Descending&
-SortField=Priority&
-FindAll">
Find All and Sort by Priority
<fa>

The results of this URL, when it is selected, will be all records from
the databases, sorted in descending order according to the value of the
Priority field after it has been updated by the Update_Priority script.

=»

Note: Additional parameters can be specified within the HTML tag in
order to specify the width and height of the returned image. The image will
be scaled to the desired size. See the next section for details.

LAsso 7.1 LANGUAGE GUIDE

237

Chapter 11
JDBC Data Sources

This chapter documents the usage of LDML 7 with JDBC data sources.
e Overview introduces JDBC data source support in Lasso Professional 7.

e Using JDBC Data Sources describes using JDBC data sources with Lasso
Professional 7.

e JDBC Schema Tags describes using LDML tags to return schema values
from JDBC data sources that support schema ownership.

Overview

Native support for JDBC data sources is included in Lasso Professional 7
in addition to native support for FileMaker Pro and MySQL data sources.
If a JDBC driver is available for a data source, it can be installed to Lasso
Professional 7, allowing Lasso to instantly communicate with that data
source. This feature allows Lasso Professional 7 to communicate with
over 150 JDBC-compliant data sources, including Sybase, DB2, Frontbase,
Openbase, Interbase, and Microsoft SQL Server 2000. For more informa-
tion on JDBC connectivity and availability for a particular data source, see
the data source documentation or contact the data source manufacturer.

Lasso Professional 7 functions as its own JDBC driver manager, and all
JDBC drivers must be installed directly to Lasso Professional 7. Instructions
on how to set up a JDBC data source for use with Lasso Professional

are documented in Chapter 7: Setting Up Data Sources in the Lasso
Professional 7 Setup Guide.

LAsso 7.1 LANGUAGE GUIDE

238

CHAPTER 11 - JDBC DATA SOURCES

Using JDBC Data Sources

Data source operations outlined in Chapter 6: Database Interaction
Fundamentals, Chapter 7: Searching and Displaying Data, and Chapter
8: Adding and Updating Records are supported with JDBC data sources.
Because JDBC is a standardized API for connecting to tabular data sources,
there are few unique tags in LDML 7 that are specific to JDBC data sources
or invoke special functions specific to any JDBC data source. The only
JDBC-specific LDML tags are for JDBC data sources that support schema
ownership (e.g. Frontbase, Sybase), and are described in the JDBC Schema
Tags section of this chapter.

All LDML tags documented as unique to MySQL data sources in Chapter
9: MySQL Data Sources or FileMaker Pro data sources in Chapter 10:
FileMaker Pro Data Sources are not supported for use with JDBC data
sources.

Certification Note: OmniPilot Software has tested and certified Microsoft
SQL Server 2000 with Microsoft SQL Server 2000 Driver for JDBC for use
with Lasso Professional 7 via JDBC. Other JDBC-compliant data sources may
be used with Lasso Professional 7, but all features cannot be guaranteed to
work by OmniPilot Software. See http://support.blueworld.com for Support Central
articles on connectivity with selected data sources.

Tips for Using JDBC Data Sources

The following is a list of tips to following when writing LDML for use with
JDBC data sources. These tips illustrate specific concepts and behaviors to
keep in mind when coding, and these tips are most similar to those for
MySQL data sources (as opposed to FileMaker Pro data sources).

e Always specify a primary key field using the -KeyField command tag in
-Search, -Add, and -FindAll actions. This will ensure that the [KeyField_Value]
tag will always return a value.

Use -KeyField and -KeyValue to reference a particular record for updates,
duplicates, or deletes.

Fields may truncate any data beyond the length they are set up to store.
Ensure that all fields in JDBC databases have sufficiently long fields for
the values that need to be stored in them.

Use -ReturnField command tags to reduce the number of fields which are
returned from a -Search action. Returning only the fields that need to

be used for further processing or shown to the site visitor reduces the
amount of data that needs to travel between Lasso Service and the JDBC
data source.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 11 - JDBC DATA SOURCES 239

When an -Add or -Update action is performed on a JDBC database,

the data from the added or updated record is returned inside the

[Inline] ... [/Inline] tags or alternately to the Classic Lasso response page. If
the -ReturnField parameter is used, then only those fields specified should
be returned from an -Add or -Update action. Setting -MaxRecords=0 can be
used as an indication that no record should be returned.

The -SQL command tag can be allowed or disallowed at the host level for
users in Lasso Administration. Once the -SQL command tag is allowed
for a user, that user may access any database within the allowed host
inside of a SQL statement. For that reason, only trusted users should

be allowed to issue SQL queries using the -SQL command tag. For

more information, see Chapter 8: Setting Up Security in the Lasso
Professional 7 Setup Guide.

SQL statements which are generated using visitor-defined data should be
screened carefully for unwanted commands such as DROP or GRANT. See
Chapter 7: Setting Up Data Sources of the Lasso Professional 7 Setup
Guide for more information.

Always quote any inputs from site visitors that are incorporated into SQL
statements. For example, the following SQL SELECT statement includes
quotes around the [Action_Param] value. The quotes are escaped \' so they
will be embedded within the string rather than ending the string literal.
The semi-colon at the end of the statement is optional unless multiple
statements are issued.

[Variable: 'SQL_Statement'="SELECT * FROM Contacts.People WHERE ' +
'First_Name LIKE \" + (Action_Param: 'First_Name') + ;']

If [Action_Param] returns John for First_Name then the SQL statement gener-
ated by this code would appear as follows.

SELECT * FROM Contacts.People WHERE First_Name LIKE 'John";

Lasso Professional 7 uses connection pooling when connecting to data
sources via JDBC, and the JDBC connections will remain open during
the time that Lasso Professional 7 is running.

Check for OmniPilot Support Central articles at http:/support.blueworld.com
for documented issues with using specific JDBC data sources.

JDBC Schema Tags

LDML 7 includes tags that return the user schemas available in a JDBC data

source host for the current Lasso Service connection. These tags can only be

used with data sources that use named schema ownership (e.g. Frontbase,

LAsso 7.1 LANGUAGE GUIDE

240

CHAPTER 11 — JDBC DATA SOURCES

Sybase), and complement the other LDML schema and database tags
described in Chapter 6: Database Interaction Fundamentals.

Note: For information on whether or not your JDBC data source supports
named schema ownership, refer to the data source documentation.

Table 1: JDBC Schema Tags

Tag Description

-Schema Allows a schema name to be passed as part of an
[Inline] ... [/Inline] data source action. The schema name
passed here overrides the default schema set for the
JDBC data source host in Lasso Administration.

[Schema_Name] Returns the name of the current schema in use in an
[Inling] ... [/Inline] data source action.

[Database_SchemaNames] Repeats for every schema name in a JDBC data
source host available to Lasso. Requires the name of a
database in the JDBC data source host as a parameter.

[Database_SchemaNameltem] Returns the name of the current schema name when
used inside [Database_SchemaNames] ... [/Database_
SchemaNames] tags.

To reference a schema name in an inline database action:
Use the -Schema command tag to pass the name of the data source schema
that should be used for the database action.

[Inline: -Show, -Schema="SchemaName', -Database='DBName', -Table="TBName']
[Schema_Name]
[/Inline]

=» SchemaName

To list all schema names in a JDBC data source:

Use the [Database_SchemaNames] ... [/Database_SchemaNames] tags

to list all databases available in a JDBC data source host. The

[Database_SchemaNameltem] tag returns the value of each schema name.
[Database_SchemaNames:'DBName']

[Database_SchemaNameltem]
[/Database_SchemaNames]

=>» SchemaName
SchemaName2

LAsso 7.1 LANGUAGE GUIDE

241

Section il
Programming

This section documents the symbols, tags, expressions, and data types
which allow programming logic to be specified within LDML format files.

This section contains the following chapters.

Chapter 12: Programming Fundamentals introduces basic concepts of
LDML programming such as how to output results, how to store and
retrieve variables, and how to interact with HTML forms and URLs.

Chapter 13: Conditional Logic introduces the [If], [Loop], and [While] tags
and demonstrates how they can be used for flow control.

Chapter 14: String Operations introduces the string data type and the
symbols and tags that can be used to manipulate strings.

Chapter 15: Math Operations introduces the integer and decimal data
types and the symbols and tags that can be used to perform mathemat-
ical operations.

Chapter 16 Date and Time Operations introduces the Lasso date
format and the tags that can be used to manipulate dates and times.

Chapter 17: Arrays and Maps introduces the array, map, and pair data
types and the tags that can be used to store and manipulate complex
data types.

Chapter 18: Encoding explains how strings are encoded in Lasso for
output to many different languages and the tags and keywords that can
be used to control that output.

Chapter 19: Sessions explains how to create server-side variables that
maintain their value from page to page while a visitor traverses a Web
site.

Chapter 20: Files and Logging explains how to log information to files
and how to use the file tags to create, read, and write text files.

LAsso 7.1 LANGUAGE GUIDE

242 SECTION |lIl = PROGRAMMING

Chapter 21: Error Control introduces Lasso’s error reporting mechanism
and explains how custom error tags can be created and what tags can be
used to handle errors which occur while processing a format file.

Chapter 22: Control Tags introduces scheduling, the [Process] tag, page
variables, and Lasso administration and security tags.

Chapter 23: Miscellaneous Tags includes documentation of tags that do
not fit in any other chapter.

Chapter 24: LassoScript fully documents the alternate script-based
syntax for Lasso.

LAsso 7.1 LANGUAGE GUIDE

Chapter

243

12

Programming
Fundamentals

This chapter introduces the basic concepts of programming using LDML. It

is important to understand these concepts before reading the chapters that
follow.

Overview explains how to use pages written in LDML and how to deal
with errors.

Logic vs. Presentation describes strategies for coding blocks of program-
ming logic code.

Data Output describes strategies for outputting calculation results in
HTML or XML.

Variables explains the theory behind variables and how to store and
retrieve values.

Data Types explains how to recognize different data types, how to cast
between data types, and casting rules.

Symbols is an introduction to symbols and expressions including rules
for grouping, precedence, and auto casting.

Member Tags explains how to call member tags and how they differ
from process and substitution tags.

Forms and URLs explains how to pass data between pages using HTML
forms and URLs and introduces form parameters and tokens.

LAsso 7.1 LANGUAGE GUIDE

244 CHAPTER 12 — PROGRAMMING FUNDAMENTALS

Overview

LDML is a tag-based scripting language that has all the features of an
advanced programming language. LDML has support for data types, object-
oriented member tags, mathematical symbols, string symbols, complex
nested expressions, logical flow control, threads, and custom tags which
can extend Lasso’s built-in functions and procedures.

Using Format Files

Format files which contain LDML must be processed by Lasso in order

for the embedded tags to be interpreted. The Open... command in a Web
browser should not be used to view Lasso format files. Instead, format files
should be uploaded to a Web server and loaded with an appropriate URL.
For example, a file named default.lasso in the root of the Web serving folder
might be loaded using the following URL.

http://www.example.com/default.lasso

Simple sequences of tags and LassoScripts can be placed in a text file and
then called through the Web browser in order to test LDML programming
concepts without the overhead of HTML formatting tags.

Reporting Errors

If there are any LDML syntax errors in a format file which is processed by
Lasso, then all processing will stop and an error message will be displayed.
Depending on the current error reporting level, the error message will
provide the location of the error and a description of what syntax caused
the error. All errors must be corrected before the page can be fully
processed.

It is recommended that the error reporting level for the server be set

to Minimal or None and adjusted to High on a per-page basis using the
[Lasso_ErrorReporting] tag when a site is being actively developed. See
Chapter 21: Error Controls for details about setting the error reporting
level and customizing the built-in error page.

Figure 1: Error Page

An error occurred while processing your request.

[Error Information

Error Message: The file include.inc was not found.
Error Code: -9984

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 12 - PROGRAMMING FUNDAMENTALS 245

Note: All valid LDML code above the syntax error will be processed each
time the page is loaded. If database actions are being performed, they may
be performed each time a page is loaded as long as they are above the point
in the page where the error occurs.

Logic vs. Presentation

LDML code can be structured in many ways in order to adapt itself to
different coding styles. Some methods involve the tight integration of
programming logic (LDML) with page presentation (HTML, XML, and
graphics). Other methods involve abstracting the programming logic from
the page presentation. LDML offers maximum flexibility for you to deter-
mine how you want to structure your pages.

It is often desirable to separate programming logic from page presenta-
tion so that different people can work on different aspects of a Web site.
For example, an LDML developer can concentrate on creating LassoScripts
and blocks of LDML code which define the programming logic of a site.
Meanwhile, a Web designer can concentrate on the visual aspects of the
Web site with only minimal knowledge of how to integrate LDML into the
page presentation so that data is inserted and formatted correctly.

It is also at times desirable for all of your programming to fit tightly within
the page presentation. Because LDML is an HTML-like tag language, it is
easy to embed LDML within HTML, in effect enhancing static HTML to
become dynamic HTML.

The following examples show how to use LDML within HTML as well as
how to use LDML abstracted from HTML.

Examples of LDML embedded in HTML:

e LDML tags can be used within HTML markup to insert data from data-
bases, the results of calculations, or LDML commands into otherwise
static HTML. The following example inserts the LDML [Image_URL] tag
into an HTML tag in order to auto-generate a URL to an image
stored in a database.

e Container tags can be used to hide or show portions of a page. The
following example hides an HTML <h2> header unless the variable
ShowTitle equals True.

[If: (Variable: 'ShowTitle') == True]
<h2>Page Title</h2>
(/1]

LAsso 7.1 LANGUAGE GUIDE

246

CHAPTER 12 — PROGRAMMING FUNDAMENTALS

e Container tags can be used to repeat a portion of a page to present data
from many database records or to construct complex HTML tables.
The following example shows the fields First_Name and Last_Name from
a database search each in their own row of a constructed table. See
Chapter 6: Database Interaction Fundamentals for more information
about [Inline] ... [/Inline] tags.
[Inline: -Database="Contacts', -Table='"People', -KeyField="ID', -FindAll]
<table>
[Records]
<tr>
<td>[Field: 'First_Name'] [Field:'Last_Name']</td>
<ftr>
[/Records]
</table>
[/Inling]

Examples of LDML abstracted from HTML:

e LassoScripts can be used to collect programming logic into a block at
the top of a format file. Code in the LassoScript can be formatted and
commented separate from the HTML in a format file. Separating the
programming logic from the page presentation tags allows for easier
debugging and customization of format files. The following example
shows an [Inline] specified in a LassoScript with an -InlineName keyword set
so the results can be retrieved in the presentation portion of the format
file. See Chapter 24: LassoScript for more information.

<?LassoScript
Il This inline finds all records in Contacts.
Il The results are fetched using [Records: -InlineName='Results] ... [/Records]
Inline: -InlineName='Results', -Database="Contacts',-Table="People',-FindAll;

/Inling;
>

The [Include] tag can be used to include format files that contain portions
of the final output. In the following example, the format file shown
consists of the standard HTML tags with a pair of [Include] tags that insert
all of the programming logic from a file named librarylasso and the data
presentation code from a file named presentation.lasso. See Chapter 20:
Files and Logging for more information about using [Include] tags.
<html>
<head>
<title>Lasso FormatFile</title>
[Include: 'library.lasso']
</head>

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 12 - PROGRAMMING FUNDAMENTALS 247

<body>
[Include: 'presentation.lasso’]
</body>
</html>

Data Output

The final output of most Lasso format files is an HTML page, XML page, or
WML page which will be viewed by a Web site visitor in a client browser.
This section describes how the results of expressions can be output and
how the output of substitution tags can be controlled.

See also Chapter 18: Encoding for more information about using
encoding keywords.

Table 1: Output Tags

Tag Description

[Output] Outputs the result of a calculation or sub-tag.

[Output_None] Hides a portion of page from being output, but
processes the LDML tags within.

[HTML_Comment] Surrounds a portion of a page with HTML comment

markers, but processes the LDML tags within.

Outputting Values

Substitution tags output values to the format file which is currently being
processed in place. Their values are output whether they are contained
within LassoScripts or appear intermixed with HTML tags.

The [Output] tag is a general purpose substitution tag which can be used to
output the value of any LDML expression, member tag, or sub-tag.

Examples of using the [Output] tag:

¢ The following LassoScript shows the use of the [Output] tag to return
the result of a mathematical expression. The same expression could
be placed in the LassoScript without the [Output] tag, but use of the tag
makes the result of the LassoScript clearer.
<?LassoScript

Output: 1+2*3;
>

=>7

LAsso 7.1 LANGUAGE GUIDE

248

CHAPTER 12 — PROGRAMMING FUNDAMENTALS

The [Output] tag allows encoding keywords to be used on the results of
string expressions. The following LassoScript shows the use of the [Output]
tag to return the result of a string expression with the encoding keyword
-EncodeNone applied so the HTML tags are displayed properly on the
page.

<?LassoScript

Output: '' + 'Bold Text' + '', -EncodeNone;
el

=> <pb>Bold Text

The results of member tags can be returned using the [Output] tag. This
can make the syntax clearer and help to distinguish between member
tags that will return a result and those that won't. The following example
demonstrates returning the length of a string literal.

[Output: 'String Literal'->Length]
- 14

The [Output] tag is recommended, but not technically required when
outputting the values of expressions or member tags. Lasso will interpret
any expressions contained in square brackets or the <?LassoScript ... 7>
tags. The following expression is equivalent to the [Output] tag shown
above.

['String Literal'->Length]
- 14

Values which are output without using the [Output] tag do not have any
encoding applied by default. The following expression is equivalent to
the LassoScript above, but does not require the -EncodeNone encoding
keyword be explicitly specified.
<?LassoScript
'<h>" + 'Bold Text' + '";
>

=» Bold Text

Suppressing Output

Sometimes it is desirable to have LDML tags processed in a format file,

but not to show the results in the page which is returned to the Web site
visitor. The [Output_None] ... [/Output_None] tag can be used to accomplish
this purpose. Any LDML tags contained within the container tag will be

processed, but the results will not be returned to the Web site visitor.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 12 - PROGRAMMING FUNDAMENTALS 249

The following examples use page specific variables in a block of code that
will not be output to the user.
[Output_None]
This text will not be returned to the site visitor.
However, the following tags will be processed.
[Variable: 'Page Title'='Lasso Format File']
[Variable: 'Page Error'='"None']
[/Output_None]

This same example could be written as a LassoScript as follows. The
LassoScript will return no value to the page on which it is placed, but any
tags within the LassoScript will be processed.
<?LassoScript
Output_None;

/I This LassoScript will return no value.

Il However, the following tags will be processed.

Variable: 'Page Title'='Lasso Format File';

Variable: 'Page Error'="None';

/Output_None;
”»>

Another way to suppress output is to surround a portion of a page in
[HTML_Comment] ... [[HTML_Comment] tags. These tags will become an HTML
comment container <?-- ... -> when the page is processed. Any results of
the tags inside the container tags will not be shown to the Web site visitor,
but will be available if they view the source of the page. This can be useful
for providing debugging information which won't affect the overall layout
of a Web page. In the following example, the values of several variables are
shown in an HTML comment.
[HTML_Comment]
This text will be available in the source of the completed Web page.
Page Title: [Variable: 'Page Title']
Page Error: [Variable: 'Page Error']
[/[HTML_Comment]

<?--
This text will be available in the source of the completed Web page.

Page Title: Lasso Format File

Page Error: None
>

Variables

Variables are named locations where values can be stored and later
retrieved. The concepts of setting and retrieving variables and performing

LAsso 7.1 LANGUAGE GUIDE

250 CHAPTER 12 — PROGRAMMING FUNDAMENTALS

calculations on variables are essential to understanding how to work with
LDML's data types and tags.

Table 2: Variable Tags

Tag Description

[Variable] Creates or sets named variables or returns their values.
[Variable_Defined] Returns True if a variable is defined.

[Var] Abbreviation of [Variable].

[Var_Defined] Abbreviation of [Variable_Defined].

[Var_Remove] Deletes the named variable.

Table 3: Variable Symbols

Symbol Description
$ Returns the value of a variable.
Returns the value of a local variable.

= Assigns a value to a variable: $Variable="NewValue'.
= Assigns a value to a variable and returns the value.

A variable is created and set using the [Variable] tag. The following tag sets a
variable named VariableName to the literal string value VariableValue.

[Variable: 'VariableName'='VariableValue']

A variable is also retrieved using the [Variable] tag. This time, the tag is
simply passed the name of the variable to be retrieved. The following tag
retrieves the variable named VariableName returning the literal string value
VariableValue.

[Variable: 'VariableName'] =» VariableValue

The following LassoScript sets a variable and then retrieves the value. The
result of the LassoScript is the value VariableValue.
<?LassoScript
Variable: 'VariableName'='VariableValue',

Variable: 'VariableName';
»>

=» VariableValue

Creating Variables

There is only one way to create a variable, using the [Variable] tag with a
name/value parameter. All variables should be created and set to a default
value before they are used.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 12 - PROGRAMMING FUNDAMENTALS 251

Examples of creating variables:
e An empty variable can be created by setting the variable to ".
[Variable: 'VariableName'="]

e A variable can be created and set to the value of a string literal.
[Variable: 'VariableName'='String Literal']

e A variable can be created and set to the value of an integer or decimal
literal.
[Variable: "VariableName'=123.456]

e A variable can be created and set to the value of any substitution tag
such as a field value.

[Variable: 'VariableName'=(Field: 'Field_Name")]

Multiple variables can be created in a single [Variable] tag by listing the
name/value parameters defining the variables separated by commas. The
following tag defines three variables named x, y, and z.

[Variable: 'x'=100, 'y'=324, 'z'=1098]

Variable names can be any string literal and case is unimportant. For best
results, variables names should start with an alphabetic character, should
not contain any punctuation except for underscores and should not
contain any white space except for spaces (no returns or tabs). Variable
names should be descriptive of what value the variable is expected to
contain.

Note: Variables cannot have their value retrieved in the same [Variable] tag
they are defined. [Variable: 'x'=10, 'y'=(variable:x)] is not valid.

Returning Variable Values

The most recent value of a variable can be returned using the [Variable]
tag. For example, the following LassoScript creates a variable named
VariableName, then retrieves the value of the variable using the [Variable] tag.
The result is Variable Value.
<?LassoScript
Variable: 'VariableName'='Variable Value';

Variable: 'VariableName';
»>

=» Variable Value

LAsso 7.1 LANGUAGE GUIDE

252

CHAPTER 12 — PROGRAMMING FUNDAMENTALS

Variable values can also be retrieved using the $ symbol. The following
LassoScript creates a variable named VariableName, then retrieves the value
of the variable using the § symbol. The result is Variable Value.
<?LassoScript
Variable: 'VariableName'='Variable Value';

Output: $VariableName;
>

=» Variable Value

Setting Variables

Once a variable has been created, it can be set to different values as many
times as is needed. The easiest way to set a variable is to use the [Variable]
tag again just as it was used when the variable was created.

[Variable: 'VariableName'='New Value']

Variables can also be set using the expression $VariableName="NewValue’.
This expression should only be used within LassoScripts so that it is not
confused with a name/value parameter. This expression can be used to set
a variable, but cannot be used to create a variable.

The following LassoScript creates a variable named VariableName, sets it to a
value New Value using an expression, then retrieves the value of the variable.
The result is New Value.
<?LassoScript
Variable: 'VariableName'=",
$VariableName="New Value';

$VariableName;
»>

=>» New Value

Checking to See if a Variable has been Created

The [Variable_Defined] tag can be used to check if a variable has been created
and used in the current format file. The following example will return
false the first time [Variable_Defined] is called, then set the variable using
[Variable] and return True the second time [Variable_Defined] is called.
<?LassoScript
Variable_Defined: 'VariableName';
Variable: 'VariableName'='VariableValue';

Variable_Defined: 'VariableName";
»>

=» False True

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 12 - PROGRAMMING FUNDAMENTALS 253

The [Variable_Defined] tag will return True even if a variable is set to the empty
string " (two single quotes with no space) or to Null. There is no way to
delete a variable once it has been created.

Data Types

Every value in Lasso is defined as belonging to a specific data type. Every
value stored in a variable belongs to a specific data type. The data type
determines what symbols and member tags are available for use with the
value.

Table 4: Data Type Tags

Tag Description

[Null->Type] Returns the data type of a value.
[String] Casts a value to data type string.
[Integer] Casts a value to data type integer.
[Decimal] Casts a value to data type decimal.
[Boolean] Casts a value to data type boolean.
[Date] Casts a value to data type date.
[Duration] Casts a value to data type duration.
[Array] Creates an array data type.

[Map] Creates a map data type.

[Pair] Creates a pair data type.

[Bytes] Creates a bytes data type.

Several data types have already been introduced:

e Strings are sequences of alphanumeric characters. String literals are
delimited by single quotes as in 'String Literal'.

Integers are whole numbers. Integer literals are specified without quotes
as in 123 or -987.

Decimals are numbers which contain a decimal point. Decimal literals
are specified without quotes as in 3.1415926 or 24.99.

e Dates are alphanumeric strings that represent a date and/or time. A date
must always be cast using the [Date] tag in a recognized format to be used
as a date data type (e.g. [Date:'9/29/20027).

e Durations are alphanumeric strings that represent a length time (not a
24-hour clock time). A duration must always be cast using the [Duration]
tag in a recognized format to be used as a duration data type (e.g.
[Duration:'168:00:007).

LAsso 7.1 LANGUAGE GUIDE

254 CHAPTER 12 — PROGRAMMING FUNDAMENTALS

Variables which are set to literal values of a specific data type are them-
selves said to be of that data type. Variables containing strings are string
variables. Any symbols which operate on literal strings will also operate on
string variables.

It is important to keep track of what type of value is stored in each variable
so that the values of expressions and member tags can be safely predicted.

Returning the Type of a Variable

The [Null->Type] member tag can be used to return the type of a variable
or other value. [Null->Type] is a member tag of the data type null which is
a precursor to all other data types. The [Null->...] member tags can be used
with values of any data type.

The following example shows the value of [Null->Type] for literals of different
data types.

'String Value'->Type = string

123->Type =¥ integer

9.999->Type =» decimal

The following example shows the value of [Null->Type] when it is used on a
variable which has been set to a string literal.
<?LassoScript
Variable: 'Value' = 'String Value';

Output: $Value->Type;
”»>

=» string

The [Null->Type] member tag also works on the compound data types: array,
map, and pair. The following example shows the value of [Null->Type] when
it is used on a variable which has been set to an array literal.
<?LassoScript
Variable: 'Value' = (Array: 'One', "Two', 'Three', 'Four');

Output: $Value->Type;
»

=> array

Casting a Value to a Data Type

Values can be cast from one data type to another in order to ensure

that the proper member tags will be available and symbols will work as
expected. Each data type defines a tag which has the same name as the data
type that can be used to cast a value to that data type.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 12 - PROGRAMMING FUNDAMENTALS 255

To cast a value to the string data type:

e Integer and decimal values can be cast to type string using the [String] tag.
The value of the string is the same as the value of the integer or decimal
value when it is output using the [Variable] tag.

[String: 999.999] =» '999.999'

e Boolean values can be cast to type string using the [String] tag. The value
will always either be True or False.

[String: True] =¥ 'True'

e Arrays, maps, and pairs should not be cast to type string. The value
which results is intended for debugging purposes. More information can
be found in Chapter 17: Arrays and Maps.

To cast a value to the integer data type:

e Decimal values can be cast to type integer using the [Integer] tag. The
value of the decimal number will be truncated at the decimal point. For
example, casting 999.999 to type integer results in 999 not 1000.

[Integer: 999.999] =» 999

String values can be cast to type integer using the [Integer] tag. The string
must start with a numeric value. For example casting 2String? to an
integer results in 2.

[Integer: '2001: A Space Oddysey'] =» 2001
[Integer: "2String1] =» 2

Boolean values can be cast to type integer using the [Integer] tag. The
value of the result will be 1 if the boolean was True or 0 if the boolean
was False.

[Integer: True] =» 1
[Integer: False] =» 0

Arrays, maps, and pairs should not be cast to type integer. The value
which results will always be 0.

To cast a value to the decimal data type:
¢ Integer values can be cast to type decimal using the [Decimal] tag. The
value of the integer number will simply have a decimal point added. For
example, casting 123 to type integer results in 123.000000.
[Decimal: 123] =» 123.000000

LAsso 7.1 LANGUAGE GUIDE

256

CHAPTER 12 — PROGRAMMING FUNDAMENTALS

e String values can be cast to type decimal using the [Decimal] tag. The
string must start with a numeric value. For example casting 2.5String1 to a
decimal results in 2.500000. The 1 at the end of the string is ignored.

[Decimal: '2001: A Space Oddysey'] =» 2001.000000
[Decimal: '2.5String1'] =» 2.500000

e Boolean values can be cast to type decimal using the [Decimal] tag. The
value of the result will be 1.000000 if the boolean was True or 0.000000 if
the boolean was False.

[Decimal: True] =» 1.000000
[Decimal: False] =» 0.000000

e Arrays, maps, and pairs should not be cast to type integer. The value
which results will always be 0.000000.

To cast a value to the boolean data type:

e Integer and decimal values can be cast to type boolean using the [Boolean]
tag. The value of the boolean will be False if the number is zero or True if
the number is non-zero.

[Boolean: 123] =» True
[Boolean: 0.0] =» False

e String values can be cast to type boolean using the [Boolean] tag. The
value of the boolean will be False if the string contains just the word
false or is empty and True otherwise.

[Boolean: 'false] =» False
[Boolean: "] = False
[Boolean: 'true] =» True
[Boolean: 'value'] =¥ True

e Arrays, maps, and pairs should not be cast to type boolean. The value
which results will always be False.

To cast a value to the date data type:

e Specially formatted strings may be cast as date data types using the [Date]
tag. For a list of date string formats that are automatically recognized as
dates, see Chapter 16: Date and Time Operations.

[Date: '9/29/2002'] =» 9/29/2002 00:00:00

[Date: '9/29/2002 12:30:00 =» 9/29/2002 12:30:00
[Date: '2002-09-29 12:30:00' =» 2002-09-29 12:30:00

e Unrecognized date strings can be cast as date data types using the [Date]
tag with the -Format parameter. All eligible date strings must contain
numbers, punctuation, and/or allowed words (e.g. February, GMT) in a

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 12 - PROGRAMMING FUNDAMENTALS 257

format that represents a valid date. For a description of how to format a
date string, see Chapter 16: Date and Time Operations.

[Date: '9.29.2002', -Format="%m.%d.%Y'] =» 9.29.2002

[Date: '20020929', -Format="%Y%m%d'] =» 20020929

[Date: 'September 29, 2002', -Format='%B %d, %Y'] =» September 29, 2002

To cast a value to the duration data type:

e Specially formatted strings as either hours:minutes:seconds or just seconds
may be cast as duration data types using the [Duration] tag. The [Duration]
tag always returns values in hours:minutes:seconds format. For more infor-
mation, see Chapter 16: Date and Time Operations.

[Duration: '169:00:007 =» 169:00:00
[Duration: '00:30:007 =» 00:30:00
[Duration: '300'7 =» 00:05:00

To cast a value to type array, map, or pair:

Values cannot be cast to type array, map, or pair. However, an array, map,
or pair can be constructed with the simple data type as its initial value.
See Chapter 17: Arrays and Maps for more information about how to
construct these complex data types.

To cast a value to the bytes data type:

For discussion on the bytes data type, see Chapter 5: Advanced
Programming Topics in the Extending Lasso 7 Guide.

Automatic Casting

Lasso will cast values to a specific data type automatically when they are
used in expressions or as parameters for tags which require a particular
type of value. Values will be automatically cast in the following situations:

e Values of every data type are cast to string values when they are output to
the Web browser.

Integer values are cast to decimal values when they are used as param-
eters in expressions with one integer parameter and one decimal param-
eter.

Integer and decimal values are cast to string values when they are used
as parameters in expressions with one integer or decimal parameter and
one string parameter.

Values of every data type are cast to boolean values when they are used
in logical expressions.

LAsso 7.1 LANGUAGE GUIDE

258 CHAPTER 12 — PROGRAMMING FUNDAMENTALS

e The [Math_...] tags will automatically cast all parameters to integer or
decimal values.

e The [String_...] tags will automatically cast all parameters to string values.

Symbols

Symbols allow for powerful calculations to be performed within LDML
tags. The symbols which can be used in expressions are discussed in full
detail in the chapter devoted to each data type. String expressions and
symbols are discussed in Chapter 14: String Operations and decimal
and integer expressions and symbols are discussed in Chapter 15: Math
Operations.

Using Symbols

Since symbols only function on values of a specific data type, values need
to be cast to that data type explicitly or they will be automatically cast. For
best results, explicit casting should be performed so the meaning of the
symbols will be clear. Note that spaces should always be specified between
a symbol and its parameters.

As explained in the Automatic Casting section above, values used as a
parameter in an expression will be automatically cast to a string value if
any parameter in the expression is a string value. Integer values will be
automatically cast to decimal values. Any value used in a logical expression
will be automatically cast to a boolean value.
¢ The following expression returns 1212 since the integer 12 is automati-

cally cast to a string because one parameter is a string.

[Output: 12" + 12] =» 1212

e Similarly, the following expression returns 1212 since the integer 12 is
automatically cast to a string because one parameter is a string.

[Output: 12 +'121] = 1212

¢ The following expression returns 24 since the string 12 is explicitly cast to
an integer.
[Output: (Integer: "12') + 12] =» 24

e The following expression returns 24.000000 since the integer 12 is auto-
matically cast to a decimal value because one parameter is a decimal
value.

[Output: 12 + 12.0] =» 24.000000

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 12 - PROGRAMMING FUNDAMENTALS 259

¢ The following expression returns True since the integer 12 is automatically
cast to a boolean value True because it is used in a logical expression.

[Output: 12 && 12] =» True

When in doubt, the [String], [Integer], and [Decimal] tags should be used to
explicitly cast values so that the proper symbols are used.

Note: Always place spaces between a symbol and its parameters. The
- symbol can be mistaken for the start of a command tag, keyword, or
keyword/value parameter if it is placed adjacent to the parameter that
follows.

Assignment Symbols

Variables can be set to the result of an expression, storing that result for
later use. For example, the following variable is set to the result of a simple
math expression.

[Variable: 'MathResult'=(1 + 2)]

Variables can also be set using assignment symbols within LassoScripts.
The equal sign = is the simplest assignment symbol. Other assignment
symbols can be formed by combining a decimal, integer, or string symbol
with the equal sign. For example, += is the additive assignment symbol.

The following LassoScript creates a variable named MathResult, performs
a mathematical operation (adding 4) on it using the additive assignment
symbol, and returns the final value.
<?LassoScript
Variable: 'MathResult'=0;
$MathResult += 4;

Output: $MathResult;
>

>4

The assignment symbol replaces the value of the variable and does not
return any output. The assignment expression $MathResult += 4; is equivalent
to the expression $MathResult = $MathResult + 4;. Since assignment expres-
sions do not return a value they should only be used within LassoScripts to
modify variables.

LassoScripts can use variable results to build very complex operations. For
example, the following LassoScript uses several variables to perform a math
expression.

LAsso 7.1 LANGUAGE GUIDE

260 CHAPTER 12 — PROGRAMMING FUNDAMENTALS

<?LassoScript

Variable: 'x'=100, 'y'=4;

$x = 8x/ $y;

By = $x + $y;

Output: 'x="+ $x + ' y="+ $y;
>

=> x=25y=29

Note: If a negative number is used as the right-hand parameter of an assign-
ment symbol it should be surrounded by parentheses.

Member Tags

Member tags are associated with a particular data type and can be used on
any value of that data type. The data type of a member tag is represented
in the documentation in the member tag name before the member tag
symbol ->. For example, the tag [String->Length] can be used with values of
data type string, and the tag [Decimal->SetFormat] can be used with values of
data type decimal.

Member tags are available for string, decimal, integer, date, array, map,
and pair data types, and are discussed in detail in Chapter 14: String
Operations, Chapter 15: Math Operations, Chapter 16: Date and Time
Operations, and Chapter 17: Arrays and Maps.

Using Member Tags

Since member tags only function on values of a specific data type, values
need to be cast to that data type explicitly. Member tags will not automati-
cally cast values.
For example, the member tag [String->Length] can be used to return the
length of a string value. If [String->Length] is used on a number as in
[Output: 123->Length] then an error will result:

"Length" was not a member of type "integer"

Instead, the integer must be cast to a string value explicitly before the
member tag can be used. The following example returns the length of the
string representing the integer correctly.

[Output: (String: 123)->Length] =» 3

When in doubt, the [String], [Integer], [Decimal], and [Date] tags should be used
to explicitly cast values so that the proper member tags are available.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 12 - PROGRAMMING FUNDAMENTALS 261

Member Tag Types

Member tags can function like either substitution tags which return a value
or like process tags which modify the value which the member tag is called
on, but do not return a value.

For example, the member tag [String->Length] functions like a substitution
tag and returns the length of the string on which it is called. The following
LassoScript stores a string in a variable StringVariable then retrieves its length.
The string stored in the variable is left unchanged.
<?LassoScript
Variable: 'StringVariable' = 'A string value’;

Output: $StringVariable->Length;
>

> 14

In contrast, the member tag [Decimal->SetFormat] functions like a process tag,
altering the way that a decimal variable will be output when it is cast to a
string. The following LassoScript shows the normal decimal value output
of a variable.
<?LassoScript
Variable: 'DecimalVariable' = 123.456;

Output: $DecimalVariable;
»>

=> 123.456000

The following LassoScript shows how the output of the decimal
value changes when a [Decimal->SetFormat] tag is used on the variable
DecimalVariable to truncate its output to two significant digits.
<?LassoScript
Variable: 'DecimalVariable' = 123.456;
$DecimalVariable->(SetFormat; -Precision=2);

Output: $DecimalVariable;
»>

=> 12345

The value stored in the variable DecimalVariable is not changed, but the value
which is output is formatted according to the rules set in the
[Decimal->SetFormat] tag.

Forms and URLs

This section discusses how to pass information from format file to format
file through HTML forms and URLs. Data can also be passed from format

LAsso 7.1 LANGUAGE GUIDE

262 CHAPTER 12 — PROGRAMMING FUNDAMENTALS

file to format file using database actions or sessions. Please see Chapter 6:
Database Interaction Fundamentals and Chapter 19: Sessions for more
information.

Form Parameters

HTML forms can be used to pass values to an LDML format file. The
values are retrieved in the format file using the [Action_Param] tag. Any
<input>, <select>, or <textarea> values can be retrieved by name using the
[Action_Param] tag except for those which contain LDML command tags.

For example, the following form has two inputs for First_ Name and
Last_Name and a button that submits the form.
<form action="response.lasso" method="POST">
<p>First Name: <input type="test" name="First_Name" value="">
<p>Last Name: <input type="test" name="Last_Name" value="">
<p><input type="submit" name="Submit" value="Submit Value">
<[form>

In the format file response.lasso—which is loaded when this form is
submitted—the following LDML tags will retrieve the values submitted by
the site visitor in the form.

First Name: [Action_Param: 'First_Name']
Last Name: [Action_Param: 'Last_Name']

Even the value of the submit button can be fetched. This can help distin-
guish between multiple buttons that each have the same name displayed in
the Web browser.

Button Value: [Action_Param: 'Submit]

URL Parameters

URLs can be used to pass values to an LDML format file. The values are
retrieved in the format file using the [Action_Param] tag. Any values which are
passed as URL parameters can be retrieved by name using the [Action_Param]
tag except for those which contain LDML command tags.

For example, the URL in the following anchor tag has two parameters for
First_ Name and Last_Name.
John Doe

In the format file response.lasso—which is loaded when this form is
submitted—the following LDML tags will retrieve the values submitted by
the site visitor on the form.

First Name: [Action_Param: 'First_Name']
Last Name: [Action_Param: 'Last_Name']

LAsso 7.1 LANGUAGE GUIDE

Chapter

263

13

Conditional Logic

Conditional tags allow programming logic to be embedded into format

files. Portions of a page can be hidden or repeated multiple times. Code

can be executed in every repetition of a loop or every several repetitions.

Complex decision trees can be created which execute code only under very
specific conditions.

If Else Conditionals explains how to use the [If] ... [/If] tags and [Else] tag
to conditionally determine the results of a page or to execute LDML
code.

Select Statements explains how to use [Select] ... [Case] ... [/Select] tags to
choose what code to execute based on the value of a variable.

Loops explains how to use the [Loop] ... [/Loop] tags to repeat a portion of
the page and documents the [Loop_Abort] and [Loop_Count] tags used in any
repeating container tag.

Iterations explains how to use the [lterate] ... [/lterate] tags to perform an
action using the value of each element of a compound data type in turn.

While Loops explains how to use the [While] ... [[While] tags to repeat a
portion of a page while a condition is True.

Abort Tag explains how to use the [Abort] tag to halt execution of a
format file.

Boolean Data Type describes the [Boolean] tag and boolean symbols
which can be used to create complex conditional expressions.

LAsso 7.1 LANGUAGE GUIDE

264 CHAPTER 13 — CONDITIONAL LoGIC

If Else Conditionals

Code can be conditionally executed and page elements can be condition-
ally shown by placing them within [If] ... [/If] container tags. The code or
other page elements will only be processed if the expression in the opening
[If] tag evaluates to True.
[If: (Variable: Test') == True]
This text will be shown if the variable Test equals True.

[/

The [Else] tag allows for either/or logic to be programmed. If the condition
in the [If] tag is True then the code between the [If] tag and the [Else] tag is
processed, otherwise the code between the [Else] tag and the closing [/If] tag
is processed.
[If: (Variable: Test') == True]
This text will be shown if the variable Test equals True.
[Else]
This text will be shown if the variable Test does not equal True.

[/

A series of tests can be made and code associated with the first test that
returns True can be shown by specifying expressions within the [Else]
tags. The code between the [Else] tag with a conditional expression and
the next [Else] tag will only be shown if the expression returns True.

As many [Else] tags as needed can be specified within a single set of

[If] ... [/If] container tags.

Note: The [Selecf] ... [Case] ... [/Select] tags can be used to perform a similar
operation. These tags are discussed in the next section.

[If: (Variable: Test') == (-1)]

This text will be shown if the variable Test equals -1.
[Else: (Variable: Test') == 2]

This text will be shown if the variable Test equals 2.
[Else: (Variable: Test') == 3]

This text will be shown if the variable Test equals 3.

[/

A final [Else] tag without a conditional expression can be included. The
code between the [Else] tag and the closing [/If] tag will only be processed if
the expression in the opening [If] tag returns False and the expressions in all
subsequent [Else] tags return False as well.
[If: (Variable: Test') == 1]
This text will be shown if the variable Test equals 1.
[Else: (Variable: Test') == 2]
This text will be shown if the variable Test equals 2.
[Else: (Variable: "Test') == 3]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 13 — CONDITIONAL LOGIC 265

This text will be shown if the variable Test equals 3.
[Else]
This text will be shown if the variable Test is not equal to 1, 2, or 3.

/]

Table 1: If Else Tags

Tag Description

(1] ... [Executes the contents of the container only if the
expression in the [If] tag returns True.

[Else] Valid only within [If] ... [/If] container tags. Executes the
remainder of the container tag only if the expression in
the [Else] tag returns True or no expression is specified.

The rules for specifying expressions in the [If] and [Else] tags are presented in
full in the following section entitled Boolean Data Type.

Note: The [Ifl and [Else] tags will simply output the result of the specified
conditional expression parameter if they are called individually on a page, i.e.
not as part of a valid [If] ... [Else] ... [/lf] container tag.

To conditionally execute code within a LassoScript:

Use the [If] tag with an appropriate conditional expression. In the following
example, an [Output] tag will only be processed if the current username
returned by the [Client_Username] tag is Anonymous.

<?LassoScript

If: ((Client_Username) == 'Anonymous’);
Output: 'You are an anonymous user’;
/If;
”»>

To show a different portion of a page if an error occurs:

Errors are reported in Lasso using the [Error_CurrentError] tag. This tag can be
compared with many specific error type tags to check to see if a particular
error occurred. In the following example, the current error is compared to
[Error_SecurityError] in order to display an appropriate message.

[If: (Error_CurrentError) == (Error_SecurityError)]
You don't have permission to access that resource.

[/

Note: See Chapter 21: Error Control for more information about the [Error_...]
tags.

LAsso 7.1 LANGUAGE GUIDE

266 CHAPTER 13 — CONDITIONAL LoGIC

Complex Conditionals

There are two methods for creating complex conditionals. Each of these
methods can be used interchangeably depending on what conditions need
to be checked and the preference of the Lasso developer.

Examples of complex conditionals

¢ The conditional expression within the opening [If] tag can be used to
check several different conditions. The conditions are appended using
the and && symbol which returns True if both parameters return True or
the or || symbol which returns True if either parameter returns True.

In the following example, two fields from a database are checked to
determine what title to put on a salutation. The Sex field is checked to
see if the visitor is Male or Female and the Married field is checked to see
if the visitor is Married or Single. Compound conditional expressions are
created to check for the combination of gender and marriage status for
each title.
[If: ((Field: 'Sex') == 'Male')]
Dear Mr. [Field: 'First_Name'] [Field: 'Last_Name',
[Else: ((Field: 'Sex") == 'Female') && ((Field: 'Marriage') == 'Married')]
Dear Mrs. [Field: 'First_Name'] [Field: 'Last_Name],
[Else: ((Field: 'Sex") == 'Female') && ((Field: 'Marriage') == 'Single")]
Dear Ms. [Field: 'First_Name'] [Field: 'Last_Name'],
[Else]
To whom it may concern,

[/

e Nested [If] ... [/If] tags can be used to check several conditions in turn. The
conditional expression in each [If] tag is simple, but the nesting estab-
lishes that the innermost [If] ... [/If] tags are only executed if the outer-
most [If] ... [/If] tags evaluate their conditional expression to True.

In the following example the [If] ... [/If] tags cause the Marriage field to be
evaluated if the conditional expression in the outermost [Else] tag finds
that the Sex field contains Female.
[If: (Field: 'Sex') == 'Male')]
Dear Mr. [Field: 'First_Name'] [Field: 'Last_Name',
[Else: ((Field: 'Sex') == 'Female')]
[If: ((Field: 'Marriage') == 'Married")]
Dear Mrs. [Field: 'First_Name'] [Field: 'Last_Name],
[Else: ((Field: 'Marriage') == 'Single")]
Dear Ms. [Field: 'First_Name'] [Field: 'Last_Name'],
/]
/]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 13 — CONDITIONAL LOGgIC 267

Select Statements

Select statements can be used when a variable can take multiple values
and a different block of code should be executed depending on the current
value. The variable to be checked is specified in the opening [Select] tag. A
series of [Case] tags follow, each specified with a possible value of the vari-
able. If one of the [Case] tags matches the value of the variable then the
code until the next [Case] tag or the closing [/Select] tag will be executed.

For example, to return different text depending on value a variable named
Test current has the following [Select] ... [/Select] statement could be used.

[Select: (Variable: Test')]
[Case (-1)]
This text will be shown if the variable Test equals -1.
[Case: 2]
This text will be shown if the variable Test equals 2.
[Case: 3]
This text will be shown if the variable Test equals 3.
[/Select]

A [Case] tag without any value is used as the default value for the
[Select] ... [/Select] statement in the event that no [Case] statement matches
the value of the parameter of the opening [Select] tag. The first [Case] tag
without any value is returned as the default value.
[Select: (Variable: 'Test')]
[Case (-1)]
This text will be shown if the variable Test equals -1.
[Case: 2]
This text will be shown if the variable Test equals 2.
[Case: 3]
This text will be shown if the variable Test equals 3.
[Case]
This text is shown if the variable does not equal any of the values.
[/Select]

Table 2: Select Tags

Tag Description

[Select] ... [/Select] Takes a single parameter which is used to decide which
enclosed [Case] tag to select. Requires one or more
[Case] tags to be specified. Returns the value of the
code between the selected [Case] statement and the
next [Case] statement or the closing [/Select] tag.

[Case] Accepts a single parameter which is checked against the
parameter of the enclosing [Select] tag. If no parameter
is specified then the tag defines the default case.

LAsso 7.1 LANGUAGE GUIDE

268

CHAPTER 13 — CONDITIONAL LOGIC

To return a different value based on the type of a variable:

Use the [Select] ... [Case] ... [/Select] tags to return a different value depending
on the type of a variable. The following code outputs the value of a vari-
able named MyVariable that could be of any type. If the variable is not of any
built-in type then the default output is to cast it to string.

[Select: (Variable: 'MyVariable')->Type]
[Case: 'Integer

Integer value [Variable: 'MyVariable'.
[Case: 'Decimal’]

Decimal value [Variable: 'MyVariable'.
[Case: 'String']

String value [Variable: 'MyVariable'].
[Case: '‘Boolean]

Boolean value [Variable: 'MyVariable'].
[Case: 'Array']

Array value [Variable: ‘MyVariable'].
[Case: 'Map']

Map value [Variable: 'MyVariable'].
[Case: 'Pair]

Pair value [Variable: 'MyVariable'].
[Case]

Unknown type value [String: (Variable: 'MyVariable')].
[/Select]

Loops

A portion of a page can be repeated a number of times using the
[Loop] ... [/lLoop] tags. The parameters to the opening [Loop] tag define how
many times the portion of the page should be repeated. For example, a
message in a Web page could be repeated five times using the following
[Loop] tag.

[Loop: 5]

This is repeated five times.
[/Loop]

=»
This is repeated five times.

This is repeated five times.

This is repeated five times.

This is repeated five times.

This is repeated five times.

The basic form of the [Loop] ... [/Loop] tags simply repeats the contents of
the tags as many times as is specified by the parameter. The opening [Loop]
tag can also accept a number of keyword/value parameters to create more
complex repetitions.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 13 - CONDITIONAL LOGIC 269

Table 3: [Loop] Tag Parameters

Keyword Description

-From Specifies the starting repetition for the [Loop] tag. Can
also be specified as -LoopFrom.

-To Specifies the ending repetition for the [Loop] tag. Can
also be specified as -LoopTo.

-By Specifies how many repetitions should be skipped on

each actual repetition of the contents of the
[Loop] ... [/Loop] tag. Can also be specified as
-LooplIncrement.

The following example shows a loop that runs backward for five repeti-
tions by setting -From to 5, -To to 1 and -By to -1. The [Loop_Count] tag shows
the number of the current repetition.
[Loop: -From=5, -To=1, -By=-1]

This is repetition number [Loop_Count].
[/Loop]

=»
This is repetition number 5.

This is repetition number 4.

This is repetition number 3.

This is repetition number 2.

This is repetition number 1.

Note: The [Loop_Count] tag can be used in any looping container tag within
LDML to return the number of the current repetition. This includes the
[Records] ... [/Records] tags.

The [Loop_Abort] tag can be used to halt a [Loop] before it reaches the speci-
fied number of repetitions. In the following example, the [Loop] tag is
stopped after the third repetition by checking to see if [Loop_Count] is equal
to 3.
[Loop: 5]

This is repeated five times.
[If: (Loop_Count) == 3]
[Loop_Abort]
/]
[/Loop]

=»
This is repeated five times.

This is repeated five times.

This is repeated five times.

Note: The [Loop_Abort] tag can be used in any looping container tag within
LDML to abort the loop. This includes the [Records] ... [[Records] tags.

LAsso 7.1 LANGUAGE GUIDE

270

CHAPTER 13 — CONDITIONAL LOGIC

The modulus symbol % can be used in an [If] ... [/If] conditional to perform
a task on every other repetition (or every nth repetition). The conditional
expression (Loop_Count % 2)==0 returns True for every other repetition of the
loop.
[Loop: 5]
[If: (Loop_Count % 2) == 0]

This is an Even loop.
[Else]

This is an Odd loop.
/]
[/Loop]
=»
This is an odd loop.

This is an even loop.

This is an odd loop.

This is an even loop.

This is an odd loop.

The modulus symbol can be used in any looping container tag within
LDML to show elements in alternate rows. This includes the [Records] ...
[/Records] tags.

Note: The [Repetition] tag from earlier versions of Lasso has been deprecated.
It's use is not recommended. Any code using the [Repetition] tag should be
changed to the modulus operator for dramatically better speed and future
compatibility.

Table 4: Loop Tags

Tag Description

[Loop] ... [/Loop] Repeats the contents of the container tag a specified
number of times.

[Loop_Count] Returns the number of the current repetition.

[Loop_Abort] Aborts the [Loop] ... [/Loop] tag, jumping immediately to

the closing tag.

To list all the field names for a table:

An [Inline] ... [/Inline] with a -Show command tag can be used to get a list of all
the field names in a table. The [Field_Name] tag accepts a -Count parameter
that returns how many fields are in the current table or an integer param-
eter that returns the name of one of the fields. The following example uses
the [Loop] ... [/Loop] tags to display a list of all the field names in a table.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 13 — CONDITIONAL LOoGgic 271

[Inline: -Database="Contacts', -Table="People’, -Show]
[Loop: (Field_Name: -Count)]

[Field_Name: (Loop_Count)]
[/Loop]
[/Inline]

=> D
First_Name
Last_Name

To loop through the elements of an array:

The elements of an array can be displayed to a site visitor or otherwise
manipulated by looping through the array using the [Loop] ... [/Loop] tags.
The [Array->Size] tag returns the number of elements in an array and the
[Array->Get] tag returns a specific element by index. The following example
shows how to store the names of the days of the week in an array and then
list those elements using [Loop] ... [/Loop] tags.

<?LassoScript
Encode_Set: -EncodeNone;

Variable: 'DaysOfWeek' = (Array: 'Sunday', 'Monday', "Tuesday’,
'Wednesday', 'Thursday', 'Friday', 'Saturday’);

Loop: ($DaysOfWeek->Size);
Output: '
' + $DaysOfWeek->(Get: (Loop_Count));
[Loop;

/Encode_Set;
»>

=»
Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Note: See Chapter 17: Arrays and Maps for more information about the
array member tags.

To format a found set in two columns:

The modulus symbol % can be used to format a found set in two columns.
In the following example, an HTML <table> is constructed with one cell for
each person found by an [Inline] ... [/Inline] based -FindAll action. The modulus
symbol % is used to insert the row tags every other record.

LAsso 7.1 LANGUAGE GUIDE

272

CHAPTER 13 — CONDITIONAL LOGIC

[Inline: -Database="Contacts', -Table="People', -FindAll]
<table>
<tr>
[Records]
<td>[Field: 'First_Name'] [Field: 'Last_Name'|</td>
[If: (Loop_Count % 2) == 0]
<Jtr><tr>
(/1]
[/Records]
</tr>
</table>
[/Inline]

=» <table>
<tr>
<td>Jane Person</td>
<td>John Person</td>
<ftr><tr>
<td>Joe Surname</td>
<tr>
</table>

Ilterations

The [lterate] ... [/lterate] tags loop through each element of a complex data
type such as an array or a map. A variable is set to the value of each
element of the complex data type in turn. This allows the same operation
to be performed on each element.

Note: The [lterate] ... [/lterate] tags can be used with built-in array, map, pair, and
string data types. It can also be used with any custom data type that supports
the [Type->Size] and [Type->Get] member tags.

For example, to print out each element of an array stored in a variable
myArray the following tags could be used. The opening [lterate] tag contains
the name of the variable storing the array and a definition for the variable
that should be set to each element of the array in turn. In this case a new
variable myltem will be created. The value for myltem is then output within
the [lterate] ... [/lterate] tags.

[Variable: 'myArray" = (Array: 'Winter', 'Spring', 'Summer’, 'Autumn’)]

[Iterate: (Variable: 'myArray'), (Variable: 'myltem")]

The season is: [Variable: 'myltem.
[/lterate]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 13 — CONDITIONAL LOGgIC 273

=»
The season is: Winter.

The season is: Spring.

The season is: Summer.

The seasons is: Fall.

The [lterate] ... [/lterate] tags are equivalent to using [Loop] ... [/Loop] tags to
cylce through each element of a complex data type, but are significantly
easier to use and provide faster operation.

Table 5: Iteration Tags

Tag Description

[lterate] ... [/Iterate] Cycles through each element of a compound data type
in turn. The opening tag accepts two parameters. The
first is the compound data type to be iterated through.
The second is a reference to a variable which should be
set to the value of each element of the first parameter in
turn.

Note: The second parameter to the opening [lterate] tag should either be of
the form (Variable: ‘NewVariableName’) or should reference an existing variable
using $ExistingVariable. The $ symbol cannot be used to create a new variable.

To print out each character of a string:

Use the [lterate] ... [/Iterate] tags to cycle through each character of the string
in turn. The following code prints out each character of a string on a sepa-
rate line.
[Variable: 'myString'="blue’]
[Iterate: $myString, (Variable: 'myCharacter')]

[Variable: 'myCharacter’]
[/lterate]

=>»
b

|

u

e

While Loops

[While] ... [/While] tags allow a portion of a page to repeat while a specified
conditional expression returns True. The expression specified in the opening
[While] tag is checked on each pass through the loop and if the expression
returns True then the contents are displayed again.

LAsso 7.1 LANGUAGE GUIDE

274

CHAPTER 13 — CONDITIONAL LOGIC

In the following example, a variable ConditionVariable is set to True. Once
the [Loop_Count] is greater than 3 the variable is set to False, ending the
[While] ... [/While] loop.
[Variable: 'ConditionVariable' = True]
[While: ($ConditionVariable == True)]

This is repetition [Loop_Count]
[If: (Loop_Count) >= 3]
[Variable: 'ConditionVariable' = False]
/]
[/Loop]
=>»
This is repetition 1.

This is repetition 2.

This is repetition 3.

Table 6: While Tags

Tag Description

[While] ... [/While] Repeats the contents of the container tag until the
condition specified in the opening tag returns False.

[Loop_Count] Returns the number of the current repetition.

[Loop_Abort] Aborts the [While] ... [/While] tag, jumping immediately

to the closing tag.

Abort Tag

The [Abort] tag can be used to abort the execution of the current format

file. This can be useful in a situation where an error has occurred that
prevents the rest of the file from executing. An [Abort] can be used after a
[Redirect_URL] so Lasso does not need to process the rest of the page before
sending the redirect to the client. Finally, an [Abort] can be used in a custom
error page in order to prevent the standard error message from being
shown at the bottom of the page.

Table 7: Abort Tag

Tag Description

[Abort] Aborts the current format file, returning all of the content
which has been created so far to the client.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 13 — CONDITIONAL LOGgIC 275

To speed up a [Redirect_URL]:

Use the [Abort] tag immediately after the [Redirect_URL] tag. All LDML code
after the [Abort] tag will be ignored so the [Redirect_URL] tag’s modifications
to the HTTP response will be sent to the client immediately.

[Redirect_URL: 'http://www.example.com/]
[Abort]

Boolean Type

The boolean data type simply represents True or False. All comparison
symbols and boolean symbols in LDML return a value of the boolean data
type.

The following values are equivalent to each of the boolean values both
when automatically cast and when explicitly cast using the [Boolean] tag.
However, it is recommended that you use True and False whenever possible
to avoid confusion.

e True is equivalent to any positive integer or decimal such as 1, 45, or
100.15, any non-empty string such as 'String’, or any non-null data type
such as an array, map, or pair.

e False is equivalent to integer 0 or decimal 0.0, the empty string ", or Null.

Note: The string 'True' happens to be equivalent to True, but the string 'False' is
not equivalent to False. Always type the boolean values True and False without
quotation marks.

Table 8: Boolean Tag

Tag Description
[Boolean] Casts a value to a boolean value.

The boolean data type is most commonly associated with conditional
expressions such as those specified in the opening [If] or [While] tags. Any
conditional expression which uses a conditional symbol such as ==, I=, <,
<=, >, >=, or >> will return a boolean value. Multiple conditional expres-
sions can be combined using any of the boolean symbols detailed in Table
9: Boolean Symbols.

Table 9: Boolean Symbols

Symbol Description

&& And. Returns True if both parameters are True.
I Or. Returns True if either parameter is True.

LAsso 7.1 LANGUAGE GUIDE

276

CHAPTER 13 — CONDITIONAL LOGIC

! Not. Returns False if the parameter following is True.
== Equality. Returns True if both parameters are equal.
I= Inequality. Returns True if both parameters are different.

Note: Single parameter expressions must be surrounded by parentheses if
they are used on the right hand side of a boolean symbol.

To check for two conditions in an [If] tag:

¢ In order to return True if both conditions are True use the && symbol.

[If: ($Condition1 == True) && ($Condition2 == True)]
Both conditions are True.

/]
e In order to return True if either of the conditions is True use the || symbol.

[If: ($Condition1 == True) || ($Condition2 == True)]
One of the conditions is True.

[/

¢ In order to return True if a condition is False use the ! symbol.
[If: |(§Condition1 == True)]
The condition is False.

[/

e In order to return True if the two conditions are equal (both True or both
False) use the == symbol.
[If: ($Condition1 == True) == ($Condition2 == True)]
Both conditions are True or both conditions are False.

[/

e In order to return True if the two conditions are not equal (one is
True and the other is False) use the != symbol.
[If: (§Condition1 == True) != ($Condition2 == True)]
One condition is True and the other is False.

[/

To use single parameter symbols in a comparison:

If expressions using the single-parameter symbols !, -, and + are going to
be used as the second parameter to a comparison symbol, they should be
surrounded by parentheses.

¢ To compare a variable to -1 use parentheses around -1 on the right-hand
side of the comparison operator.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 13 - CONDITIONAL LOGgIC 277

[If: ($Variable == (-1))]

The variable is equal to -1.
[Else: ($Variable > (-1))]

The variable is greater than -1.
[Else: ($Variable < (-1))]

The variable is less than -1.

/]

¢ To compare a variable to the negation of an expression, use parentheses
around the entire right-hand side of the comparison operator.
[If: ($Variable == (ITrue))]
The variable is not equal to False.

[/

Note: These expressions can usually be rewritten with the opposite
comparison symbol or by using the negation symbol around the entire
conditional expression.

LAsso 7.1 LANGUAGE GUIDE

278 CHAPTER 13 — CONDITIONAL LoGIC

LAsso 7.1 LANGUAGE GUIDE

Chapter

279

14

String Operations

Text in Lasso is stored and manipulated using the string data type or the
[String] tags. This chapter details the symbols and tags that can be used to
manipulate string values.

Overview provides an introduction to the string data type and how to
cast values to and from other data types.

String Symbols details the symbols that can be used to create string
expressions.

String Manipulation Tags describe the member and substitution tags
that can be used to modify string values.

String Conversion Tags describes the member and substitution tags that
can be used to convert the case of string values.

String Validation Tags describes the member and substitution tags that
can be used to compare strings.

String Information Tags describes the member and substitution tags that
can be used to get information about strings and characters.

String Casting Tags describes the [String->Splif] tag which can be used to
cast a string to an array value.

Regular Expressions describes the string tags that allow for regular
expression substitutions.

LAsso 7.1 LANGUAGE GUIDE

280

CHAPTER 14 - STRING OPERATIONS

Overview

Many LDML tags are dedicated to outputting and manipulating text. LDML
is used to format text-based HTML pages or XML data for output. LDML

is also used to process and manipulate text-based HTML form inputs and
URLs. Text processing is a central function of LDML.

As a result of this focus on text processing, the string data type is the
primary data type in LDML. When necessary, all values are cast to string
before subsequent tag or symbol processing occurs. All values are cast to
string before they are output into the HTML page or XML data which will
be served to the site visitor.

There are three types of operations that can be performed directly on
strings.

e Symbols can be used to perform string calculations within LDML tags or
to perform assignment operations within LassoScripts.

[Output: 'The' +' "+ 'String'] =» The String

e Member tags can be used to manipulate string values or to output
portions of a string.

[Output: 'The String'->(Substring: 4, 6)] =» String

e Substitution tags can be used to test the attributes of strings or to modify
string values.

[String_LowerCase: 'The String'] =» the string

Each of these methods is described in detail in the sections that follow.
This guide contains a description of every symbol and tag and many exam-
ples of their use. The LDML Reference is the primary documentation source
for LDML symbols and tags. It contains a full description of each symbol
and tag including details about each parameter.

Unicode Characters

Lasso Professional 7 supports the processing of Unicode characters in all
string tags. The escape sequence \u... can be used with 4, or 8 hexadecimal
characters to embed a Unicode character in a string. For example \u002F
reprsents a / character, \u0020 represents a space, and \u0042 represents a
capital letter B. The same type of escape sequence can be used to embed
any Unicode character \u4E26 represents the Traditional Chinese character
it

Lasso also supports common escape sequences including \r for a return
character, \n for a new-line character, \r\n for a Windows return/new-line, \f
for a form-feed character, \t for a tab, and \v for a vertical-tab.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 14 - STRING OPERATIONS 281

Casting Values to Strings

Values can be cast to the string data type automatically in many situations
or they can be cast explicitly using the [String] tag.

Table 1: String Tag

Tag Description

[String] Casts a value to type string.

Examples of automatic string casting:

Integer and decimal values are cast to strings automatically if they are
used as a parameter to a string symbol. If either of the parameters to the
symbol is a string then the other parameter is cast to a string automati-
cally. The following example shows how the integer 123 is automatically
cast to a string because the other parameter of the + symbol is the string
String.

[Output: 'String ' + 123] =¥ String 123

The following example shows how a variable that contains the integer
123 is automatically cast to a string.

[Variable: 'Number' = 123]

[Output: 'String ' + (Variable: 'Number')] =» String 123

Array, map, and pair values are cast to strings automatically when they
are output to a Web page. The value they return is intended for the
developer to be able to see the contents of the complex data type and is
not intended to be displayed to site visitors.

[Output: (Array: 'One', "Two', 'Three')]
=> (Array: (One), (Two), (Three))
[Output: (Map: 'Key1'="Value1', 'Key2'='"Value2')]
=> (Map: (Key1)=(Value1), (Key2)=(Value2))
[Output: (Pair: 'Name'="Value')]
=> (Pair: (Name)=(Value))
More information can be found in Chapter 17: Arrays and Maps.

The parameters for string substitution tags are automatically cast to
strings. The following example shows how to use the [String_Length]
substitution tag on a numeric value from a field.

[Field: 'Age'] =» 21

[String_Length: (Field: 'Age)] =» 2

LAsso 7.1 LANGUAGE GUIDE

282 CHAPTER 14 — STRING OPERATIONS

To explicitly cast a value to the string data type:

e Integer and decimal values can be cast to type string using the [String] tag.
The value of the string is the same as the value of the integer or decimal
value when it is output using the [Variable] tag.

The following example shows a math calculation and the integer opera-
tion result 579. The next line shows the same calculation with string
parameters and the string symbol result 123456.

[Output: 123 + 456] = 579
[Output: (String: 123) + (String: 456)] = 123456

Boolean values can be cast to type string using the [String] tag. The value
will always either be True or False. The following example shows a condi-
tional result cast to type string.

[Output: (String: (‘dog' == 'cat))] =¥ false

String member tags can be used on any value by first casting that value
to a string using the [String] tag. The following example shows how to
use the [String->Size] member tag on a numeric value from a field by first
casting the field value to type string.

[Field: 'Age'] =» 21

[Output: (String: (Field: 'Age"))->Size] =» 2

String Symbols

The easiest way to manipulate values of the string data type is to use the
string symbols. Table 2: String Symbols details all the symbols that can be
used with string values.

Table 2: String Symbols

Symbol Description

+ Concatenates two strings. This symbol should always be
separated from its parameters by a space.

- Deletes a substring. The first occurrence of the right
parameter is deleted from the left parameter. This
symbol should always be separated from its parameters
by a space.

* Repeats a string. The right parameter should be a
number.

= Assigns the right parameter to the variable designated
by the left parameter.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 14 - STRING OPERATIONS 283

+= Concatenates the right parameter to the value of the
left parameter and assigns the result to the variable
designated by the left parameter.

-= Deletes the right parameter from the value of the
left parameter and assigns the result to the variable
designated by the left parameter.

*= Repeats the value of the left parameter and assigns the
result to the variable designated by the left parameter.
>> Returns True if the left parameter contains the right

parameter as a substring.

I>> Returns True if the left parameter does not contain the
right parameter as a substring.

== Returns True if the parameters are equal.
I= Returns True if the parameters are not equal.

< Returns True if the left parameter comes before the right
parameter alphabetically.

<= Returns True if the left parameter comes before the right
parameter alphabetically or if the parameters are equal.

> Returns True if the left parameter comes after the right
parameter alphabetically.

>= Returns True if the left parameter comes after the right

parameter alphabetically or if the parameters are equal.

=== Returns True if the parameters are equal and both are
of type string. No casting is performed.

Each of the string symbols takes two parameters. One of the parameters
must be a string value in order for the symbol to perform the designated
string operation. Many of the symbols can also be used to perform integer
or decimal operations. If both parameters are integer or decimal values
then the mathematical operation defined by the symbol will be performed
rather than the string operation.

As long as one of the parameters of the symbol is a string the other param-
eter will be auto-cast to a string value before the operation defined by the
symbol is performed. The two exceptions to this are the * and *= symbols
which must have an integer as the right parameter.

Note: Full documentation and examples for each of the string symbols can
be found in the LDML Reference.

Examples of using the string symbols:

e Two strings can be concatenated using the + symbol. Note that the
symbol is separated from its parameters using spaces.

LAsso 7.1 LANGUAGE GUIDE

284 CHAPTER 14 — STRING OPERATIONS

[Output: 'Alpha ' + 'Beta'] =» Alpha Beta

A string and an integer can be concatenated using the + symbol. The
integer will be automatically cast to a string. Note that the symbol is
separated from its parameters using spaces.

[Output: 'Alpha ' + 1000] =» Alpha 1000

A substring can be deleted from a string using the - symbol. The
following example shows how to remove the substrings and
from a string of HTML text. Note that the symbol is separated from its
parameters using spaces.

[Output: 'Bold Text' - '' - '"] =» Bold Text

A string can be repeated using the * symbol. The following example
shows how to repeat the word Lasso three times.

[Output: 'Lasso ' * 3] =» Lasso Lasso Lasso

Strings will be automatically concatenated even if the + symbol is
omitted. This makes concatenating long sets of strings easier.

[Output: 'Alpha ' 'Beta'] =» Alpha Beta

Note: It is recommended that the + symbol be used explicitly when concat-
enating tag values or that parentheses be used around each tag call in the
expression.

Examples of using the string assignment symbols:

e A string variable can be assigned a new value using the = symbol. The
following example shows how to define a string symbol and then set it
to a new value. The new value is output using the [Output] tag.

<?LassoScript
Variable: 'StringVariable' = 'The String Value';
$StringVariable = 'New String Value';

Output: $StringVariable;
o

=> New String Variable

e A string variable can be used as a collector by concatenating new values
to it in place using the += symbol. The following example shows how to
define a string symbol and then concatenate several values to it. The final
value is output using the [Output] tag.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 14 - STRING OPERATIONS 285

<?LassoScript
Variable: 'StringVariable' = 'The ;
$StringVariable +='String ';
$StringVariable += 'Variable';
Output: $StringVariable;

2>

=>» The String Variable

Examples of using the string comparison symbols:

e Two strings can be compared for equality using the == symbol and !=
symbol. The result is a boolean True or False.
[Output: 'Alpha ' == 'Beta’] =¥ False
[Output: 'Alpha ' I= 'Beta’] =» True

e Strings can be ordered alphabetically using the <, <=, >, and <= symbols.
The result is a boolean True or False.

[Output: 'Alpha ' > 'Beta'] = False
[Output: 'Alpha ' < 'Beta'] = True

e A string can be checked to see if it contains a particular substring using
the >> symbol. The result is a boolean True or False.

[Output: 'Bold Text' >> ''] =» True

String Manipulation Tags

The string data type includes many tags that can be used to manipulate
string values. The available member tags are listed in Table 3: String
Manipulation Member Tags and the available substitution tags are listed
in Table 4: String Manipulation Tags.

In addition to the tags in this section, the tags in the following section on
String Conversion Tags can be used to modify the case of a string and
the tags in the section on Regular Expression Tags can be used for more
powerful string manipulations using regular expressions.

The member tags in this section all modify the base string in place and
do not return a value. For example, the [String->Append] tag works like the
+= symbol. In order to see the values that were appended to the string, the
variable containing the string must be output using the [Output] tag.

[Variable: 'myString' = 'Test']

[$myString->(Append: ' string.")]

[Output: $myString] =¥ Test string.

In contrast, the substitution tags return the modified string directly.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 14 - STRING OPERATIONS

[String_Concatenate: "Test', ' string."] =» Test string.

The member tags should be used when multiple modifications need to be
made to a string that is stored in a variable. The substitution tags, or string
symbols, can be used when the value is required immediately for output.

Table 3: String Manipulation Member Tags

Tag

Description

[String->Append]

[String->Merge]

[String->PadLeading]

[String->PadTrailing]

[String->Remove]

[String->RemoveLeading]

[String->RemoveTrailing]

[String->Replace]

[String->Reverse]

[String->Trim]

Casts the parameters to strings and appends them
to the string. Modifies the string and returns no value.
Requires one string parameter.

Inserts a merge string into the string. Requires two
parameters, the location at which to insert the merge
string and the string to insert. Optional third and fourth
parameters specify an offset into the merge string and
number of characters of the merge string to insert.

Pads the front of a string to a specified length with a
pad character. Modifies the string and returns no value.
Requires a length to pad the string. Optional second
parameter is the padding character (defaults to space).

Pads the end of a string to a specified length with a
pad character. Modifies the string and returns no value.
Requires a length to pad the string. Optional second
parameter is the padding character (defaults to space).

Removes a substring from the string. The first parameter
is the offset at which to start removing characters.

The second parameter is the number of characters to
remove. Defaults to removing to the end of the string.

Removes all instances of the parameter from the
beginning of the string. Modifies the string and returns
no value. Requires a single string parameter.

Removes all instances of the parameter from the end
of the string. Modifies the string and returns no value.
Requires a single string parameter.

Replaces every occurence of a substring. Requires two
parameters, the substring to find and the replacement
string. Modifies the string and returns no value. Optional
third parameter specifies the maximum number of
replacements to perform.

Reverses the string. Optional parameters specify

a character offset and length for a substring to be
reversed. Defaults to reversing the entire string. Modifies
the string and returns no value.

Removes all white space from the start and end of the
string. Modifies the string in place and returns no value.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 14 - STRING OPERATIONS 287

Note: Full documentation and examples for each of the string member tags
can be found in the LDML Reference.

To replace a substring:
Use the [String->Replace] tag. The following example replaces every instance
of and within the string to or.

[Variable: 'myString' = 'Red and Yellow and Blue']
[$myString->(Replace: 'and','or')]
[Output: $myString]

=» Red or Yellow or Blue

To remove white space from the start and end of a string:

Use the [String->Trim] tag. The following example removes all the white space
from the start and end of the string leaving just the relevant content.

[Variable: 'myString' =" Green and Purple il
[$myString->(Trim)]
[Output: $myString]

=» Green and Purple

Table 4: String Manipulation Tags

Tag Description
[String_Concatenate] Concatenates all of its parameters into a single string.
[String_Insert] Takes three parameters: a string, a -Text keyword/value

parameter which defines the text to be inserted, and

a -Position parameter which defines the offset into the
string at which to insert the text. Returns a new string
with the specified text inserted at the specified location.

[String_Remove] Takes three parameters: a string, a -StartPosition
keyword/value parameter, and a -EndPosition keyword/
value parameter. Returns the string with the substring
from -StartPosition to -EndPosition removed.

[String_RemoveLeading] Takes two parameters: a string and a -Pattern keyword/
value parameter. Returns the string with any occurrences
of the pattern removed from the start.

[String_RemoveTrailing] Takes two parameters: a string and a -Pattern keyword/
value parameter. Returns the string with any occurrences
of the pattern removed from the end.

LAsso 7.1 LANGUAGE GUIDE

288

CHAPTER 14 - STRING OPERATIONS

[String_Replace] Takes three parameters: a string, a -Find keyword/value
parameter, and a -Replace keyword/value parameter.
Returns the string with the first instance of the -Find
parameter replaced by the -Replace parameter.

Note: Full documentation and examples for each of the string tags can be
found in the LDML Reference.

Examples of using string manipulation tags:
¢ The [String_Extract] tag can be used to return a portion of a string. In the
following example five characters of the string A Short String are returned
[String_Extract: 'A Short String', -StartPosition=3, -EndPosition=8] =» Short

e The [String_Remove] tag is similar, but rather than returning a portion of
a string, it removes a portion of the string and returns the remainder.
In the following example five characters of the string A Short String are
removed and the remainder is returned.

[String_Remove: 'A Short String', -StartPosition=3, -EndPosition=8] =» A String

¢ The [String_RemoveLeading] and [String_RemoveTrailing] tags can be used to
remove a repeating character from the start or end of a string. In the
following example asterisks are removed from a string *A Short String*.
[String_RemoveLeading: -Pattern="",
(String_RemoveTrailing: -Pattern="", "*A Short String*)]

=> A Short String

e The [String_Replace] tag can be used to replace a portion of a string with
new characters. In the following example the word Short is replaced by
the word Long.

[String_Replace: 'A Short String', -Find="Short', -Replace='Long’] =» A Long String

Note: For more powerful string manipulation see the Regular Expressions
section below.

String Conversion Tags

The string data type includes many tags that can be used to change the case
of string values. The available member tags are listed in Table 5: String

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 14 - STRING OPERATIONS 289

Conversion Member Tags and the available substitution tags are listed in
Table 6: String Conversion Tags.

The member tags in this section all modify the base string in place and
do not return a value. In order to see the converted string, the variable
containing the string must be output using the [Outpuf] tag.

[Variable: 'myString' = 'Test]

[$myString->(UpperCase)]

[Output: $myString] =» TEST

In contrast, the substitution tags return the modified string directly.
[String_UpperCase: 'Test'] =» TEST

The member tags should be used when multiple modifications need to be
made to a string that is stored in a variable. The substitution tags can be
used when the value is required immediately for output.

Table 5: String Conversion Member Tags

Tag Description

[String->Foldcase] Converts all characters in the string for a case-
insensitive comparison. Modifies the string and returns
no value.

[String->Lowercase] Converts all characters in the string to lowercase.

Modifies the string in place and returns no value.
Accepts an optional locale/country code for Unicode
conversion.

[String->Titlecase] Converts the string to titlecase with the first character
of each word capatilized. Modifies the string in place
and returns no value. Accepts an optional locale/country
code for Unicode conversion.

[String->toLower] Converts a character of the string to lowercase.
Requires the position of the character to be modifed.
Modifies the string in place and returns no value.

[String->toUpper] Converts a character of the string to uppercase.
Requires the position of the character to be modifed.
Modifies the string in place and returns no value.

[String->toTitle] Converts a character of the string to titlecase. Requires
the position of the character to be modifed. Modifies the
string in place and returns no value.

[String->Unescape] Converts a string from the hexadecimal URL encoding.

[String->Uppercase] Converts all characters in the string to uppercase.
Modifies the string in place and returns no value.
Accepts an optional locale/country code for Unicode
conversion.

LAsso 7.1 LANGUAGE GUIDE

290

CHAPTER 14 - STRING OPERATIONS

Note: Full documentation and examples for each of the string member tags
can be found in the LDML Reference.

Table 6: String Conversion Tags

Tag Description

[String_LowerCase] Returns the concatenation of all of its parameters in
lowercase.

[String_UpperCase] Returns the concatenation of all of its parameters in
lowercase.

Examples of using string conversion tags:

The [String_UpperCase] and [String_Lowercase] tags can be used to alter the case
of a string. The following example shows the result after using these tags
on the string A Short String.

[String_UpperCase: 'A Short String] =» A SHORT STRING
[String_LowerCase: 'A Short String'] =» a short string

String Validation Tags

The string data type includes many tags that can be used to compare and
validate string values. The available member tags are listed in Table 7:
String Validation Member Tags and the available substitution tags are
listed in Table 8: String Validation Tags.

All of these tags return a boolean value True or False depending on whether
the test succeeds or not.

Table 7: String Validation Member Tags

Tag Description

[String->BeginsWith] Returns True if the string begins with the parameter.
Comparison is case insensitive. Requires a single string
parameter.

[String->Compare] This tag has three forms. In the first, it returns 0 if the

parameter is equal to the string, 1 if the string contains
the parameter, and -1 if the string does not contain the
parameter. Comparison is case insensitive by default. An
optional -Case parameter makes the comparison case
sensitive. Requires a single string parameter.

LAsso 7.1 LANGUAGE GUIDE

[String->Contains]

[String->EndsWith]

[String->Equals]

CHAPTER 14 - STRING OPERATIONS 291

The second form requires three parameters. The first
two parameters are an offset and length into the third
string parameter. The comparison is only performed with
this parameter substring.

The third form requires two additional parameters. The
fourth and fifth parametres are an offset and length
into the base string. The comparison is only performed
between the base and parameter substrings.

[String->CompareCodePointOrder] accepts the same
parameters as [String->Compare], but provides accurate
comparisons for Unicode characters with code points
U+10000 and above.

Returns True if the string contains the parameter as a
substring. Comparison is case insensitive. Requires a
single string parameter.

Returns True if the string ends with the parameter.
Comparison is case insensitive. Requires a single string
parameter.

Returns True if the parameter of the tag is equal to the
string. Comparison is case insensitive. Equivalent to the
== symbol.

Note: Full documentation and examples for each of the string member tags
can be found in the LDML Reference.

To compare two strings:

Use the string comparison member tags. The following code checks
whether a string stored in a variable is equal to or contains another string.

[Variable: 'testString' = 'A short string’]

[Output: $testString->(BeginsWith: 'a’)] =» True
[Output: $testString->(BeginsWith: 'A short)] =» True
[Output: $testString->(BeginsWith: 'string')] =» False
[Output: $testString->(EndsWith: 'string')] =» True

[Output: $testString->

[Output: $testString->(Equals: 'a short string')] =» True

[Output: $testString->(Compare: 'a short string', -Case)] =» False
[Output: $testString->(Compare: 3, 5, 'short')] =» True

[Output: $testString->(Compare: 3, 5, 'x short other', 3, 5)] =» True

(
(
E
(Contains: 'short)] =» True
(
(
(
(

LAsso 7.1 LANGUAGE GUIDE

292

CHAPTER 14 - STRING OPERATIONS

Table 8: String Validation Tags

Tag Description

[String_EndsWith] Returns boolean True if the string ends with the string
specified in the -Find parameter. Takes two parameters:
a string value and a -Find keyword/value parameter.

Note: Full documentation and examples for each of the string tags can be
found in the LDML Reference.

String Information Tags

The string data type includes many tags that can be used to get informa-
tion about string and character values. The available member tags are listed
in Table 9: String Information Member Tags and the available substitu-
tion tags are listed in Table 10: String Information Tags. In addition, tags
which are specific to getting information about characters in a string are
listed in Table 11: Character Information Member Tags.

These tags return different data types depending on what information is
being retrieved about the string. Those tags that return a character posi-
tion or require a character position as a parameter all number characters
starting from 1 for the first character in the string.

Table 9: String Information Member Tags

Tag Description

[String->Find] Returns the position at which the first parameter is found
within the string or 0 if the first parameter is not found
within the string. Requires a single string parameter.

[String->Get] Returns a specific character from the string. Requires a
single integer parameter.

[String->Size] Returns the number of characters in the string.[String-
>Length] is a synonym.

[String->SubString] Returns a substring. The start of the substring is defined

by the first parameter and the length of the substring is
defined by the second parameter. Requires two integer
parameters.

Note: Full documentation and examples for each of the string member tags
can be found in the LDML Reference.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 14 - STRING OPERATIONS 293

To return the length of a string:
e The length of a string can be returned using the [String->Size] tag.
[Output: 'Alpha'->Size] =» 5

e The length of a [Variable] value, [Field] value or any value returned by an
LDML tag can be returned using the [String->Size] tag.

[Output: $StringVariable + ' ' + $StringVariable->Size] =» Alpha 5
[Output: (Field: 'First_Name') + ' " + (Field: 'First_Name')->Size] =» Joe 3

To return a portion of a string:

e A specific character from a string can be returned using the [String->Get]
tag. In the following example, the third character of Alpha is returned.

[Output: 'Alpha’->(Get: 3)] =» p

e A specific range of characters from a string can be returned using the
[String->Substring] tag. In the following example, six characters are returned
from the string, starting at the third character.

[Output: 'A String Value'->(Substring: 3, 6)] =¥ String

e The start of a string can be returned using the [String->Substring] tag with
the first parameter set to 1. The second parameter will define how many
characters are returned from the start of the string. In the following
example, the first eight characters of the string are returned.

[Output: 'A String Value'->(Substring: 1, 8)] =» A String
¢ The end of a string can be returned using the [String->Substring] tag with

the second parameter omitted. The following example returns the
portion of the string after the tenth character.

[Output: 'A String Value'->(Substring: 10)] =» Value

Table 10: String Information Tags

Tag Description

[String_Extract] Takes three parameters: a string, a -StartPosition
keyword/value parameter, and a -EndPosition keyword/
value parameter. Returns a substring from -StartPosition
to -EndPosition.

[String_FindPosition] Takes two parameters: a string value and a -Find

keyword/value parameter. Returns the location of the
-Find parameter in the string parameter.

[String_IsAlpha] Returns boolean True if the string contains only
alphabetic characters (a-z or A-Z).
[String_IsAlphaNumeric] Returns boolean True if the string contains only

alphabetic characters or numerals (a-z, A-Z, or 0-9).

LAsso 7.1 LANGUAGE GUIDE

294 CHAPTER 14 — STRING OPERATIONS

[String_IsDigit] Returns boolean True if the string contains only
numerals (0-9).

[String_IsHexDigit] Returns boolean True if the string contains only
hexadecimal numerals (0-9 and a-f).

[String_IsLower] Returns boolean True if the string contains only
lowercase alphabetic characters (a-z).

[String_IsNumeric] Returns boolean True if the string contains only
numerals, hyphens, or periods.

[String_IsPunctuation] Returns boolean True if the string contains only
punctuation characters.

[String_IsSpace] Returns boolean True if the string contains only white
space.

[String_IsUpper] Returns boolean True if the string contains only

uppercase alphabetic characters (A-Z).
[String_Length] Returns the number of characters in the string.

Note: Full documentation and examples for each of the string tags can be
found in the LDML Reference.

Example of using [String_Length] tag:

The [String_Length] tag can be used to return the number of characters in a
string. This tag returns the same results as the [String->Size] tag except the
method of calling the tag is somewhat different.

The following example shows how to return the length of the string
A Short String using both the [String_Length] tag and the [String->Size] tag. The
result in both cases is 14.

[String_Length: 'A Short String’] =» 14
[Output: 'A Short String'->Size] =» 14

Examples of using string validation tags:

The characters in a string can be checked to see if they meet certain criteria
using the [String_ls...] tags. Each character in the string is checked to see if
it meets the criteria of the tag. If any single character does not meet the
criteria then False is returned.

¢ In the following example a string word is checked to see which validation
strings it passes. The string is in lowercase and consists entirely of alpha-
betic characters. It is not in uppercase and does not consist entirely of
numeric characters.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 14 — STRING OPERATIONS 295

[String_IsAlpha: 'word’] =» True
[String_IsAlphaNumeric: 'word'] =¥ True
[String_IsLower: 'word'] =¥ True
[String_IsNumeric: 'word] =» False
[String_IsUpper: ‘word] =¥ False

¢ In the following example a string 2468 is checked to see which validation
strings it passes. The string consists entirely of numeric characters. It does
not consist entirely of alphabetic characters.

[String_IsAlpha: 2468 =» False
[String_IsAlphaNumeric: '2468'] =» True
[String_IsNumeric: 24681 =» True

¢ Some of the validation tags are intended to be used on individual char-
acters. The following example shows how each of these tags can be used.
[String_IsDigit: '9'1 =» True
[String_IsHexDigit: 'a'l =» True
[String_IsPunctuation: '.'] =¥ True
[String_IsSpace: ' '] =» True

Table 11: Character Information Member Tags

Tag Description

[String->CharDigitValue] Returns the integer value of a character or -1 if the
character is alphabetic. Requires a single parameter that
specifies the location of the character to be inspected.

[String->CharName] Returns the Unicode name of a character. Requires
a single parameter that specifies the location of the
character to be inspected.

[String->CharType] Returns the Unicode type of a character. Requires
a single parameter that specifies the location of the
character to be inspected.

[String->Digit] Returns the integer value of a character according to
a particular radix. Requires two parameters. The first
specifies the location of the character to be inspected.
The second specifies the radix of the result (e.g. 16 for
hexadecimal).

[String->GetNumericValue] Returns the decimal value of a character or a negative
number of the character is alphabetic. Requires a single
parameter that specifies the location of the character to
be inspected.

[String->IsAlnum] Returns True if the character is alphanumeric. Requires
a single parameter that specifies the location of the
character to be inspected.

LAsso 7.1 LANGUAGE GUIDE

296 CHAPTER 14 — STRING OPERATIONS

[String->IsAlpha]

[String->IsBase]

[String->IsChntrl]

[String->IsDigit]

[String->IsLower]

[String->IsPrint]

[String->IsSpace]

[String->IsTitle]

[String->IsUpper]

[String->IsWhitespace]

[String->IsUAIphabetic]

[String->IsULowercase]

[String->IsUUppercase]

[String->IsUWhiteSpace]

Returns True if the character is alphabetic. Requires
a single parameter that specifies the location of the
character to be inspected.

Returns True if the character is part of the base
characters of Unicode. Requires a single parameter that
specifies the location of the character to be inspected.

Returns True if the character is a control character.
Requires a single parameter that specifies the location
of the character to be inspected.

Returns True if the character is numeric. Requires
a single parameter that specifies the location of the
character to be inspected.

Returns True if the character is lowercase. Requires
a single parameter that specifies the location of the
character to be inspected.

Returns True if the character is printable (i.e. not a
control character). Requires a single parameter that
specifies the location of the character to be inspected.

Returns True if the character is a space. Requires
a single parameter that specifies the location of the
character to be inspected.

Returns True if the character is titlecase. Requires
a single parameter that specifies the location of the
character to be inspected.

Returns True if the character is uppercase. Requires
a single parameter that specifies the location of the
character to be inspected.

Returns True if the character is white space. Requires
a single parameter that specifies the location of the
character to be inspected.

Returns True if the character has the Unicode alphabetic
attribute. Requires a single parameter that specifies the
location of the character to be inspected.

Returns True if the character has the Unicode lowercase
attribute. Requires a single parameter that specifies the
location of the character to be inspected.

Returns True if the character has the Unicode uppercase
attribute. Requires a single parameter that specifies the
location of the character to be inspected.

Returns True if the character has the Unicode white
space attribute. Requires a single parameter that
specifies the location of the character to be inspected.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 14 - STRING OPERATIONS 297

Note: Full documentation and examples for each of the string member tags
can be found in the LDML Reference.

To inspect the Unicode properties of a string:

Use the character information member tags. The following example shows
the information that is provided for a standard ASCII character b. The char-
acter name and type are provided according to the Unicode standard. The
[String->Integer] tag returns the decimal ASCII value for the character. The
[String->Digit] tag with a radix of 16 returns the hexadecimal value for the
character.

[Output: 'b'->(CharName: 1)] =» LATIN SMALL LETTER B

[Output: 'b'->(CharType: 1)] = LOWERCASE_LETTER

[Output: 'b"->(IsLower: 1)] =» True

[Output: 'b'->(IsUpper: 1)] =» False

[Output: 'b'->(IsWhiteSpace: 1)] =» False
[Output: 'b"->(Integer: 1)] =» 98
[Output: 'b'->(Digit: 1, 16)] =» 11

The information tags can be used on any Unicode characters. The
following example shows the tags being used on a Traditional Chinese
character iff that roughly translates to “and”. The character is neither upper-
case nor lowercase and is identified by the Unicode reference 4E26.

[Output: 'if->(CharName: 1)] =» CJK UNIFIED IDEOGRAPH-4E26

[Output: iifi'->(CharType: 1)] =» OTHER_LETTER

[Output: iifi->(IsLower: 1)] =» False

[Output: iifi'->(IsUpper: 1)] =» False

[Output: iifi->(IsWhiteSpace: 1)] =» False

s

Note: The character #fi can be represented in a string by \u4E26 or in HTML
as the entity 並.

Table 12: Unicode Tags

Tag Description

[String_GetUnicodeVersion] Returns the version of the Unicode standard which
Lasso supports.

[String_CharFromName] Returns the character corresponding to the specified
Unicode character name.

LAsso 7.1 LANGUAGE GUIDE

298

CHAPTER 14 - STRING OPERATIONS

String Casting Tags

The string data type includes many tags which can be used to cast a value
to or from the string data type. These tags are documented in the Casting
Values to Strings section earlier in this chapter and in corresponding
sections in the chapters for each data type.

In addition, the [String->Split] tag can be used to cast a string into an array.
This tag is described in Table 13: String Casting Member Tags.

Table 13: String Casting Member Tags

Tag Description

[String->Split] Splits the string into an array of strings based on the
delimiter specified in the first parameter. This tag does
not modify the string, but returns the new array. Requires
a single string parameter.

To convert a string into an array:

A string can be converted into an array using the [String->Splif] tag. A single
parameter defines what character should be used to split the string into the
multiple elements of the array. The following example splits a string on the
space character, returning an array of words from the string.

[Output: 'A String Value'->(Split: ' ")]
=> (Array: (A), (String), (Value))

Regular Expressions

The [String_FindRegExp] and [String_ReplaceRegExp] tags can be used to
perform regular expressions find and replace routines on text strings. A
regular expression is a powerful pattern-matching language that allows
complex replacements to be specified easily.

Note: Full documentation of regular expression methodology is outside the
scope of this manual. The implementation of regular expressions in LDML
closely matches that in the Perl language. Consult a standard reference on
regular expressions for more information about how to use this flexible tech-
nology.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 14 - STRING OPERATIONS 299

Table 14: Regular Expression Tags

Tag Description

[String_FindRegExp] Takes two parameters: a string value and a -Find
keyword/value parameter. Returns an array with each
instance of the -Find regular expression in the string
parameter. Optional -IgnoreCase parameter uses case
insensitive patterns.

[String_ReplaceRegExp] Takes three parameters: a string value, a -Find
keyword/value parameter, and a -Replace keyword/value
parameter. Returns an array with each instance of
the -Find regular expression replaced by the value of
the -Replace regular expression the string parameter.
Optional -IgnoreCase parameter uses case insensitive
parameters. Optional -ReplaceOnlyOne parameter
replaces only the first pattern match.

A regular expression is assembled by creating a match string. The simplest
match string is just a word containing characters or numbers. The match
string bird matches the word “bird”. Match strings are case sensitive unless
the -IgnoreCase parameter is specified. Match strings can also contain
symbols such as \w which matches any alphanumeric character. The match
string b\wrd would match the word “bird” or the word “bard”. Square
brackets can be used to generate custom sets of characters or ranges of
characters. The match string [bclard will match either the word “bard” or the
word “card”. The match string [bBJard will match either the word “bard” or
the word “Bard”.

All of the symbols which can be used in match strings are detailed in Table
15: Regular Expression Matching Symbols.

LAsso 7.1 LANGUAGE GUIDE

300 CHAPTER 14 — STRING OPERATIONS

Table 15: Regular Expression Matching Symbols

Symbol

Description

a-zA-Z0-9

[a-2]

W
\\s

\S
\\d
\D

Alphanumeric characters (and any other characters not
defined as symbols) match the specified character. Case
sensitive.

Period matches any single character.
Circumflex matches the beginning of a line.
Dollar sign matches the end of a line.

Escapes the next character. This allows any symbol to
be specified as a matching character.

Character class. Matches any character contained within
the square brackets.

Character exception class. Matches any character which
is not contained within the square brackets.

Character range. Matches any character between the
two character specified. Can be used with characters or
numbers.

Matches a tab character.
Matches a return character.
Matches a new-line character.
Matches a double quote.
Matches a single quote.

Matches an alphanumeric 'word' character (underscore
included).

Matches a non-alphanumeric character.

Matches a blank, whitespace character (space, tab,
carriage return, etc.).

Matches a non-blank, non-whitespace character.
Matches a digit character (0-9).
Matches a non-digit character.

Note: Other than the built-in escaped characters \n, \r, \t, \", and \' all other
escaped characters in regular expressions should be preceded by two back-

slashes.

Matching symbols can be used as components of more complex expres-
sions using combination symbols. The simplest combination symbol is
+ which matches the preceding matching symbol one or more times. The
expression [abcd]+ matches any word containing only the letters a, b, or ¢
including “cab”, “cad”, “dab”, “bad”, “add”, etc.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 14 - STRING OPERATIONS 301

All of the symbols which can be used in match strings are detailed in Table
16: Regular Expression Combination Symbols.

Table 16: Regular Expression Combination Symbols

Symbol

Description

*D

+?

{n}
{n}

{n.m}

Ly

Alternation. Matches either the character before or the
character after the symbol.

Grouping for output. Defines a named group for output.
Nine groups can be defined.

Grouping without output. Can be used to create a logical
grouping that should not be assigned to an output.

Asterisk. Matches 0 or more repetitions of the preceding
symbol.

Non-greedy variant works the same as asterisk, but
matches the shortest string possible.

Plus Sign. Matches 1 or more repetitions of the
preceding symbol.

Non-greedy variant works the same as the plus sign, but
matches the shortest string possible.

Question Mark. Makes the preceding symbol optional.
Matches n repetitions of the preceding symbol.
Matches at least n repetitions of the preceding symbol.

Matches at least n, but no more than m repetitions of
the preceding symbol.

Non-greedy variant works the same as the bracketed
expressions, but matches the shortest string possible.

The parentheses are a special combination symbol that defines a portion
of the match string as a named sub-expression that can be referenced in
the replacement string. For example a matching string of blue(world) would
match the word blueworld. A replacement string of green\1 would then result
in greenworld as output. The word world is named as sub-expression 1 by

virtue of the parentheses.

Table 17: Regular Expression Replacement Symbols

Symbol Description

a-zA-Z 09 Alphanumeric characters (and any other characters not
defined as symbols) place the specified character in the
output.

W ... \9 Names a group in the replace string. Up to nine groups

can be specified using the numerals 1 through 9.

LAsso 7.1 LANGUAGE GUIDE

302 CHAPTER 14 — STRING OPERATIONS

Note: Other than the built-in escaped characters \n, \r, \t, \", and \" all other
escaped characters in regular expressions should be preceded by two back-

slashes.

Table 18: Regular Expression Advanced Symbols

Symbol

Description

(#)
(%)
(%)

(<=)

(<)

\\b
\B

Regular expression comment. The contents are not
interpreted as part of the regular expression.

Sets the remainder of the regular expression to be case
insensitive. Similar to specifying -IgnoreCase.

Sets the remainder of the regular expression to be case
sensitive (the default).

The contents of this group will be matched case
insensitive and the group will not be added to the output.

The contents of this group will be matched case
sensitive and the group will not be added to the output.

Positive look ahead assertion. The contents are matched
following the current position, but not added to the output
pattern.

Negative look ahead assertion. The same as above,
but the content must not match following the current
position.

Positive look behind assertion. The contents are
matched preceding the current position, but not added to
the output pattern.

Negative look behind assertion. The same as above,
but the contents must not match preceding the current
position.

Matches the boundary between a word and a space.
Matches a boundary not between a word and a space.

Examples of using [String_ReplaceRegExp]:

The [String_ReplaceRegExp] tag works much like [String_Replace] except that
both the -Find parameter and the -Replace can be regular expressions.

e In the following example, every occurrence of the world Blue in the string
is replaced by the HTML code Blue so that the word
Blue appears in blue on the Web page. The -Find parameter is specified so

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 14 - STRING OPERATIONS 303

either a lowercase or uppercase b will be matched. The -Replace parameter
references \\1 to insert the actual value matched into the output.
[String_ReplaceRegExp: ‘Blue Lake sure is blue today.',
-Find='([Bb]lue)',
-Replace='\\1', -EncodeNone]

=» Blue lake sure is blue today.

¢ In the following example, every email address is replaced by an HTML
anchor tag that links to the same email address. The \\w symbol is used
to match any alphanumeric characters or underscores. The at sign @
matches itself. The period must be escaped \\. in order to match an
actual period and not just any character. This pattern matches any email
address of the type name@example.com.
[String_ReplaceRegExp: 'Send email to documentation@blueworld.com.’,
-Find="(\w+@\w+\.\\w+)',
-Replace='\\1', -EncodeNone]

=» Send email to
documentation@blueworld.com.

Examples of using [String_FindRegExp]:

The [String_FindRegExp] tag returns an array of items which match the
specified regular expression within the string. The array contains the full
matched string in the first element, followed by each of the matched subex-
pressions in subsequent elements.

¢ In the following example, every email address in a string is returned in
an array.
[String_FindRegExp: 'Send email to documentation@blueworld.com.’,
-Find="w+@\\Ww+\.\\w+1]
=> (Array: (documentation@blueworld.com))

¢ In the following example, every email address in a string is returned
in an array and sub-expressions are used to divide the username and
domain name portions of the email address. The result is an array with
the entire match string, then each of the sub-expressions.

[String_FindRegExp: 'Send email to documentation@blueworld.com.’,
-Find="(\Ww+)@(\WH\.\\w+)]

=» (Array: (documentation@blueworld.com), (documentation), (blueworld.com))

e In the following example, every word in the source is returned in an
array. The first character of each word is separated as a sub-expression.
The returned array contains 16 elements, one for each word in the source

LAsso 7.1 LANGUAGE GUIDE

304

CHAPTER 14 - STRING OPERATIONS

string and one for the first character sub-expression of each word in the
source string.

[String_FindRegExp: 'The quick brown fox jumped over a lazy dog.',
-Find="(\\w)\\w*]

=> (Array: (The), (T), (quick), (q), (brown), (b), (fox), (f), (jumped), (),
(over), (o), (a), (a), (lazy), (1), (dog), (d))

The resulting array can be divided into two arrays using the following
code. This code loops through the array (stored in Result_Array) and
places the odd elements in the array Word_Array and the even elements in
the array Char_Array using the [Repetition] tag.
[Variable: 'Word_Array' = (Array), 'Char_Array'=(Array)]
[Variable: 'Result_Array' = (String_FindRegExp:
"The quick brown fox jumped over a lazy dog.", -Find="(\\w)\\w™")]
[Loop: $Result_Array->Size]
[If: (Repetition) == 2]
[$Char_Array->(Insert: $Result_Array->(Get: (Loop_Count)))]
[Else]
[$Word_Array->(Insert: $Result_Array->(Get: (Loop_Count)))]
/]
[Loop]

[Output:$Word_Array]

[Output: $Char_Array]

=>
(Array: (The), (quick), (brown), (fox), (jumped), (over), (a), (lazy), (dog))

(Array: (T), (q), (b), (f), (). (0). (a), (1), (d))

In the following example, every phone number in a string is returned
in an array. The \\d symbol is used to match individual digits and the
{3} symbol is used to specify that three repetitions must be present. The
parentheses are escaped \\(and \}) so they aren't treated as grouping char-
acters.
[String_FindRegExp: 'Phone (800) 555-1212 for information.’
-Find="\(\d{3}\\) \d{3}-\d{4}]

=> (Array: ((800) 555-1212))

In the following example, only words contained within HTML bold tags
 ... are returned. Positive look ahead and look bind assertions are
used to find the contents of the tags without the tags themselves. Note
that the pattern inside the assertions uses a non-greedy modifier.
[String_FindRegExp: This is some sample text!'
-Find='(?<=).+2(?=)

=> (Array: (sample text))

LAsso 7.1 LANGUAGE GUIDE

305

Chapter 15
Math Operations

Numbers in Lasso are stored and manipulated using the decimal and
integer data types. This chapter details the symbols and tags that can be
used to manipulate decimal and integer values and to perform mathemat-
ical operations.

e Overview provides an introduction to the decimal and integer data types
and how to cast values to and from other data types.

e Math Symbols describes the symbols that can be used to create math-
ematical expressions.

Decimal Member Tags describes the member tags that can be used with
the decimal data type.

Integer Member Tags describes the member tags that can be used with
the integer data type.

Math Tags describes the substitution and process tags that can be used
with numeric values.

Overview

Mathematical operations and number formatting can be performed in
LDML using a variety of different methods on integer and decimal values.
There are three types of operations that can be performed:

e Symbols can be used to perform mathematical calculations within
LDML tags or to perform assignment operations within LassoScripts.

¢ Member Tags can be used to format decimal or integer values or to
perform bit manipulations.

¢ Substitution Tags can be used to perform advanced calculations.

LAsso 7.1 LANGUAGE GUIDE

306

CHAPTER 15 — MATH OPERATIONS

Each of these methods is described in detail in the sections that follow.
This guide contains a description of every symbol and tag and many exam-
ples of their use. The LDML Reference is the primary documentation source
for LDML symbols and tags. It contains a full description of each symbol
and tag including details about each parameter.

Integer Data Type

The integer data type represents whole number values. Basically, any posi-
tive or negative number which does not contain a decimal point is an
integer value in Lasso. Examples include -123 or 456. Integer values may
also contain hexadecimal values such as 0x1A or Oxff.

Spaces must be specified between the + and - symbols and the parameters,
otherwise the second parameter of the symbol might be mistaken for an
integer literal.

Table 1: Integer Tag

Tag Description

[Integer] Casts a value to type integer.

Examples of explicit integer casting:

e Strings which contain numeric data can be cast to the integer data type
using the [Integer] tag. The string must start with a numeric value. In the
following examples the number 123 is the result of each explicit casting.
Only the first integer found in the string 123 and then 456 is recognized.

[Integer: 123 =» 123
[Integer: '123 and then 4561 =» 123

e Decimals which are cast to the integer data type are rounded to the
nearest integer.

[Integer: 123.000000] =» 123
[Integer: 123.999] =» 124

Decimal Data Type

The decimal data type represents real or floating point numbers. Basically,
any positive or negative number which contains a decimal point is a
decimal value in Lasso. Examples include -123.0 and 456.789. Decimal
values can also be written in exponential notation as in 1.23e2 which is
equivalent to 1.23 times 102 or 123.0.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 15 - MATH OPERATIONS 307

Spaces must be specified between the + and - symbols and the parameters,
otherwise the second parameter of the symbol might be mistaken for a
decimal literal.

Table 2: Decimal Tag

Tag Description
[Decimal] Casts a value to type decimal.

The precision of decimal numbers is always displayed as six decimal places
even though the actual precision of the number may vary based on the
size of the number and its internal representation. The output precision of
decimal numbers can be controlled using the [Decimal->Format] tag described
later in this chapter.

Examples of implicit decimal casting:

¢ Integer values are cast to decimal values automatically if they are used as
a parameter to a mathematical symbol. If either of the parameters to the
symbol is a decimal value then the other parameter is cast to a decimal
value automatically. The following example shows how the integer 123 is
automatically cast to a decimal value because the other parameter of the
+ symbol is the decimal value 456.0.

[Output: 456.0 + 123] =» 579.000000

The following example shows how a variable with a value of 123 is auto-
matically cast to a decimal value.

[Variable: 'Number'=123]
[Output: 456.0 + (Variable: 'Number')] =» 579.000000

Examples of explicit decimal casting:

e Strings which contain numeric data can be cast to the decimal data type
using the [Decimal] tag. The string must start with a numeric value. In the
following examples the number 123.000000 is the result of each explicit
casting. Only the first decimal value found in the string 123 and then 456 is
recognized.

[Decimal: 123" =¥ 123.000000

[Decimal: '123.07 =» 123.000000
[Decimal: '123 and then 456'] =» 123.000000

e Integers which are cast to the decimal data type simply have a decimal
point appended. The value of the number does not change.

[Decimal: 123] = 123.000000

LAsso 7.1 LANGUAGE GUIDE

308 CHAPTER 15 — MATH OPERATIONS

Mathematical Symbols

The easiest way to manipulate integer and decimal values is to use the
mathematical symbols. Table 3: Mathematical Symbols details all the
symbols that can be used with integer and decimal values.

Table 3: Mathematical Symbols

Symbol Description

+ Adds two numbers. This symbol should always be
separated from its parameters by a space.

- Subtracts the right parameter from the left parameter.
This symbol should always be separated from its
parameters by a space.

Multiplies two numbers.
/ Divides the left parameter by the right parameter.

% Modulus. Calculates the left parameter modulo the right
number. Both parameters must be integers.

Each of the mathematical symbols takes two parameters. If either of the
parameters is a decimal value then the result will be a decimal value. Many
of the symbols can also be used to perform string operations. If either of
the parameters is a string value then the string operation defined by the
symbol will be performed rather than the mathematical operation.

Note: Full documentation and examples for each of the mathematical
symbols can be found in the LDML Reference.

Examples of using the mathematical symbols:

e Two numbers can be added using the + symbol. The output will be a
decimal value if either of the parameters are a decimal value. Note that
the symbol + is separated from its parameters by spaces and negative
values used as the second parameter should be surrounded by paren-
theses.

[Output: 100 + 50] =» 150
[Output: 100 + (-12.5)] =» 87.500000

¢ The difference between numbers can be calculated using the - symbol.
The output will be a decimal value if either of the parameters are a
decimal value.
[Output: 100 - 50] =» 50
[Output: 100 - (-12.5)] =» 112.500000

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 15 — MATH OPERATIONS 309

e Two numbers can be multiplied using the * symbol. The output will be a
decimal value if either of the parameters are a decimal value.

[Output: 100 * 50] = 5000
[Output: 100 * (-12.5)] = -1250.000000

Table 4: Mathematical Assignment Symbols

Symbol Description

= Assigns the right parameter to the variable designated
by the left parameter.

+= Adds the right parameter to the value of the left
parameter and assigns the result to the variable
designated by the left parameter.

-= Subtracts the right parameter from the value of the
left parameter and assigns the result to the variable
designated by the left parameter.

*= Multiplies the value of the left parameter by the value of
the right parameter and assigns the result to the variable
designated by the left parameter.

I= Divides the value of the left parameter by the value of
the right parameter and assigns the result to the variable
designated by the left parameter.

%= Modulus. Assigns the value of the left parameter
modulo the right parameter to the left parameter. Both
parameters must be integers.

Each of the symbols takes two parameters. The first parameter must be a
variable that holds an integer or decimal value. The second parameter can
be any integer or decimal value. The result of the operation is calculated
and then stored back in the variable specified as the first operator.

Note: Full documentation and examples for each of the mathematical
symbols can be found in the LDML Reference.

Examples of using the mathematical assignment symbols:

e A variable can be assigned a new value using the = symbol. The
following example shows how to define an integer variable and then set
it to a new value. The new value is output using the [Output] tag.

<?LassoScript
Variable: 'IntegerVariable'= 100;
$IntegerVariable = 123456;

Output: $IntegerVariable;
>

=> 123456

LAsso 7.1 LANGUAGE GUIDE

310 CHAPTER 15 — MATH OPERATIONS

e A variable can be used as a collector by adding new values using the +=
symbol. The following example shows how to define an integer variable
and then add several values to it. The final value is output using the
[Output] tag.

<?LassoScript
Variable: 'IntegerVariab'e= 0;
$integerVariable += 123;
$integerVariable += (-456);

Output: $IntegerVariable;
o

= -333

Table 5: Mathematical Comparison Symbols

Symbol Description

== Returns True if the parameters are equal.
I= Returns True if the parameters are not equal.

< Returns True if the left parameter is less than the right
parameter.
<= Returns True if the left parameter is less than or equal to

the right parameter.

> Returns True if the left parameter is greater than the
right parameter.

>= Returns True if the left parameter is greater than or
equal to the right parameter.

Each of the mathematical symbols takes two parameters. If either of the
parameters is a decimal value then the result will be a decimal value. Many
of the symbols can also be used to perform string operations. If either of
the parameters is a string value then the string operation defined by the
symbol will be performed rather than the mathematical operation.

Note: Full documentation and examples for each of the mathematical
symbols can be found in the LDML Reference.

Examples of using the mathematical comparison symbols:

e Two numbers can be compared for equality using the == symbol and !=
symbol. The result is a boolean True or False. Integers are automatically
cast to decimal values when compared.

[Output: 100 == 123] =» False
[Output: 100.0 != (-123.0)] = True
[Output: 100 ==100.0] =» True
[Output: 100.0 != (-123)] =» False

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 15 - MATH OPERATIONS 311

e Numbers can be ordered using the <, <=, >, and <= symbols. The result is
a boolean True or False.

[Output: -37 > 0] =¥ False
[Output: 100 < 1000.0] =» True

Decimal Member Tags

The decimal data type includes one member tag that can be used to format
decimal values.

Table 6: Decimal Member Tag

Tag Description

[Decimal->SetFormat] Specifies the format in which the decimal value will be
output when cast to string or displayed to a visitor.

Note: Full documentation and examples for this tag can be found in the
LDML Reference.

Decimal Format

The [Decimal->SetFormat] tag can be used to change the output format of a
variable. When the variable is next cast to data type string or output to the
format file it will be formatted according to the preferences set in the last
call to [Decimal->SetFormat] for the variable. If the [Decimal->SetFormat] tag is
called with no parameters it resets the formatting to the default. The tag
takes the following parameters.

LAsso 7.1 LANGUAGE GUIDE

312 CHAPTER 15 — MATH OPERATIONS

Table 7: [Decimal->SetFormat] Parameters

Keyword Description

-Precision The number of decimal points of precision that should
be output. Defaults to 6.

-DecimalChar The character which should be used for the decimal
point. Defaults to a period.

-GroupChar The character which should be used for thousands

grouping. Defaults to empty.

-Scientific Set to True to force output in exponential notation.
Defaults to False so decimals are only output in
exponential notation if required.

-Padding Specifies the desired length for the output. If the
formatted number is less than this length then the
number is padded.

-PadChar Specifies the character that will be inserted if padding is
required. Defaults to a space.

-PadRight Set to True to pad the right side of the output. By
default, padding is appended to the left side of the
output.

To format a decimal number as US currency:

Create a variable that will hold the dollar amount, DollarVariable. Use
[Decimal->SetFormat] to set the -Precision to 2 and the -GroupChar to comma.
[Variable: 'DollarVariable' = 0.0]

[$DollarVariable->(SetFormat: -Precision=2, -GroupChar='')]

$[Output: $DollarVariable]

[Variable: 'DollarVariable' = $DollarVariable + 1000]
[$DollarVariable->(SetFormat: -Precision=2, -GroupChar=')]

$[Output: $DollarVariable]

[Variable: 'DollarVariable' = $DollarVariable / 8]
[$DollarVariable->(SetFormat: -Precision=2, -GroupChar=')]

$[Output: $DollarVariable]

=
$0.00

$1,000.00

$12.50

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 15 - MATH OPERATIONS 313

Integer Member Tags

The integer data type includes many member tags that can be used to
format or perform bit operations on integer values. The available member
tags are listed in Table 8: Integer Member Tags.

Table 8: Integer Member Tags

Tag

Description

[Integer->SetFormat]
[Integer->BitAnd]
[Integer->BitOr]
[Integer->BitXOr]

[Integer->BitNot]
[Integer->BitShiftLeft]

[Integer->BitShiftRight]

[Integer->BitClear]
[Integer->BitFlip]
[Integer->BitSet]
[Integer->BitTest]

Specifies the format in which the integer value will be
output when cast to string or displayed to a visitor.

Performs a bitwise And operation between each bit in
the base integer and the integer parameter.

Performs a bitwise Or operation between each bit in the
base integer and the integer parameter.

Performs a bitwise Exclusive-Or operation between each
bit in the base integer and the integer parameter.

Flips every bit in the base integer.

Shifts the bits in the base integer left by the number
specified in the integer parameter.

Shifts the bits in the base integer right by the number
specified in the integer parameter.

Clears the bit specified in the integer parameter.
Flips the bit specified in the integer parameter.
Sets the bit specified in the integer parameter.

Returns true if the bit specified in the integer parameter
is true.

Note: Full documentation and examples for each of the integer member tags
can be found in the LDML Reference.

Integer Format

The [Integer->SetFormat] tag can be used to change the output format of a
variable. When the variable is next cast to data type string or output to
the format file it will be formatted according to the preferences set in the
last call to [Integer->SetFormat] for the variable. If the [Integer->SetFormat] tag
is called with no parameters it resets the formatting to the default. The tag
takes the following parameters.

LAsso 7.1 LANGUAGE GUIDE

314 CHAPTER 15 — MATH OPERATIONS

Table 9: [Integer->SetFormat] Parameters

Keyword Description

-Hexadecimal If set to True, the integer will output in hexadecimal
notation.

-Padding Specifies the desired length for the output. If the

formatted number is less than this length then the
number is padded.

-PadChar Specifies the character that will be inserted if padding is
required. Defaults to a space.

-PadRight Set to True to pad the right side of the output. By
default, padding is appended to the left side of the
output.

To format an integer as a hexadecimal value:

Create a variable that will hold the value, HexVariable. Use [Integer->SetFormat]
to set -Hexadecimal to True..
[Variable: 'HexVariable' = 255]

[$HexVariable->(SetFormat: -Hexadecimal=True)]

[Output: $HexVariable]

[Variable: 'HexVariable' = $HexVariable / 5]
[$HexVariable->(SetFormat: -Hexadecimal=True)]

[Output: $HexVariable]

=>
0xff

0x33

Bit Operations

Bit operations can be performed within Lasso’s 64-bit integer values. These
operations can be used to examine and manipulate binary data. They can
also be used for general purpose binary set operations.

Integer literals in LDML can be specified using hexadecimal notation. This
can greatly aid in constructing literals for use with the bit operation. For
example, Oxff is the integer literal 255. The [Integer->SetFormat] tag with a
parameter of -Hexadecimal=True can be used to output hexadecimal values.
The bit operations are divided into three categories.

e The [Integer->BitAnd], [Integer->BitOr], and [Integer->BitXOr] tags are used to
combine two integer values using the specified boolean operation. In

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 15 - MATH OPERATIONS 315

the following example the boolean Or of 0x02 and 0x04 is calculated and
returned in hexadecimal notation.

[Var: 'BitSet'=0x02]

[$BitSet->(SetFormat: -Hexadecimal=True]

[$BitSet->(BitOr: 0x04]

[Output: $BitSet]

=> 0x06

¢ The [Integer->BitShiftLeft], [Integer->BitShiftRight], and [Integer->BitNot] tags are
used to modify the base integer value in place. In the following example,
0x02 is shifted left by three places and output in hexadecimal notation.
[Var: 'BitSet'=0x02]
[$BitSet->(SetFormat: -Hexadecimal=Trug]
[$BitSet->(BitShift: 3]
[Output: $BitSet]

= 0x10

¢ The [Integer->BitSet], [Integer->BitClear], [Integer->BitFlip], and [Integer->BitTest]
tags are used to manipulate or test individual bits from an integer value.
In the following example, the second bit an integer is set and then
tested.
[Var: BitSet'=0]
[$BitSet->(BitSet: 2)]
[$BitSet->(BitTest 2)]

=> True

LAsso 7.1 LANGUAGE GUIDE

316

CHAPTER 15 — MATH OPERATIONS

Math Tags

LDML contains many substitution tags that can be used to perform math-
ematical functions. The functionality of many of these tags overlaps the
functionality of the mathematical symbols. It is recommended that you use
the equivalent symbol when one is available.

Additional tags detailed in the section on Trigonometry and Advanced

Math.

Table 10: Math Tags

Tag Description

[Math_Abs] Absolute value. Requires one parameter.

[Math_Add] Addition. Returns sum of multiple parameters.
[Math_Ceil] Ceiling. Returns the next higher integer. Requires one

[Math_ConvertEuro]

[Math_Div]

[Math_Floor]

[Math_Max]
[Math_Min]
[Math_Mod]

[Math_Mult]

[Math_Random]
[Math_Rint]
[Math_Roman]

[Math_Round]

[Math_Sub]

parameter.

Converts between the Euro and other European Union
currencies.

Division. Divides each of multiple parameters in order
from left to right.

Floor. Returns the next lower integer. Requires one
parameter.

Maximum of all parameters.
Minimum of all parameters.

Modulo. Requires two parameters. Returns the value of
the first parameter modulo the second parameter.

Multiplication. Returns the value of multiple parameters
multiplied together.

Returns a random number.
Rounds to nearest integer. Requires one parameter

Converts a number into roman numerals. Requires one
positive integer parameter.

Rounds a number with specified precision. Requires
two parameters. The first value is rounded to the same
precision as the second value.

Subtraction. Subtracts each of multiple parameters in
order from left to right.

Note: Full documentation and examples for each of the math tags can be
found in the LDML Reference.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 15 - MATH OPERATIONS 317

If all the parameters to a mathematical substitution tag are integers then
the result will be an integer. If any of the parameter to a mathematical
substitution tag is a decimal then the result will be a decimal value and
will be returned with six decimal points of precision.

In the following example the same calculation is performed with integer
and decimal parameters to show how the results vary. The integer example
returns 0 since 0.125 rounds down to zero when cast to an integer.
[Math_Div: 1, 8] =» 0
[Math_Div: 1.0, 8] =» 0.125000

Examples of using math substitution tags:

The following are all examples of using math substitution tags to calculate
the results of various mathematical operations.

[Math_Add: 1, 2, 3, 4, 5] = 15

[Math_Add: 1.0, 100.0] =» 101.000000

[Math_Sub: 10, 5] =» 5

[Math_Div: 10, 9] =» 11

[Math_Div: 10, 8.0] =» 12.500000

[Math_Max: 100, 200] =» 200

Rounding Numbers

Lasso provides a number of different methods for rounding numbers:

e Numbers can be rounded to integer using the [Math_RInf] tag to round
to the nearest integer, the [Math_Floor] tag to round to the next lowest
integer, or the [Math_Ceil] tag to found to the next highest integer.

[Math_RInt: 37.6] =» 38
[Math_Floor: 37.6] =» 37
[Math_Ceil: 37.6] =» 38

e Numbers can be rounded to arbitrary precision using the [Math_Round]
tag with a decimal parameter. The second parameter should be of the
form 0.01, 0.0001, 0.000001, etc.

[Math_Round: 3.1415926, 0.0001] =» 3.1416
[Math_Round: 3.1415926, 0.001] =» 3.142
[Math_Round: 3.1415926, 0.01] =» 3.14
[Math_Round: 3.1415926, 0.1] =» 3.1

e Numbers can be rounded to an even multiple of another number using
the [Math_Round] tag with an integer or decimal parameter.

[Math_Round: 1463, 1000] =» 1000
[Math_Round: 1463, 500] =» 1500
[Math_Round: 1463, 20] = 1460
[Math_Round: 1463, 3] <» 1464

LAsso 7.1 LANGUAGE GUIDE

318

CHAPTER 15 — MATH OPERATIONS

[Math_Round: 3.1415926, 0.5] =» 3.0
[Math_Round: 3.1415926, 0.25] =» 3.25
[Math_Round: 3.1415926, 1.000] =» 3.000
[Math_Round: 3.1415926, 5.0] =» 5.0

¢ If a rounded result needs to be shown to the user, but the actual value
stored in a variable does not need to be rounded then either the
[Integer->SetFormat] or [Decimal->SetFormat] tags can be used to alter how the
number is displayed. See the documentation of these tags earlier in the
chapter for more information.

Random Numbers

The [Math_Random] tag can be used to return a random number in a given

range. The result can optionally be returned in hexadecimal notation (for
use in HTML color variables).

Note: When returning integer values [Math_Random] will return a maximum
32-bit value. The range of returned integers is approximately between
+/- 2,000,000,000.

Table 11: [Math_Random] Parameters

Keyword Description

-Min Minimum value to be returned.

-Max Maximum value to be returned. For integer results
should be one greater than maximum desired value.

-Hex If specified, returns the result in hexadecimal notation.

To return a random integer value:

In the following example a random number between 1 and 99 is returned.
The random number will be different each time the page is loaded.

[Math_Random: -Min=1, -Max=100]
=> 55

To return a random decimal value:

In the following example a random decimal number between 0.0 and 1.0
is returned. The random number will be different each time the page is
loaded.

[Math_Random: -Min=0.0, -Max=1.0]
=» 0.55342

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 15 - MATH OPERATIONS 319

To return a random color value:

In the following example a random hexadecimal color code is returned.
The random number will be different each time the page is loaded. The
range is from 16 to 256 to return two-digit hexadecimal values between 10
and FF.

<font color="#[Math_Random: -Min=16, -Max=256, -Hex][Math_Random: -Min=16,
-Max=256, -Hex][Math_Random: -Min=16, -Max=256, -Hex]">Color

=» Color

Trigonometry and Advanced Math

Lasso provides a number of tags for performing trigonometric functions,
square roots, logarighthms, and calculating exponents.

Table 12: Trigonmetric and Advanced Math Tags

Tag Description

[Math_ACos] Arc Cosine. Requires one parameter. The return value is
in radians between 0 and .

[Math_ASin] Arc Sine. Requires one parameter. The return value is in
radians between -2/x and 2/r.

[Math_ATan] Arc Tangent. Requires one parameter. The return value
is in radians between -2/7 and 2/r.

[Math_ATan2] Arc Tangent of a Quotient. Requires two parameters.
The return value is in radians between -x and .

[Math_Cos] Cosine. Requires one parameter.

[Math_Exp] Natural Exponent. Requires one parameter. Returns e
raised to the specified power.

[Math_Ln] Natural Logarithm. Requires one parameter. Also [Math_
Log].

[Math_Log10] Base 10 Logarithm. Requires one parameter.

[Math_Pow] Exponent. Requires two parameters: a base and an
exponent. Returns the base raised to the exponent.

[Math_Sin] Sine. Requires one parameter.

[Math_Sqrt] Square Root. Requires one positive parameter.

[Math_Tan] Tangent. Requires one parameter.

LAsso 7.1 LANGUAGE GUIDE

320 CHAPTER 15 — MATH OPERATIONS

Examples of using advanced math substitution tags:

The following are all examples of using math substitution tags to calculate
the results of various mathematical operations.

[Math_Pow: 3, 3] = 27

[Math_Sqrt: 100.0] =» 10.000000

Locale Formatting

Lasso can format currency, percentages, and scientific values according to
the rules of any country or locale. The tags in Table 13: Locale Formatting
Tags are used for this purpose. Each tag accepts an optional language code
and country code which specifies the locale to use for the formatting.

The default is language en for English and country US for the United States.
A list of valid language and country codes can be found in the LDML
Reference.

Table 13: Locale Formatting Tags

Tag Description

[Currency] Formats a number as currency. Requires one parameter,
the currency amount to format. The second parameter
specifies the language and the third paramter specifies
the country for the desired locale.

[Percent] Formats a number as a percentage. Requires one
parameter, the currency amount to format. The second
parameter specifies the language and the third paramter
specifies the country for the desired locale.

[Scientific] Formats a number using scientific notation. Requires
one parameter, the currency amount to format. The
second parameter specifies the language and the third
paramter specifies the country for the desired locale.

[Locale_Format] Formats a number. Requires one parameter, the decimal
amount to format. The second parameter specifies the
language and the third paramter specifies the country for
the desired locale.

LAsso 7.1 LANGUAGE GUIDE

321

Chapter 16

Date and Time Operations

Dates and times in Lasso can be stored and manipulated as special date

and duration data types. This chapter describes the tags that can be used to

manipulate dates and times.

e Overview provides an introduction to using the Lasso date and duration
data types.

e Date Tags describes the substitution and member tags that can be used
to cast, format, and display dates and times.

Duration Tags describes the substitution and member tags that can be
used to cast, format, and display durations.

Date and Duration Math describes the tags that are used to perform
calculations using both dates and durations.

Overview

This chapter introduces the date and the duration data types in LDML

7. Dates are a data type that represent a calendar date and/or clock time.
Durations are a data type that represents a length of time in hours,
minutes, and seconds. Date and duration data types can be manipulated
in a similar manner as integer data types, and operations can be performed
to determine date differences, time differences, and more. Date data types
may also be formatted and converted to a number of predefined or custom
formats, and specific information may be extrapolated from a date data
type (day of week, name of month, etc.).

Since dates and durations can take many forms, values that represent a

date or a duration must be explicitly cast as date or duration data types
using the [Date] and [Duration] tags. For example, a value of 01/01/2002 12:30:00

LAsso 7.1 LANGUAGE GUIDE

322

CHAPTER 16 — DATE AND TIME OPERATIONS

will be treated as a string data type until it is cast as a date data type using
the [Date] tag:
[Date:'01/01/2002 12:30:00']

Once a value is cast as a date or duration data type, special tags, accessors,
conversion operations, and math operations may then be used.

Internal Date Libraries

When performing date operations, Lasso uses internal date libraries to
automatically adjust for leap years and daylight saving time for the local
time zone in all applicable regions of the world (not all regions recognize
daylight saving time). The current time and time zone are based on that of
the Web server.

Daylight Saving Time Note: Lasso extracts daylight saving time information
from the operating system, and can only support daylight saving time conver-
sions between the years 1970 and 2038. For information on special excep-
tions with date calculations during daylight saving time, see all the Date and
Duration Math section.

Date Tags

For Lasso to recognize a string as a date data type, the string must be
explicitly cast as a date data type using the [Date] tag.
[Date: '5/22/2002 12:30:00']

When casting as a date data type using the [Date] tag, the following date
formats are automatically recognized as valid date strings by Lasso: These
automatically recognized date formats are U.S. or MySQL dates with a four
digit year followed by an optional 24-hour time with seconds. The “/”, “-”
and “:” characters are the only punctuation marks recognized in valid date
strings by Lasso when used in the formats shown below.

1/25/2002

1/25/2002 12:34

1/25/2002 12:34:56

1/25/2002 12:34:56 GMT

2002-01-25
2002-01-25 12:34:56
2002-01-25 12:34:56 GMT

’

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 16 — DATE AND TIME OPERATIONS 323

Lasso also recognizes a number of special purpose date formats which are
shown below. These are useful when working with HTTP headers or email
message headers.

20020125T12:34:56

Tue, Dec 17 2002 12:34:56 -0800
Tue Dec 17 12:34:56 PST 2002

The date formats which contain time zone information (e.g. -0800 or PST)
will be recognized as GMT dates. The time zone will be used to automati-
cally adjust the date/time to the equivalent GMT date/time.

If using a date format not listed above, custom date formats can be defined
as date data types using the [Date] tag with the -Format parameter.

The following variations of the automatically recognized date formats are
valid without using the -Format parameter.

e If the [Date] tag is used without a parameter then the current date and
time are returned. Milliseconds are rounded to the nearest second.

If the time is not specified then it is assumed to be 00:00:00, midnight on
the specified date.

mm/dd/yyyy =» mm/dd/yyyy 00:00:00

If the seconds are not specified then the time is assumed to be even on
the minute.

mm/dd/yyyy hh:mm =» mm/dd/yyyy hh:mm:00

An optional GMT designator can be used to specify Greenwich Mean
Time rather than local time.

mm/dd/yyyy hh:mm:ss GMT

Two digit years are assumed to be in the 21st century if they are less than
40 or in the 20th century if they are greater than or equal to 40. Two digit
years range from 1940 to 2039. For best results, always use four digit years.

mm/dd/00 =» mm/dd/2000

mm/dd/39 =» mm/dd/2039

mm/dd/40 =» mm/dd/1940

mm/dd/99 =» mm/dd/1999

Days and months can be specified with or without leading 0s. The
following are all valid Lasso date strings.

1/1/02 01/01/02

1/1/2002 01/01/2002

1/1/2002 16:35 01/01/2002 16:35
1/1/2002 16:35:45 01/01/2002 16:35:45
1/1/2002 12:35:45 GMT 01/01/2002 12:35:45 GMT

LAsso 7.1 LANGUAGE GUIDE

324

CHAPTER 16 — DATE AND TIME OPERATIONS

To cast a value as a date data type:

If the value is in a recognized string format described previously, simply
use the [Date] tag.

[Date: '05/22/2002"] =» 05/22/2002 00:00:00

[Date: '05/22/2002 12:30:00'] =» 05/22/2002 12:30:00

[Date: '2002-22-05"7 =» 2002-22-05 00:00:00

If the value is not in a string format described previously, use the [Date]
tag with the -Format parameter. For information on how to use the
-Format parameter, see the Formatting Dates section later in this chapter.

[Date: '5.22.02 12:30', -Format="%m.%d.%y %H%M] =» 5.22.02 12:30
[Date: '20020522123000', -Format="%Y %m%d%H%M" =» 200205221230

Date values which are stored in database fields or variables can be cast to
the date data type using the date tag. The format of the date stored in the
field or variable should be in one of the format described above or the
-Format parameter must be used to explicitly specify the format.

[Date: (Variable: 'myDate’)]

[Date: (Field: 'Modified_Date")]

[Date: (Action_Param: 'Birth_Date')]

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 16 — DATE AND TIME OPERATIONS 325

Date Tags

LDML contains date substitution tags that can be used to cast date strings
as date data types, format date data types, and perform date/time conver-
sions.

Table 1: Date Substitution Tags

Tag Description

[Date] Used to cast values to date data types when used with
a valid date string as a parameter. An optional -Format
parameter with a date format string may be used to
explicitly cast an unknown date format.

When no parameter is used, it returns the current

date and time. An optional -DateGMT keyword/value
parameter returns GMT date and time.

Also accepts parameters for -Second, -Minute, -Hour,
-Day, -Month, -Year, and -DateGMT for constructing and
outputting dates. Note, these parameters should be not
be used in concert with a string parameter.

[Date_Format] Changes the output format of a Lasso date. Requires
a Lasso date data type or valid Lasso date string as
a parameter (auto-recognizes the same formats as
the [Date] tag). The -Format keyword/value parameter
defines how the date should be reformatted. See the
Formatting Dates section below for more information.

[Date_SetFormat] Sets a date format for output using the [Date] tag for an
entire Lasso format file. The -Format parameter uses
a format string. An optional -TimeOptional parameter
causes the output to not return 00:00:00 if there is no

time value.

[Date_GMTToLocal] Converts a date/time from Greenwich Mean Time to
local time of the machine running Lasso Service.

[Date_LocalToGMT] Converts a date/time from local time to Greenwich Mean
Time.

[Date_GetLocalTimeZone] Returns the current time zone of the machine running

Lasso Service as a standard GMT offset string (e.g.
-0700). Optional -Long parameter shows the name of
the time zone (e.g. PDT).

[Date_Minimum] Returns the minimum possible date recognized by a
Date data type in Lasso.
[Date_Maximum] Returns the maximum possible date recognized as a

Date data type in Lasso.

LAsso 7.1 LANGUAGE GUIDE

326 CHAPTER 16 — DATE AND TIME OPERATIONS

Note: Full documentation and examples for each date tag can be found in
the LDML Reference.

To display date values:

e The current date/time can be displayed with [Date]. The example below
assumes a current date of 5/22/2002 14:02:05.

[Date] =» 5/22/2002 14:02:05

e The [Date] tag can be used to assemble a date from individual parameters.
The following tag assembles a valid Lasso date string by specifying each
part of the date separately. Since the time is not specified it is assumed to
be midnight on the specified day.

[Date: -Year=2002, -Month=>5, -Day=22] =» 5/22/2002 00:00:00

To convert date values to and from GMT:

Any date data type can instantly be converted to and from Greenwich
Mean Time using the [Date_GMTToLocal] and [Date_LocalToGMT] tags. These
tags will only convert the current time zone of the machine running Lasso
Service. The following example uses Pacific Time (PDT) as the current time
zone.

[Date_GMTToLocal:(Date:'5/22/2002 14:02:05")] =» 5/22/2002 09:02:05
[Date_LocalToGMT:(Date:'5/22/2002 14:02:05')] =¥ 5/22/2002 07:02:05

To show the current time zone for the server running Lasso Service:
The [Date_GetLocalTimeZone] tag displays the current time zone of the
machine running Lasso Service. The following example uses Pacific Time
(PDT) as the current time zone.

[Date_GetLocalTimeZone] =» 0700

[Date_GetLocalTimeZone: -Long] =» PDT

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 16 — DATE AND TIME OPERATIONS 327

Formatting Dates

The [Date] tag and the [Date_Format] tag each have a -Format parameter

which accepts a string of symbols that define the format of the date which
should be parsed in the case of the [Date] tag or formatted in the case of the
[Date_Format] tag. The symbols which can be used in the -Format parameter
are detailed in the following table.

Table 2: Date Format Symbols

Symbol Description

%D U.S. date format (mm/dd/yyyy).

%Q MySQL date format (yyyy-mm-dd).

%q MySQL timestamp format (yyyymmddhhmmss)
%or 12-hour time format (hh:mm:ss [AM/PM]).

%T 24-hour time format (hh:mm:ss).

%Y 4-digit year.

%y 2-digit year.

%m Month number (01=January, 12=December).

%B Full English month name (e.g. "January").

%b Abbreviated English month name (e.g. "Jan").
%d Day of month (01-31).

%W Day of week (01=Sunday, 07=Saturday).

%A Full English weekday name (e.g. "Wednesday").
%a Abbreviated English weekday name (e.g. "Wed").
%H 24-hour time hour (0-23).

%h 12-hour time hour (1-12).

%M Minute (0-59).

%S Second (0-59).

%p AM/PM for 12-hour time.

%G GMT time zone indicator.

%z Time zone offset in relation to GMT (e.g. +0100, -0800).
%l Time zone designator (e.g. PST, GMT-1, GMT+12)

Each of the date format symbols that returns a number automatically pads
that number with 0 so all values returned by the tag are the same length.

¢ An optional underscore _ between the percent sign % and the letter
designating the symbol specifies that space should be used instead of
0 for the padding character (e.g. %_m returns the month number with
space padding).

LAsso 7.1 LANGUAGE GUIDE

328

CHAPTER 16 — DATE AND TIME OPERATIONS

e An optional hyphen - between the percent sign % and the letter desig-
nating the symbol specifies that no padding should be performed (e.g.
%-m returns the month number with no padding).

e A literal percent sign can be inserted using %%.

Note: If the %z or %Z symbols are used when parsing a date, the resulting
Lasso date object will regpresent the equivalent GMT date/time.

To convert Lasso date data types to various formats:

The following examples show how to convert either Lasso date data types
or valid Lasso date strings to alternate formats.
[Date_Format: '06/14/2001", -Format="%A, %B %d] =» Thursday, June 14
[Date_Format: '06/14/2001', -Format='%a, %b %d]=» Thu, Jun 14
[Date_Format: '2001-06-14', -Format="%Y %m%d%H%M =» 200106140000

[Date_Format: (Date:'1/4/2002"), -Format='%m.%d.%y'] =» 01.04.02
[Date_Format: (Date:"1/4/2002 02:30:00'), -Format='%B, %Y 1 =» January, 2002
[Date_Format: (Date:'1/4/2002 02:30:00'), -Format="%r"] =¥» 2:30 AM

To import and export dates from MySQL:

A common conversion in Lasso is converting MySQL dates to and from
U.S. dates. Dates are stored in MySQL in the following format yyyy-mm-dd.
The following example shows how to import a date in this format to a U.S.
date format using the [Date_Format] tag with an appropriate -Format param-
eter.

[Date_Format: "2001-05-22', -Format="%D"] =» 5/22/2001
[Date_Format: '5/22/2001", -Format="%Q’] =» 2001-05-22

[Date_Format: (Date:'2001-05-22'), -Format='%D"] =» 5/22/2001
[Date_Format: (Date:'5/22/2001"), -Format='%Q’] =» 2001-05-22

To set a custom Lasso date format for a file:

Use the [Date_SetFormat] tag. This allows all date data types on a page to
be output in a custom format without the use of the [Date_Format] tag. The
format specified is only valid for Lasso code contained in the same file
below the [Date_SetFormat] tag.

[Date_SetFormat: -Format="%m%d%y']

The example above allows the following Lasso date to be output in a
custom format without the [Date_Format] tag.

[Date:'01/01/2002' =» 010102

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 16 — DATE AND TIME OPERATIONS 329

Date Format Member Tags

In addtion to [Date_Format] and [Date_SetFormat], LDML 7 also offers
the [Date->Format] member tags for performing format conversions on date
data types.

Table 3: Date Format Member Tags

Symbol Description

[Date->Format] Changes the output format of a Lasso date data type.
May only be used with Lasso date data types. Requires
a date format string as a parameter.

[Date->SetFormat] Sets a date output format for a particular Lasso date
data type object. Requires a date format string as a
parameter. An optional -TimeOptional parameter causes
the output to not return 00:00:00 if there is no time
value.

To convert Lasso date data types to various formats:
The following examples show how to convert Lasso date data types to alter-
nate formats using the [Date->Format] tag.

[Var:'MyDate'=(Date:'2002-06-14 00:00:00')]

[$MyDate->Format: '%A, %B %d'] =» Tuesday, June 14, 2002

[Var:'MyDate'=(Date:'06/14/2002 09:00:00")]
[$MyDate->Format: '%Y%m%d%H%M] =» 200206140900

[Var:'MyDate'=(Date:'01/31/2002')]
[$MyDate->Format: '%d.%m.%y'] =» 31.01.02

[Var:'MyDate'=(Date:'09/01/2002')]
[$MyDate->Format: '%B, %Y '] =» September, 2002

To set an output format for a specific date data type:
Use the [Date->SetFormat] tag. This causes all instances of a particular date
data type object to be output in a specified format.

[Var:'MyDate'=(Date:'01/01/2002')]
[$MyDate->(SetFormat: '%m%d%y')]

The example above causes all instances of [Var:'MyDate'] in the current
format file to be output in a custom format without the [Date_Format] or
[Date->Format] tag.

[Var:'MyDate'] =» 010102

LAsso 7.1 LANGUAGE GUIDE

Date Accessors

CHAPTER 16 — DATE AND TIME OPERATIONS

A date accessor function returns a specific integer or string value from a
date data type, such as the name of the current month or the seconds of
the current time. All date accessor tags in LDML 7 are defined in Table 4:

Date Accessor Tags.

Table 4: Date Accessor Tags

Tag

Description

[Date->Year]

[Date->Month]

[Date->Day]
[Date->DayofYear]

[Date->DayofWeek]

[Date->Week]

[Date->Hour]

[Date->Minute]
[Date->Second]
[Date->Millisecond]

[Date->Time]
[Date->GMT]

Returns a four-digit integer representing the year for a
specified date. An optional -Days parameter returns the
number of days in the current year (e.g. 365).

Returns the number of the month (1=January,
12=December) for a specified date (defaults to current
date). Optional -Long returns the full English month
name (e.g. "January") or -Short returns an abbreviated
English month name (e.g. "Jan"). An optional -Days
parameter returns the number of days in the current
month (e.g. 31).

Returns the integer day of the month (e.g. 15).

Returns integer day of year (out of 365). Will work with
leap years as well (out of 366).

Returns the number of the day of the week (1=Sunday,
7=Saturday) for a specified date. Optional -Short returns
an abbreviated English day name (e.g. "Sun") and -Long
returns the full English day name (e.g. "Sunday").

Returns the integer week number for the year of the
specified date (out of 52). The -Sunday parameter
returns the integer week of year starting from Sunday
(default). A -Monday parameter returns integer week of
year starting from Monday.

Returns the hour for a specified date/time. An optional
-Short parameter returns integer hour from 1 to 12
instead of 1 to 24.

Returns integer minutes from 0 to 59 for a specified
date/time.

Returns integer seconds from 0 to 59 for the specified
date/time.

Returns the current integer milliseconds of the current
date/time only.

Returns the time of a specified date/time.

Returns whether the specified date is in local or GMT
time.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 16 — DATE AND TIME OPERATIONS 331

To use date accessors:

e The individual parts of the current date/time can be displayed using the
[Date->...] tags.

[(Date:'5/22/2002 14:02:05')->Year] =» 2002
[(Date:'5/22/2002 14:02:05')->Month] =» 5

Date:'2/22/2002 14:02:05')->(Month: -Long)] =» February
Date:'5/22/2002 14:02:05')->Day] =» 22

Date:'5/22/2002 14:02:05')->(DayOfWeek: -Short)] =» Wed
Date:'5/22/2002 14:02:05')->Time] =¥ 14:02:05
Date:'5/22/2002 14:02:05'")->Hour] =» 14

Date:'5/22/2002 14:02:05')->Minute] =» 02
Date:'5/22/2002 14:02:05')->Second] =» 05

oo e —

[
[
[
[
[
[
[

e The [Date->Millisecond] tag can only return the current number of milli-
second value (as related to the clock time) for the machine running
Lasso Service.

[Date->Millisecond] =» 957

Duration Tags

A duration is a special data type that represents a length of time. A dura-
tion is not a 24-hour clock time, and may represent any number of hours,
minutes, or seconds.

Similar to dates, durations must be cast as duration data types before they
can be manipulated. This is done using the [Duration] tag. Durations may be
cast in an hours:minutes:seconds format, or just as seconds.

[Duration:'1:00:00'] =» 1:00:00
[Duration:'3600 =» 1:00:00

Once a value has been cast as a duration data type, duration calculations
and accessors may then be used. Durations are especially useful for calcu-
lating lengths of time under 24 hours, although they can be utilized for
any lengths of time. Durations are independent of calendar months and
years, and durations that equal a length of time longer that one month
are only estimates based on the average length of years and months (i.e.
365.2425 days per years, 30.4375 days per month). Duration tags in LDML 7
are summarized in Table 5: Duration Tags.

LAsso 7.1 LANGUAGE GUIDE

332

Table 5: Duration Tags

CHAPTER 16 — DATE AND TIME OPERATIONS

Tag

Description

[Duration]

[Duration->Year]
[Duration->Month]

[Duration->Week]
[Duration->Day]
[Duration->Hour]
[Duration->Minute]
[Duration->Second]

Casts values as a duration data type. Accepts a duration
string for hours:minutes:seconds, or an integer number
of seconds. An optional -Week parameter automatically
adds a specified number of weeks to the duration.
Optional -Day, -Hour, -Minute, and -Second parameters
may also be used for automatically adding day, hour,
minute, and time increments to the duration.

Returns the integer number of years in a duration
(based on an average of 365.25 days per year).

Returns the integer number of months in a duration
(based on an average of 30.4375 days per month).

Returns the integer number of weeks in the duration.
Returns the integer number of days in the duration.
Returns the integer number of hours in the duration.
Returns the integer number of minutes in the duration.
Returns the integer number of seconds in the duration.

To cast and display durations:

e Durations can be created using the [Duration] tag with the -Week, -Day,
-Hour, -Minute, and -Second parameters. This always returns durations in
hours:minutes:seconds format.

[Duration: -Week=5, -Day=3, -Hour=12] =» 924:00:00
[Duration: -Day=4, -Hour=2, -Minute=30] =» 98:30:00
[Duration: -Hour=12, -Minute=45, -Second=50] =» 12:45:50
[Duration: -Hour=3, -Minute=30] =» 03:30:00

[Duration: -Minute=15, -Second=30] =» 00:15:30

[Duration: -Second=30] =» 00:00:30

e The -Week, -Day, -Hour, -Minute, and -Second parameters of the [Duration] tag
may also be combined with a base duration for ease of use when setting
a duration value. This always returns durations in hours:minutes:seconds

format.

[Duration:'5:30:30", -Week=5, -Day=3, -Hour=12] =» 929:30:30
[Duration:'1:00:00', -Day=4, -Hour=2, -Minute=30] =» 99:30:00
[Duration:'3600', -Hour=12, -Minute=45, -Second=50] =» 13:45:50

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 16 — DATE AND TIME OPERATIONS 333

e Specific increments of time can be returned from a duration using the
[Duration->...] tags.

[(Duration:'8766:30:45')->Year] =» 1
[(Duration:'8766:30:45')->Month] =» 12
Duration:'8766:30:45')->Week] =» 52
Duration:'8766:30:45')->Day] =» 365
Duration:'8766:30:45')->Hour] =» 8767
Duration:'8766:30:45')->Minute] =» 525991
Duration:'8766:30:45')->Second] =» 31559445

o —

[
[
[
[
[

Date and Duration Math

Date calculations in Lasso can be performed by using special date math
tags, durations tags, and math symbols in LDML 7. Date calculations that
can be performed include adding or subtracting year, month, week, day,
and time increments to and from dates, and calculating time durations.
Durations are a new data type that represent a length of time in seconds
and are introduced in the preceding Duration Tags section.

Daylight Saving Time Note: Lasso does not account for changes to and
from daylight saving time when performing date math and duration calcu-
lations. One should take this into consideration when performing a date
or duration calculation across dates that encompass a change to or from
daylight saving time (resulting date may be off by one hour).

Date Math Tags

LDML 7 provides two date math substitution tags for performing date
calculations. These tags are generally used for adding increments of time
to a date, and output a Lasso date in the format specified. These tags are
summarized in Table 6: Date Math Tags.

LAsso 7.1 LANGUAGE GUIDE

334

CHAPTER 16 - DAT

E AND TIME OPERATIONS

Table 6: Date Math Tags

Tag

Description

[Date_Add] Adds a specified amount of time to a Lasso date data

type or valid Lasso date string. First parameter is a
Lasso date. Keyword/value parameters define what
should be added to the first parameter: -Millisecond,
-Second, -Minute, -Hour, -Day, -Week, -Month, or -Year.

[Date_Subtract] Subtracts a specified amount of time from a Lasso date

data type or valid Lasso date string. First parameter
is a Lasso date. Keyword/value parameters define
what should be subtracted from the first parameter:
-Millisecond, -Second, -Minute, -Hour, -Day, -Week,
-Month, or -Year.

[Date_Difference] Returns the time difference between two specified

dates. A duration is the default return value. Optional
parameters may be used to ouput a specific integer
time value instead of a duration: -Millisecond, -Second,
-Minute, -Hour, -Day, -Week, -Month, -Year. Lasso
rounds to the nearest integer when using these optional
parameters.

To

add time to a date:

A specified number of hours, minutes, seconds, days, or weeks can be
added to a date data type or valid date string using the [Date_Add] tag.
The following examples show the result of adding different values to the

cur

To
As

rent date 5/22/2002 14:02:05.

[Date_Add: (Date), -Second=15] =» 5/22/2002 14:02:20
[Date_Add: (Date), -Minute=15] =» 5/22/2002 14:17:05
[Date_Add: (Date), -Hour=15] =» 5/23/2002 05:02:05
[Date_Add: (Date), -Day=15] =» 6/6/2002 14:02:05
[Date_Add: (Date), -Week=15] =» 9/4/2002 14:02:05
[Date_Add: (Date), -Month=6] =» 11/22/2002 14:02:05
[Date_Add: (Date), -Year=1] =» 5/22/2003 14:02:05

AAAAAA
—_—— — — — —

subtract time from a date:

pecified number of hours, minutes, seconds, days, or weeks can be

subtracted from a date data type or valid date string using the [Date_Subtract]

tag

. The following examples show the result of subtracting different values

from the date 5/22/2001 14:02:05.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 16 — DATE AND TIME OPERATIONS 335

[Date_Subtract: (Date: '5/22/2001 14:02:05'), -Second=15] =» 5/22/2001 14:01:50
[Date_Subtract: (Date:'5/22/2001 14:02:05'"), -Minute=15] =» 5/22/2001 13:47:05
[Date_Subtract: (Date:'5/22/2001 14:02:05"), -Hour=15] =» 5/21/2001 23:02:05
[Date_Subtract: '5/22/2001 14:02:05', -Day=15] =» 5/7/2001 14:02:05
[Date_Subtract: '5/22/2001 14:02:05', -Week=15] =» 2/6/2001 14:02:05

To determine the time difference between two dates:

Use the [Date_Difference] tag. The following examples show how to calculate
the time difference between two date data types or valid date strings.

[Date_Difference: (Date: '5/23/2002"), (Date:'5/22/2002')] =» 24:00:00
[Date_Difference: (Date:'5/23/2002"), (Date:'5/22/2002"), -Second] =» 86400
[Date_Difference: (Date:'5/23/2002"), '5/22/2002', -Minute] =» 3600
[Date_Difference: (Date: '5/23/2002'), '5/22/2002', -Hour] =» 24
[Date_Difference: '5/23/2002', (Date:'5/22/2002'), -Day] =» 1
[Date_Difference: '5/23/2002', (Date:'5/30/2002'), -Week] =» 1
[Date_Difference: '6/23/2002', '6/23/2002', -Month] =¥ 1

[Date_Difference: '56/23/2002', '5/23/2001", -Year] =» 1

Date and Duration Math Tags

LDML 7 provides three member tags that perform date math operations
requiring both date and duration data types. These tags are used for adding
durations to dates, subtracting a duration from a date, and determining a
duration between two dates. These tags are summarized in Table 7: Date
and Duration Math Tags.

Table 7: Date and Duration Math Tags

Tag Description

[Date->Add] Adds a duration to a Lasso date data type. Optional
keyword/value parameters may be used in place of
a duration to define what should be added to the first
parameter: -Millisecond, -Second, -Minute, -Hour, -Day,
-Week.

[Date->Subtract] Subtracts a duration from a Lasso date data type.
Optional keyword/value parameters may be used in
place of a duration to define what should be subtracted
from the first parameter: -Millisecond, -Second, -Minute,
-Hour, -Day, -Week.

LAsso 7.1 LANGUAGE GUIDE

336 CHAPTER 16 — DATE AND TIME OPERATIONS

[Date->Difference] Calculates the duration between two date data types.
The second parameter is subtracted from the first
parameter to deteremine a duration. Optional parameters
may be used to ouput a specified integer time value
instead of a duration: -Millisecond, -Second, -Minute,
-Hour, -Day, -Week, -Month, -Year. Lasso rounds to the
nearest integer when using these optional parameters.

Note: The [Date->Add] and [Date->Subtract] tags do not directly output values, but
can be used to change the values of variables that conatin date or duration
data types.

To add a duration to a date:

Use the [Date->Add] tag. The following examples show how to add a dura-
tion to a date and return a date.

[Var_Set:'MyDate'=(Date: '56/22/2002')]

[$MyDate->(Add:(Duration:'24:00:00'))]

[$MyDate] =» 5/23/2002 00:00:00

[Var_Set:'MyDate'=(Date: '56/22/2002')]
[$MyDate->(Add:(Duration:'3600"))]
[$MyDate] =» 5/22/2002 12:30:00

[Var_Set:'MyDate'=(Date: '56/22/2002')]
[$MyDate->(Add: -Week=1)]
[$MyDate] =» 5/29/2002 00:00:00

To subtract a duration from a date:

Use the [Date->Subtract] tag. The following examples show how to subtract a
duration from a date and return a date.
[Var_Set:'MyDate'=(Date: '5/22/2002')]

[$MyDate->(Subtract:(Duration:'24:00:00"))]
[$MyDate] =» 5/21/2002

[Var:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Subtract:(Duration:'7200'))]
[$MyDate] =» 5/22/2002 9:30:00

[Var:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Subtract: -Day=3)]
[SMyDate] = 5/19/2002 00:00:00

To determine the duration between two dates:

Use the [Date->Difference] tag. The following examples show how to calculate
the time difference between two dates and return a duration.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 16 — DATE AND TIME OPERATIONS 337

[Var_Set:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Difference:(Date:'5/15/2002 01:30:00"))] =» 169:30:00

[Var:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Difference:(Date:'5/15/2002'), -Day)] =» 7

Using Math Symbols

In LDML 7, one has the ability to perform date and duration calculations
using math symbols (similar to integer data types). If a date or duration
appears to the left of a math symbol then the appropriate math operation
will be performed and the result will be a date or duration as appropriate.
All math symbols that can be used with dates or durations are shown in
Table 8: Date Math Symbols.

Table 8: Date Math Symbols

Tag Description
+ Used for adding a date and a duration, or adding two
durations.

Used for subtracting a duration from a date, subtracting
a duration from a duration, or determining the duration
between two dates.

Used for multiplying durations by an interger value.

/ Used for dividing durations by an integer or duration
value.

To add or subtract dates and durations:

The following examples show addition and subtraction operations using
dates and durations.

[Output: (Date: '5/22/2002") + (Duration:'24:00:00')] =» 5/23/2002
[Output: (Date: '5/22/2002") - (Duration:'48:00:00")] =» 5/20/2002

To determine the duration between two dates:

The following calculates the duration between two dates using the minus
symbol (-) .
[Output: (Date: '5/22/2002') - (Date:'5/15/2002')] =» 168:00:00

To add one day to the current date:

The following example adds one day to the current date.
[(Date) + (Duration: -Day=1)]

LAsso 7.1 LANGUAGE GUIDE

338 CHAPTER 16 — DATE AND TIME OPERATIONS

To multiply or divide a durations by an integer:

The following examples show multiplication and division operations using
durations and integers.

[Output: (Duration: -Minute=10) * 12] =» 02:00:00

[Output: (Duration: '60') * 10] =» 00:10:00

[Output: (Duration: -Hour=1) / 2] =» 00:30:00

[Output: (Duration: '00:30:00") / 10] =» 00:03:00

To divide a duration by a duration:
The following examples show division of durations by durations. The
resulting value is a decimal data type.

[Output: (Duration: -Hour=24) / (Duration: -Hour=6)] =¥ 4.0
[Output: (Duration: '05:00:00') / (Duration: '00:30:00')] =» 10.0

To return the duration between the current date and a day in the
future:

The following example returns the duration between the current date and
12/31/2004.

[Output: (Date: '12/31/2004') - (Date)]

LAsso 7.1 LANGUAGE GUIDE

339

Chapter 17
Arrays and Maps

This chapter describes the array, map, and pair data types in LDML that
allow sets of data to be stored and manipulated.

¢ Overview provides an introduction to arrays, maps, and pairs.
e Arrays describes the array data type and its member tags.

e Maps describes the map data type and its member tags.

e Pair describes the pair data type and its member tags.

e Common Arrays and Maps describes substitution tags in LDML that
return array or map values.

Overview

Arrays, maps, and pairs are compound data types that allow many values
to be stored in a single variable. Each is suited to storing a different type of
structured data.

e Arrays are used to store a sequence of values. Values are stored and
retrieved based on a numeric index. The order of values within the array
is preserved.

e Maps are used to store and retrieve values based on a key of any type.
The order of values within maps are not preserved. Usually, maps are
used to store and retrieve values based on a string key.

Pairs are used to store two values in an ordered pair. Either the first or
second value can be retrieved. Pairs are most commonly used as values
within an array or when retrieving parameters in custom tags.

LAsso 7.1 LANGUAGE GUIDE

340

CHAPTER 17 - ARRAYS AND MAPS

Arrays

An array is a sequence of values which are stored and retrieved by numeric
index. The values stored in an array can be of any data type in LDML.
Arrays can store any values from strings and integers to other arrays and
maps. By nesting compound data types very complex data structures can be
created.

Types of Arrays

Arrays can be used in LDML for several different purposes. The same
member tags can be used on each type of array, but some have specific uses
when used with a particular type of array. These specific uses are described
in the examples for each member tag.

e A List Array is a sequence of string, decimal, or integer values. New
values can be appended to the end of the list or inserted between two
elements of the list using [Array->Insert]. Two lists can be merged using
[Array->Merge]. The order of elements in the array is important, but may
be manipulated using the array member tags.

A Storage Array is a sequence of “cubby holes” for values. Values
are stored into a slot identified by an integer and later retrieved. The
[Array->Get] tag is used to store and retrieve values, but the order of
elements in the array is never altered and multiple arrays are never
merged.

A Pair Array is a sequence of pairs. [Action_Params] returns an array

of pairs which identify the command tags and name/value pairs that
comprise the current Lasso action. This array can be manipulated and
then passed as a parameter to an [Inline] tag.

Creating Arrays

Arrays are created using the [Array] constructor tag. The parameters of the
tag become the initial values stored in the array. The parameters can be
string, decimal, or integer literals, constructor tags for other complex data
types, or name/value pairs which are interpreted as pairs to be added to the
array.

Table 1: Array Tag

Tag Description

[Array] Creates an array that contains each of the parameters
of the tag. If no parameters are specified, an empty
array is created.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 17 - ARRAYS AND MaPs 341

To create an array:
¢ The following example creates an empty array and stores it in a variable.
[Variable: 'EmptyArray' = (Array)]

The following example shows an array of string literals.
[Array: 'String One', 'String Two', 'String Three']

The following example shows an array with a combination of string,
decimal, and integer literals.

[Array: 'String One', 2, 3.333333]

The following example shows how to use values from database fields,
form parameters, variables, or tokens as the initial values for an array.

[Array: (Field: 'Field_Name'), (Action_Param: 'Parameter_Name'),
(Variable: 'Variable_Name'), (Token_Value: "Token_Name')]

The following example shows an array of pairs. Each name/value pair
becomes a single pair within the array returned by the tag.

[Array: 'Name_One'='Value_One', 'Name_Two'='Value_Two']

¢ The following example shows an array of arrays. The array returned by
the following code will only contain two array elements. Each array
element will in turn contain two integer elements. Nested arrays can be
used to store mathematical multi-dimensional arrays.

[Array: (Array: 1, -1), (Array: -1, 0)]

The following example shows how to create an array from a string. The
[String->Split] tag can be used to split a string into an array which contains
one element for each substring delimited by the parameter to the tag.
The following string is split on the comma , character into an array of
four elements.

[Output: 'One, Two, Three,Four,Five'->Split(',")]

Values are always copied into an array. They are never stored by reference
to the original value. This applies both to simple data types and compound
data types. There is no way in LDML to store a reference to a compound
data type, except for the name of the variable containing the data type.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 17 - ARRAYS AND MAPS

Array Member Tags

The array data type has a number of member tags that can be used to store,
retrieve or delete array elements or to otherwise manipulate array values.

Table 2: Array Member Tags

Tag Description

[Array->Find] Returns an array of elements that match the parameter.
Accepts a single parameter of any data type.

[Array->FindIndex] Returns an array of the indicies for elements that match
the parameter. Accepts a single parameter of any data
type.

[Array->Get] Returns an item from the array. Accepts a single

[Array->Insert]

[Array->Join]

[Array->Last]
[Array->Merge]

[Array->Remove]

[Array->RemoveAll]

[Array->Size]
[Array->Sort]

integer parameter identifying the index of the item to be
returned. This tag can be used as the left parameter of
an assignment operator to set an element of the array.

Inserts a value into the array. Accepts a single parameter
which is the value to be inserted and an optional integer
parameter identifying the index of the location where

the value should be inserted. Defaults to the end of the
array. Returns no value.

Joins the items of the array into a string. Accepts a
single string parameter which is placed inbetween each
item from the array. The opposite of [String->Split].

Returns the last item in the array.

Merges an array parameter into the array. Accepts an
array parameter and three integer parameters that
identify which items from the array parameter should be
inserted into the array. Defaults to inserting the entire
array parameter at the end of the array. Returns no
value.

Removes an item from the array. Accepts a single
integer parameter identifying the index of the item to be
removed. Defaults to the last item in the array. Returns
no value.

Removes any elements that match the parameter from
the array. Accepts a single parameter of any data type.
Returns no value.

Returns the number of elements in the array.

Reorders the elements of the array in alphabetical or
numerical order. Accepts a single boolean parameter.
Sorts in ascending order by default or if the parameter is
True and in descending order if the parameter is False.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 17 - ARRAYS AND MaAPs 343

The following examples show how to manipulate an array by getting,
setting, inserting, and deleting values. The examples are all based on the
following array which contains the seven days of the week in English.

[Variable: 'DaysOfWeek' = (Array: 'Sunday', 'Monday', ‘Tuesday', 'Wednesday',
‘Thursday', 'Friday', 'Saturday")]

To get the size of an array:

Use the [Array->Size] tag. The following example shows how to output the
size of the DaysOf\Week array.

[Output: $DaysOfWeek->Size] =» 7

To get elements of an array:

e To get an element of the array use the [Array->Gef] tag with the appro-
priate index. In the following example different elements of the
DaysOfWeek array are returned.

[Output: $DaysOfWeek->(Get: 1)] =» Sunday
[Output: $DaysOfWeek->(Get: 4)] =» Wednesday

e The last element of the array can be returned by using [Array->Get] with
a parameter of [Array->Size]. [Array->Size] will return 7 since the array
DaysOFWeek is 7 elements long and element 7 of the array is Saturday.

[Output: $DaysOFWeek->(Get: ($DaysOfWeek->Size))] =» Saturday

e All of the elements in the array can be returned
using [lterate] ... [/lterate] tags. The following example shows how to list all
of the days of the week.

[Iterate: $DaysOfWeek, (Variable: 'DayName')]

[Variable: 'DayName']
[/lterate]

=»
Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

e Alternately, all of the elements in the array can be returned
using [Loop] ... [/Loop] tags. The following example shows how to list
all of the days of the week by using [Array->Get] with a parameter of
[Loop_Count].
[Loop: ($DaysOfWeek->Size)]

[Output: $DaysOF Week->(Get: (Loop_Count))]
[/Loop]

LAsso 7.1 LANGUAGE GUIDE

344 CHAPTER 17 — ARRAYS AND MAPS

=»
Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

To set elements of an array:

The [Array->Get] member tag can be used on the left side of an assignment
operator to set the value stored in the specified index within the array.

¢ In the following example, the value of the second element of the array
DaysOfWeek is set to the Spanish word for Monday, Lunes.

<?LassoScript

$DaysOfWeek->(Get: 2) = 'Lunes";
>

The value of the second element of the array can then be output using
the [Array->Gef] tag.

[Output: $DaysOfWeek->(Get: 2)] =» Lunes

e Elements of the array can be modified using any of the assignment
symbols. In the following example, the substring day is removed from
the third element of the array using the deletion assignment symbol -=
leaving Tues. This value is then output.

<?LassoScript
$DaysOF Week->(Get: 3) -= 'day’;

Output: $DaysOfWeek->(Get: 3);
>

=> Tues

To insert elements into an array:

e The [Array->Insert] tag can be used to insert a single element in the array.
In the following example Sunday is inserted at the end of the array
DaysOfWeek. The whole array is then output.

<?LassoScript
$DaysOfWeek->(Insert: 'Sunday');

Loop: ($DaysOfWeek->Size);
Output: $DaysOfWeek->(Get: (Loop_Count)) +'";
[Loop;
>

=» Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sunday

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 17 - ARRAYS AND MaAPs 345

e The [Array->Insert] tag can also be used to insert a single element anywhere
in the array. In the following example Tuesday is inserted as the third
element of the array DaysOfWeek. This pushes back all the other elements
of the array. No values in the array are removed or replaced by the
[Array->Insert] tag. The whole array is then output.

<?LassoScript
$DaysOfWeek->(Insert: 'Tuesday', 3);

Loop: ($DaysOfWeek->Size);
Output: $DaysOfWeek->(Get: (Loop_Count)) +'";
ILoop;
o

=» Sunday Monday Tuesday Tuesday Wednesday Thursday Friday Saturday

To remove elements from an array:

e The [Array->Remove] tag can be used to remove a single element from
the array. If no parameter is specified then the last item of the array is
removed. In the following example the last item of the array Saturday is
removed and then the entire array is displayed.

<?LassoScript
$DaysOfWeek->(Remove);

Loop: ($DaysOfWeek->Size);
Output: $DaysOfWeek->(Get: (Loop_Count)) +"'";
ILoop;
»>

=>» Sunday Monday Tuesday Wednesday Thursday Friday

e The [Array->Remove] tag can also be used to remove a single element
anywhere in the array. In the following example the fourth value in the
array is removed. This removes the element Wednesday. The whole array
is then output.

<?LassoScript
$DaysOfWeek->(Remove: 4);

Loop: ($DaysOfWeek->Size);
Output: $DaysOfWeek->(Get: (Loop_Count)) +'";
ILoop;
o

=» Sunday Monday Tuesday Thursday Friday Saturday

To display the elements of an array:

e Arrays can be displayed by simply outputting the variable that contains
the array. All of the elements of the array are displayed surrounded by

LAsso 7.1 LANGUAGE GUIDE

346

CHAPTER 17 - ARRAYS AND MAPS

parentheses. This is useful primarily for debugging purposes so the
values in an array can be inspected without writing a loop to output all
of the elements of the array.

[Variable: 'DaysOfWeek']

=> (Array: (Sunday), (Monday), (Tuesday), (Wednesday), (Thursday), (Friday),
(Saturday))

¢ Arrays can be displayed by joining the elements of the array into a string.
In the following example the days of the week are output with commas
between each element.

[Output $DaysOfWeek->(Join: ',")]
=» Sunday,Monday, Tuesday,Wednesday, Thursday,Friday,Saturday

Arrays and Strings

Arrays can be used for string manipulation using a combination of array
and string member tags. First, the string to be manipulated is transformed
into an array using the [String->Split] tag, then the array is manipulated, and
finally the string is rendered from the array using the [Array->Join] tag.

The following example demonstrates how to modify a URL which is stored
in a variable. This same technique can be used to modify any string which
can be split into array elements based on a specific delimiter.

To parse, modify, and reassemble a URL using array tags:

1 Store the URL to be modified in a string variable, here named
URL_Variable.

[Variable: 'URL_Variable' = 'http://www.example.com/default.lasso?
-FindAll&-Database=Contacts&-Table=People&-KeyField=ID']

2 Use [String->Split] to break the URL apart into several different vari-
ables. First, the string is split on ? to split the base of the URL from the
parameters. These two parameters are stored in temporary variables,
URL_Base and URL_Parameters.

[Variable: 'Temp_Array' = (SURL_Variable->(Split: '?'))]
[Variable: 'URL_Base' = ($Temp_Array->(Get: 1))]
[Variable: 'URL_Parameters' = ($Temp_Array->(Get: 2))]

3 Use [String->Split] to break the URL parameters apart into an array at the
ampersand & character.

[Variable: 'URL_Array' = (SURL_Parameters->(Split: '&'))]

4 Now the parameters array can be manipulated. For this example we will
sort it using the [Array->Sort] command. Other options include removing

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 17 - ARRAYS AND MaPs 347

or inserting elements, merging two or more URL parameter arrays,
checking for the existence of specific values, etc.

[(SURL_Array->Sort)]

5 Reassemble the URL parameters using the [Array->Join] tag to append each
item in the array to a new variable URL_Parameters. An ampersand & is
placed between each element of the array.

[Variable: 'URL_Parameters'=§URL_Array->(Join: '&")]

6 Reassemble the full URL by concatenating the original URL_Base to the
new URL_Parameters and store the result in URL_Variable.

[Variable: 'URL_Variable' = $URL_Base + '?' + $URL_Parameters]

7 Display the modified URL to confirm that the modifications have been
made correctly. The command tags in the URL are now sorted alphabeti-
cally.

[Variable: 'URL_Variable']

=> http://lwww.example.com/default.lasso?
-Database=Contacts&-FindAll&-KeyField=ID&-Table=People

Merging Arrays

The [Array->Merge] tag can be used to merge two arrays by placing the
elements of the tag’s array parameter into the base array. The [Array->Merge]
accepts a number of parameters as detailed in Table 3: [Array->Merge]
Parameters.

Table 3: [Array->Merge] Parameters

Parameter Description
First The array which is to be merged; the source array.
Second The index in the destination array where the elements of

the source array should be inserted. Optional, defaults to
the end of the destination array.

Third The index in the source array of the first element which
should be inserted into the destination array. Optional,
defaults to 1.

Fourth The number of elements from the source array to
insert into the destination array. Optional, defaults to
all elements from the third parameter to the end of the
source array.

LAsso 7.1 LANGUAGE GUIDE

348

CHAPTER 17 - ARRAYS AND MAPS

The four parameters to [Array->Merge] allow for a selected subset of the
source array to be placed at any location in the destination array. This
allows very complex array manipulations to be performed.

To append an array to the end of another array:

Use the [Array->Merge] tag with a single array parameter. All the elements
of the array parameter will be inserted at the end of the base array. In the
following example, two arrays are created, each containing three integers.
The elements of the second array are merged into the elements of the first
array and then all the elements of the new array are displayed.
<?LassoScript
Variable: 'First_Array' = (Array: 1, 2, 3);
Variable: 'Second_Array' = (Array: 4, 5, 6);

$First_Array->(Merge: $Second_Array);

Output: $First_Array;
»>

= (Array: (1), (2),), (4), (5). (6))

To insert a single element from one array into another array:

In the following example the third element of the Second_Array is inserted
as the new first element of the First_Array using the [Array->Merge] tag. The
second parameter to [Array->Merge] is set to 1 so the element will be inserted
as the first element of First_Array. The third parameter is set to 3 so the third
element of Second_Array will be selected. The fourth parameter is set to 1 so
only one element of Second_Array will be copied.
<?LassoScript
Variable: 'First_Array' = (Array: 1, 2, 3);
Variable: 'Second_Array' = (Array: 4, 5, 6);

$First_Array->(Merge: $Second_Array, 1, 3, 1);

Output: $First_Array;
”»>

= (Array: (6), (1), (2), 3))

Finding Elements of an Array

The [Array->Find] tag can be used to return a subset of an array which
matches a specified value. This can be used to determine whether an array
contains a value or, when used in concert with the [Array->RemoveAll] tag this
can be used to extract a number of elements from an array.

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 17 - ARRAYS AND MaPs 349

To determine whether an array contains a value:

In the following example the array DaysOfWeek is checked to see if it
contains an element Thursday using the contains symbol >>.
<?LassoScript

Variable: 'DaysOf\Week'= (Array: 'Sunday', 'Monday', 'Tuesday', 'Wednesday',
‘Thursday', 'Friday', 'Saturday");

If: ($DaysOfWeek >> 'Thursday');
Output: 'The array contains Thursday!’;
/If;
>

=» The array contains Thursday!

To find the indices where an element occurs within the array:
In the following example, an array is returned that reports the index of
each occurance of 1 within the array.
<?LassoScript
Variable: 'Find_Array' = (Array: 6, 1,4, 1,5, 1,2, 3, 1);

Output: $Find_Array->(FindIndex: 1);
”>

= (Array: (2), (4), (6), (9)

The result array can be used to modify each occurance of 1 within the array.
In the following example each occurance of 1 within the array is changed
to 0.

<?LassoScript
Variable: 'Find_Array' = (Array: 6, 1,4, 1,5, 1, 2, 3, 1);

Variable: ‘Temp_Array' = $Find_Array(FindIndex: 1);

Iterate: $Temp_Array, (Variable: "Temp_Index));
$Find_Array->(Get: $Temp_Index) = 0;
[lterate;

Output: $Find_Array;
>

= (Array: (6), (0), (4), (0), (5), (0), (2). (3). (0))

To delete elements with a certain value from an array:

In the following example, all elements with value 1 are deleted from an
array Delete_Array. The initial array contains many different integer values.
The resulting array is output after all the elements with value 1 have been
deleted.

LAsso 7.1 LANGUAGE GUIDE

350

CHAPTER 17 - ARRAYS AND MAPS

<?LassoScript
Variable: 'Delete_Array' = (Array: 6, 1,4, 1,5, 1,2, 3, 1);

$Delete_Array->(RemoveAll: 1);

Output: $Delete_Array;
»>

= (Array: (6), (4), (5), (2), (3))

Pair Arrays

Pair arrays can be used to store a sequence of name/value pairs. The order
of elements within a pair array is maintained. The [Action_Params] and
[Params] tags both return pair arrays which contain the parameters passed
with the current Lasso action or into a custom tag respectively.

To create a pair array:

Use the [Array] tag with name/value parameters. Each name/value param-
eter becomes a pair in the resulting array. The following example shows an
array created with three pair elements.
[Array: 'Name_One'='Value_One',
‘Name_Two'='Value_Two',
‘Name_Three'="Value_Three']

To find pairs within a pair array:
The [Array->Find] tag can be used to find pairs within a pair array. The
parameter passed to the [Array->Find] tag is only compared to the [Pair->First]
element of each pair. The [Array->Find] tag returns an array that contains
only the pairs whose first part matches the parameter. The following
example shows an array defined with three pair elements. The [Array->Find]
tag is used to return both elements for the name Alpha.
[Variable: 'Pair_Array' = (Array: 'Alpha'='One’, '‘Beta'="Two', 'Alpha'=1, 'Beta'=2)]
[Output: $Pair_Array->(Find: 'Alpha')]

= (Array: (Pair: (Alpha)=(One)), (Pair: (Alpha)=(1)))

To insert pairs into a pair array:

Use the [Array->Insert] tag with a name/value parameter. The new element
will be inserted at the end of the array by default. The following example
inserts a new element Gamma=Three into Pair_Array.
<?LassoScript
Variable: 'Pair_Array' = (Array: 'Alpha'='One', 'Beta'="Two', 'Alpha'=1, 'Beta'=2);
$Pair_Array->(Insert: 'Gamma'="Threg');
»>

LAsso 7.1 LANGUAGE GUIDE

CHAPTER 17 - ARRAYS AND MapPs 351

Sorting Arrays

Arrays can be sorted using the [Array->Sorf] tag. This tag reorders the
elements of the array so they will no longer be available at the index they
were originally set.

Examples of sorting arrays:
¢ The following LassoScript shows an array with integer elements. The
array is sorted and then the values of the array are output. The default
sort order is ascending.
<?LassoScript
Variable: 'Sort_Array' = (Array: 6, 4, 5, 2, 3, 1);
$Sort_Array->(Sort);

Output: $Sort_Array;
”»

= (Array: (1), (2), (), (4), (), (6))

¢ The following LassoScript shows the DaysOFWeek array being sorted in
descending alphabetical order. The [Array->Sort] tag accepts one parameter.
True for ascending order or False for descending order. The default is True.
<?LassoScript
Variable: 'DaysOf\WWeek'= (Array: 'Sunday', 'Monday', 'Tuesday', 'Wednesday',
‘Thursday', 'Friday', 'Saturday");

$DaysOfWeek->(Sort: False);

Output: $DaysOfWeek;
»>

=> (Array: (Wednesday), (Tuesday), (Thursday), (Sunday), (Saturday), (Monday),
(Friday))

Maps

Maps store and retrieve values based on a key. This allows for specific
values to be stored under a name and then retrieved later using that same
name. The name or key i