
Lasso 7.1
Language Guide

Trademarks

Lasso, Lasso Professional, Lasso Studio, LDML, Lasso Service, Lasso Connector, Lasso

Web Data Engine, Blue and OmniPilot are trademarks of OmniPilot Software, Inc.

MySQL™ is a trademark of MySQL AB. All other products mentioned may be trade-

marks of their respective holders. See Appendix C: Copyright Notices in the

Lasso Professional 7 Setup Guide for additional details.

Third Party Links

This guide may contain links to third-party Web sites that are not under the control

of OmniPilot. OmniPilot is not responsible for the content of any linked site. If you

access a third-party Web site mentioned in this guide, then you do so at your own

risk. OmniPilot provides these links only as a convenience, and the inclusion of the

links does not imply that OmniPilot endorses or accepts any responsibility for the

content of those third-party sites.

Copyright

Copyright © 2005 OmniPilot Software, Inc. This manual may not be copied,

photocopied, reproduced, translated or converted to any electronic or machine-

readable form in whole or in part without prior written approval of OmniPilot

Software, Inc.

Eighth Edition: March 1, 2005

OmniPilot Software, Inc.
1815 Griffin Road
Dania Beach, Florida 33004
U.S.A.

Telephone: (954) 874-3100
Email: info@omnipilot.com
Web Site: http://www.omnipilot.com

Contents

Section I
Lasso Overview .19

Chapter 1
Introduction .21
Lasso 7 Documentation .21
Lasso 7.1 Language Guide . 22
Documentation Conventions. 22

Chapter 2
Web Application Fundamentals.25
Web Browser Overview . 25
Web Server Overview. .31
HTML Forms and URL Parameters . 32
Web Application Servers . 34
Web Application Server Languages . 35
Error Reporting . 36

Chapter 3
Format Files .37
Introduction. 38
Storage Types . 38

3

L A S S O 7 . 1 L A N G U A G E G U I D E

Naming Format Files. 39
Character Encoding . 40
Editing Format Files . 40
Functional Types . 41
Action Methods . 42

Table 1: Action Methods .42
Securing Format Files . 46
Output Formats . 47
File Management . 48
Specifying Paths. 50
Format File Execution Time Limit . 54

Chapter 4
LDML 7 Tag Language 55
Introduction. 55
Syntax Types. 56

Table 1: LDML 7 Syntax Types .56
Tag Types . 60

Table 2: LDML 7 Tag Types .60
Tag Categories and Naming . 67

Table 3: LDML 7 Tag Categories .67
Table 4: LDML 7 Synonyms .70
Table 5: LDML 7 Abbreviations. .70

Parameter Types. .71
Table 6: Parameter Types. 71

Encoding . 72
Table 7: Encoding Keywords .73

Data Types . 74
Table 8: Primary LDML 7 Data Types .74

Expressions and Symbols . 79
Table 9: Types of LDML 7 Expressions .79
Table 10: Member Tag Symbol. 81
Table 11: String Expression Symbols .82
Table 12: Math Expression Symbols .83
Table 13: Conditional Expression Symbols .85
Table 14: Logical Expression Symbols .85

Delimiters. 87
Table 15: LDML 7 Delimiters .87
Table 16: HTML/HTTP Delimiters .88

Illegal Characters . 88
Table 17: Illegal Characters. .89

4

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Chapter 5
LDML 7 Reference91
Overview .91

Figure 1: LDML 7 Reference .92
Search . 93

Figure 2: Basic Search Page .93
Figure 3: Advanced Search Page .95
Figure 4: Comments Search Page .96
Figure 5: Examples Search Page .97

Browse . 98
Figure 6: Category Tags Page. .98
Figure 7: Legacy Tags Page .99

Detail . 100
Figure 8: Tag Detail Page . 100
Figure 9: Tag Comments Page . 102

List . 104
Figure 10: Preferred Tags Page. 104
Figure 11: Legacy Tags Page . 105

Section II
Database Interaction107

Chapter 6
Database Interaction Fundamentals . .109
Inline Database Actions . 109

Table 1: Inline Tag . 110
Table 2: Inline Database Action Parameters 110
Table 3: Response Parameters . 116

Action Parameters . 120
Table 4: Action Parameter Tags .120
Table 5: [Action_Params] Array Schema .123

Results. 124
Table 6: Results Tags. .125

Showing Database Schema. 125
Table 7: -Show Parameter .126
Table 8: -Show Action Requirements .126
Table 9: Schema Tags .127
Table 10: [Field_Name] Parameters. .128
Table 11: [Required_Field] Parameters .129

SQL Statements . 129
Table 12: SQL Inline Parameters. .130

5

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Table 13: -SQL Helper Tags . 131
SQL Transactions. 133

Chapter 7
Searching and Displaying Data 135
Overview . 135

Table 1: Command Tags .136
Table 2: Security Command Tags .139

Searching Records . 139
Table 3: -Search Action Requirements .140
Table 4: Operator Command Tags .142
Table 5: Field Operators .143
Table 6: Results Command Tags. .147

Finding All Records . 150
Table 7: -FindAll Action Requirements . 151

Finding Random Records . 152
Table 8: -Random Action Requirements .152

Displaying Data . 153
Table 9: Field Display Tags .154

Linking to Data . 156
Table 10: Link Tags. .157
Table 11: Link Tag Parameters .159
Table 12: Link URL Tags .160
Table 13: Link Container Tags. 161
Table 14: Link Parameter Tags .162

Chapter 8
Adding and Updating Records 171
Overview . 171

Table 1: Command Tags .172
Table 2: Security Command Tags .174

Adding Records . 174
Table 3: -Add Action Requirements .175

Updating Records . 178
Table 4: -Update Action Requirements .178

Deleting Records . 183
Table 5: -Delete Action Requirements .183

Duplicating Records . 185
Table 6: -Duplicate Action Requirements .185

6

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Chapter 9
MySQL Data Sources.187
Overview . 187
MySQL Tags . 189

Table 1: Enhanced MySQL Tags .189
Searching Records . 190

Table 2: MySQL Search Field Operators. .190
Table 3: MySQL Search Command Tags .192

Adding and Updating Records . 195
Value Lists. 196

Table 4: MySQL Value List Tags .197
Creating Database Tables . 202

Table 5: Database Creation Tags .203
Table 6: [Database_CreateTable] Parameters:204
Table 7: [Database_CreateField] and [Database_ChangeField]

Parameters: .206
Table 8: MySQL Field Types .207

Chapter 10
FileMaker Data Sources 211
Overview . 212
Performance Tips. 213
Compatibility Tips. 215
FileMaker Tags . 215

Table 1: FileMaker Data Source Tags . 215
Primary Key Field and Record ID. 216
Sorting Records . 218
Displaying Data . 219

Table 2: FileMaker Data Display Tags . 219
Value Lists. 227

Table 3: FileMaker Value List Tags. .227
Container Fields . 232

Table 4: Container Field Tags .232
FileMaker Scripts . 234

Table 7: FileMaker Scripts Tags .235

Chapter 11
JDBC Data Sources237
Overview . 237
Using JDBC Data Sources . 238
JDBC Schema Tags. 239

7

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Table 1: JDBC Schema Tags .240

Section III
Programming .241

Chapter 12
Programming Fundamentals 243
Overview . 244

Figure 1: Error Page .244
Logic vs. Presentation . 245
Data Output. 247

Table 1: Output Tags .247
Variables . 249

Table 2: Variable Tags. .250
Table 3: Variable Symbols .250

Data Types . 253
Table 4: Data Type Tags .253

Symbols . 258
Member Tags . 260
Forms and URLs . 261

Chapter 13
Conditional Logic.263
If Else Conditionals. 264

Table 1: If Else Tags .265
Select Statements . 267

Table 2: Select Tags .267
Loops . 268

Table 3: [Loop] Tag Parameters .269
Table 4: Loop Tags .270

Iterations . 272
Table 5: Iteration Tags .273

While Loops. 273
Table 6: While Tags .274

Abort Tag . 274
Table 7: Abort Tag .274

Boolean Type . 275
Table 8: Boolean Tag .275
Table 9: Boolean Symbols .275

8

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Chapter 14
String Operations.279
Overview . 280

Table 1: String Tag . 281
String Symbols. 282

Table 2: String Symbols. .282
String Manipulation Tags . 285

Table 3: String Manipulation Member Tags 286
Table 4: String Manipulation Tags .287

String Conversion Tags . 288
Table 5: String Conversion Member Tags .289
Table 6: String Conversion Tags. .290

String Validation Tags . 290
Table 7: String Validation Member Tags .290
Table 8: String Validation Tags .292

String Information Tags . 292
Table 9: String Information Member Tags .292
Table 10: String Information Tags .293
Table 11: Character Information Member Tags 295
Table 12: Unicode Tags. .297

String Casting Tags . 298
Table 13: String Casting Member Tags. .298

Regular Expressions . 298
Table 14: Regular Expression Tags .299
Table 15: Regular Expression Matching Symbols300
Table 16: Regular Expression Combination Symbols 301
Table 17: Regular Expression Replacement Symbols 301
Table 18: Regular Expression Advanced Symbols302

Chapter 15
Math Operations 305
Overview . 305

Table 1: Integer Tag .306
Table 2: Decimal Tag .307

Mathematical Symbols . 308
Table 3: Mathematical Symbols .308
Table 4: Mathematical Assignment Symbols 309
Table 5: Mathematical Comparison Symbols. 310

Decimal Member Tags. .311
Table 6: Decimal Member Tag. 311
Table 7: [Decimal->SetFormat] Parameters 312

Integer Member Tags . 313

9

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Table 8: Integer Member Tags . 313
Table 9: [Integer->SetFormat] Parameters . 314

Math Tags . 316
Table 10: Math Tags . 316
Table 11: [Math_Random] Parameters . 318
Table 12: Trigonmetric and Advanced Math Tags 319

Locale Formatting . 320
Table 13: Locale Formatting Tags. .320

Chapter 16
Date and Time Operations.321
Overview . 321
Date Tags . 322

Table 1: Date Substitution Tags .325
Table 2: Date Format Symbols .327
Table 3: Date Format Member Tags .329
Table 4: Date Accessor Tags. .330

Duration Tags. 331
Table 5: Duration Tags .332

Date and Duration Math . 333
Table 6: Date Math Tags. .334
Table 7: Date and Duration Math Tags .335
Table 8: Date Math Symbols .337

Chapter 17
Arrays and Maps 339
Overview . 339
Arrays . 340

Table 1: Array Tag .340
Table 2: Array Member Tags .342
Table 3: [Array->Merge] Parameters .347

Maps . 351
Table 4: Map Tag .352
Table 5: Map Member Tags .353

Pairs . 356
Table 6: Pair Tag .356
Table 7: Pair Member Tags .357

Common Maps and Arrays. 358
Table 8: Common Maps and Arrays .359

1 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Chapter 18
Encoding. .361
Overview . 361
Encoding Keywords. 365

Table 1: Encoding Keywords .365
Encoding Controls . 366

Table 2: Encoding Controls .366
Encoding Tags . 367

Table 3: Encoding Tags .367
Encryption Tags . 368

Table 4: Encryption Tags .368
Compression Tags . 371

Table 5: Compression Tags . 371

Chapter 19
Sessions. .373
Overview . 373
Session Tags . 375

Table 1: Session Tags .375
Table 2: [Session_Start] Parameters .376

Session Example . 380

Chapter 20
Files and Logging 383
Includes . 383

Table 1: Include Tags .386
Logging. 388

Table 2: File Log Tags .389
Table 3: Lasso Error Log Tags .390
Table 4: Log Preference Tag . 391
Table 5: Log Message Levels . 391
Table 6: Log Destination Codes .392

File Tags . 392
Table 7: File Tags .396
Table 8: Line Endings . 401

File Uploads. 402
Table 9: File Upload Tags .403
Table 10: [File_Uploads] Map Elements. .403

File Streaming Tags . 404
Table 11: [File] Tag .404
Table 12: File Open Modes .405

1 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Table 13: File Read Modes .405
Table 14: File Streaming Tags .406

Chapter 21
Error Control. .409
Overview . 409
Error Reporting .411

Figure 1: Built-In None Error Message. 412
Figure 2: Built-In Minimal Error Message . 412
Figure 3: Built-In Full Error Message. 412
Table 1: Error Level Tag . 413
Figure 4: Lasso Service Error Message . 414
Figure 5: Authentication Dialog . 414

Custom Error Page . 414
Figure 6: Custom Error Page . 415

Error Pages . 416
Table 2: Error Response Tags . 416

Error Tags . 417
Table 3: Error Tags . 417
Table 4: Error Type Tags . 418

Error Handling. 420
Table 5: Error Handling Tags .420

Chapter 22
Control Tags .425
Authentication Tags. 425

Table 1: Authentication Tags .426
Administration Tags . 428

Table 2: Administration Tags .428
Scheduling Events . 431

Table 3: Scheduling Tag .432
Table 4: Scheduling Parameters .432

Process Tags . 435
Table 5: Process Tags. .435

Null Data Type. 437
Table 6: Null Member Tags .437

Page Variables . 439
Table 7: Page Variable Tags .439
Table 8: Page Variables .440

Configuration Tags . 441
Table 9: Configuration Tags. 441

Format File Execution Time Limit . 442

1 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Table 10: Time Limit Tags. .442

Chapter 23
Miscellaneous Tags 443
Name Server Lookup. 443

Table 1: Name Server Lookup Tag .443
Validation Tags. 444

Table 2: Valid Tags .444
Unique ID Tags . 445

Table 3: Unique ID Tag .445
Server Tags . 445

Table 4: Server Tags .445

Chapter 24
LassoScript .447
LassoScript Overview. 447
LassoScript Syntax . 448

Table 1: LassoScript Delimiters .448

Section IV
Protocols and Media453

Chapter 25
Email .455
Sending Email . 455

Table 1: Email Tag .456
Table 2: [Email_Send] Parameters. .456

Chapter 26
Images and Multimedia 461
Overview . 461

Table 1: Tested and Certified Image Formats 463
Casting Images as LDML Objects. 464

Table 2: [Image] Tag: .464
Table 3: [Image] Tag Parameters: .464

Getting Image Information. 465
Table 4: Image Information Tags .465

Converting and Saving Images . 467
Table 5: Image Conversion and File Tags .467

Manipulating Images . 468

1 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Table 6: Image Size and Orientation Tags .469
Table 7: Image Effects Tags .470
Table 8: Annotate Image Tag. .473
Table 9: Composite Image Tag .474
Table 10: Composite Image Tag Operators .474

Extended ImageMagick Commands . 476
Table 11: ImageMagick Execute Tag .476

Serving Image and Multimedia Files . 477
Table 12: Image Serving Tag .478

Chapter 27
HTTP/HTML Content and Controls . . .483
Include URLs . 484

Table 1: Include URL Tag .484
Table 2: [Include_URL] Parameters. .485

Redirect URL . 487
Table 3: Redirect URL Tag .487

HTTP Tags . 488
Table 4: HTTP Tags .488

FTP Tags . 489
Table 5: FTP Tags. .489

Cookie Tags . 491
Table 6: Cookie Tags. .492
Table 7: [Cookie_Set] Parameters .493

Caching Tags . 496
Table 8: [Cache] Tag .497
Table 9: [Cache] Tag Parameters .497
Table 10: LDML Object Cache Tags. .500
Table 11: Cache Control Tags. 501

Server Push. 502
Table 12: Server Push Tag. .503

Header Tags . 503
Table 13: Header Tags .504

Request Tags . 506
Table 14: Request Tags .507

Client Tags . 508
Table 15: Client Tags .508

Server Tags . 509
Table 16: Server Tags .509

1 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Chapter 28
Wireless Devices 511
Overview .511
Formatting WML . 512
WAP Tags . 515

Table 1: WAP Tags . 515
WML Example . 516

Chapter 29
XML .519
Overview . 520
XML Glossary. 521
XML Data Type . 522

Table 1: XML Data Type Tag. .522
Table 2: XML Member Tags .523

XPath Extraction . 525
Table 3: [XML_Extract] Tag .526
Table 4: Simple XPath Expressions .527
Table 5: Conditional XPath Expressions .529

XSLT Style Sheet Transforms. 530
Table 6: [XML_Transform] Tag . 531

XML Stream Data Type . 532
Table 7: XML Stream Data Type Tag .532
Table 8: XML Stream Node Types .533
Table 9: XML Stream Navigation Member Tags 534
Table 10: XML Stream Member Tags .535

XML-RPC . 537
Table 11: [XML_RPCCall] Tag .538
Table 12: XML-RPC Built-In Methods .539
Table 13: XML-RPC and Built-In Data Types.540
Table 14: XML-RPC Data Type .540
Table 15: [XML_RPC] Call Tag .540
Table 16: [XML_RPC] Processing Tags .543

SOAP . 544
Serving XML. 550

Table 17: [XML_Serve] Serving Tags .550
Formatting XML. 550
XML Templates . 552

Table 18: FileMaker Pro XML Templates .553
Table 19: SQL Server XML Templates .553

1 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Chapter 30
Portable Document Format 557
Overview . 558
Creating PDF Documents . 559

Table 1: [PDF_Doc] Tag and Parameters .559
Table 2: [PDF_Doc->Add] Tag and Parameters 562
Table 3: PDF Page Tags .563
Table 4: PDF Read Tags .564
Table 5: Page Insertion Tag and Parameters 565
Table 6: PDF Accessor Tags .566
Table 7: [PDF_Doc->Close] Tag .567

Creating Text Content . 567
Table 8: PDF Font Tag and Parameters .568
Table 9: [PDF_Font] Member Tags .569
Table 10: [PDF_Text] Tag and Parameters . 571
Table 11: [PDF_Doc->DrawText] Tag .573
Table 12: [PDF_List] Tags and Parameters.573
Table 13: Special Characters .575

Creating and Using Forms . 575
Table 14: [PDF_Doc] Form Member Tags .576
Table 16: Form Placement Parameters .578

Creating Tables . 582
Table 17: [PDF_Table] Tag and Parameters582
Table 18: [PDF_Table] Member Tags. .583
Table 19: Cell Content Tags .584

Creating Graphics . 586
Table 20: [PDF_Image] Tag and Parameters 586
Table 21: [PDF_Doc] Drawing Member Tags588

Creating Barcodes . 590
Table 22: [PDF_Barcode] Tag and Parameters590

Example PDF Files. 592
Serving PDF Files . 597

Table 23: PDF Serving Tags .598

Section V
Upgrading. .601

Chapter 31
Upgrading Your Solutions603
Introduction. 604
Lasso Professional 7.1. 605

1 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Error Reporting . 609
Unicode Support .611
Bytes Type . 614

Table 1: Tags That Return the Bytes Type . 614
Table 2: Byte and String Shared Member Tags 615
Table 3: Unsupported String Member Tags . 616

Syntax Changes (Lasso 6) . 618
Table 4: Syntax Changes . 618

Tag Name Changes (Lasso 5/6) . 635
Table 5: Unsupported Tags .635
Table 6: Tag Name Changes .636
Table 7: Deprecated Tags. .636

Syntax Changes (Lasso 5) . 637
Table 8: Syntax Changes .637

Lasso MySQL (Lasso 5). 640
Table 9: Lasso MySQL Syntax Changes . 641

Syntax Changes (Lasso WDE 3.x) . 641
Table 10: Syntax Changes . 641
Table 11: Line Endings . 651

Tag Name Changes (Lasso WDE 3.x) . 656
Table 12: Command Tag Name Changes .656
Table 13: Substitution, Process, and Container Tag Name Changes . .657

Unsupported Tags (Lasso WDE 3.x) . 658
Table 14: Unsupported Tags .658

FileMaker Pro (Lasso WDE 3.x) . 659

Appendix A
LDML 7 Tag List 661
LDML 7 Tag List. 662
LDML 7 Legacy Tag List . 682

Appendix B
Error Codes. .687
Lasso Professional 7 Error Codes. 687

Table 1: Lasso Professional 7 Error Codes .688
Lasso MySQL Error Codes . 692

Table 2: Lasso MySQL Error Codes .692
FileMaker Pro Error Codes . 696

Table 3: FileMaker Pro Error Codes .696
JDBC Error Codes . 700

Table 4: JDBC Error Codes .700

1 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

Appendix C
Index .701

1 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C O N T E N T S

I
Section I

Lasso Overview

This section includes an introduction to the fundamental concepts and
methodology for building and serving data-driven Web sites powered
by Lasso 7. Every new user should read through all the chapters in this
section.

 • Chapter 1: Introduction includes information about the documentation
available for Lasso 7 and about this book.

 • Chapter 2: Web Application Fundamentals includes an introduction to
essential concepts and industry terms related to serving data-driven Web
sites.

 • Chapter 3: Format Files discusses how to create and work with Lasso 7
format files.

 • Chapter 4: LDML 7 Tag Language introduces the syntax of Lasso
Dynamic Markup Language (LDML), the language of Lasso 7.

 • Chapter 5: LDML 7 Reference introduces the reference database which
contains complete details about the syntax of every tag in LDML 7.

After completing Section 1: Lasso Overview you can proceed to Section
II: Database Interaction to learn how to store and retrieve information
from a database and to Section III: Programming to learn how to program
in LDML.

1 9

L A S S O 7 . 1 L A N G U A G E G U I D E

2 0

L A S S O 7 . 1 L A N G U A G E G U I D E

S E C T I O N I – L A S S O O V E R V I E W

1
Chapter 1

Introduction

This chapter provides on overview of the Lasso 7 documentation, the
section outline, and documentation conventions for this book.

 • Lasso 7 Documentation describes the documentation included with
Lasso 7 products.

 • Lasso 7 Language Guide describes the sections in this book.

 • Documentation Conventions includes information about typographic
conventions used within the documentation.

Lasso 7 Documentation
The documentation for Lasso 7 products is divided into several different
manuals and also includes several online resources. The following manuals
and resources are available.

 • Lasso Professional 7 Setup Guide is the main manual for Lasso
Professional 7. It includes documentation of the architecture of Lasso
Professional 7, installation instructions, the administration interface, and
Lasso security. After the release notes, this is the first guide you should
read.

 • Lasso 7 Language Guide includes documentation of LDML (Lasso
Dynamic Markup Language), the language used to access data sources,
specify programming logic, and much more.

 • LDML 7 Reference provides detailed documentation of each tag in
LDML 7. This is the definitive reference to the language of Lasso 7. This
reference is provided as a LassoApp and Lasso MySQL database within
Lasso Professional 7 and also as an online resource from the OmniPilot
Web site.

2 1

L A S S O 7 . 1 L A N G U A G E G U I D E

 • Extending Lasso Guide is a collection of documentation and sample
projects which provide instructions on how to extend Lasso.

Comments, suggestions, or corrections regarding the documentation may
be sent to the following email address.

documentation@blueworld.com

Lasso 7.1 Language Guide
This is the guide you are reading now. This guide contains information
about programming in LDML and is organized into the following sections.

 • Section I: Lasso Overview contains important information about using
and programming Lasso that all developers who create custom solutions
powered by Lasso will need to know.

 • Section II: Database Interaction contains important information about
how to create format files that perform database actions. Actions can be
performed in the internal Lasso MySQL database or in external MySQL,
FileMaker Pro, or other databases.

 • Section III: Programming describes how to program dynamic format
files using LDML. This section covers topics ranging from simple data
display through advanced error handling and alternate programming
syntaxes.

 • Section IV: Protocols and Media describes how to use Lasso to
interoperate with other Internet technologies such as email servers and
remote Web servers. It describes how to use Lasso to serve images and
multimedia files. It also describes how to use Lasso to serve pages to
various clients including Web browsers, WAP browsers and more.

 • Section V: Upgrading contains information for users who are upgrading
from or familiar with an earlier version of Lasso. This section details the
differences between Lasso 7 and earlier versions of Lasso.

 • Appendices contain listing of all LDML 7 tags and error codes.

Documentation Conventions
The documentation uses several conventions in order to make finding
information easier.

Definitions are indicated using a bold, sans-serif type face for the defined
word. This makes it easy to find defined terms within a page. Terms are
defined the first time they are used.

2 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 – I N T R O D U C T I O N

Cross References are indicated by an italicized sans-serif typeface.
For instance, the current section in this chapter is Documentation
Conventions. When necessary, arrows are used to define a path into a
chapter such as Chapter 1: Introduction > Documentation Conventions.

Code is formatted in a narrow, sans-serif font. Code includes HTML tags,
LDML tags, and any text which should be typed into a format file. Code is
represented within the body text (e.g., [Field] or <body>) or is specified in its
own section of text as follows:

[Field: 'Company_Name']

Code Results represent the result after code is processed. They are indi-
cated by a black arrow and will usually be the value that is sent to the
client’s Web browser. The following text could be the result of the code
example above.

➜ OmniPilot

Note: Notes are included to call attention to items that are of particular
importance or to include comments that may be of interest to select readers.
Notes may begin with Warning, FileMaker Pro Note, IIS Note, etc. to
specify the importance and audience of the note.

To perform a specific task:

The documentation assumes a task-based approach. The contents following
a task heading will provide step-by-step instructions for the specific task.

2 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 – I N T R O D U C T I O N

2 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 – I N T R O D U C T I O N

2
Chapter 2

Web Application
Fundamentals

This chapter presents an overview of fundamental concepts that are essen-
tial to understand before you start creating data-driven Web sites powered
by Lasso Professional 7.

 • Web Browser Overview describes how HTML pages and images are
fetched and rendered.

 • Web Server Overview describes how HTTP requests and URLs are inter-
preted.

 • HTML Forms and URL Parameters describes how GET and POST argu-
ments are sent and interpreted.

 • Web Application Servers describes how interactive content is created
and served.

 • Web Application Server Languages describes how commands can be
embedded within a format file, processed, and served.

 • Error Reporting describes how errors are reported by Lasso and how to
customize the amount of information that is provided to site visitors.

Web Browser Overview
The World Wide Web (WWW) is accessed by end-users through a Web
browser application. Popular Web browsers include Microsoft Internet
Explorer and Netscape Navigator. The Web browser is used to access pages
served by one or more remote Web servers. Navigation is made possible
via hyperlinks or HTML forms. The simple point-and-click operation of

2 5

L A S S O 7 . 1 L A N G U A G E G U I D E

the Web browser masks a complex series of interactions between the Web
browser and Web servers.

URLs
The location of a Web site and a particular page within a site are specified
using a Universal Resource Locator (URL). All URLs follow the same basic
format:

http://www.example.com:80/folder/file.html

The URL is comprised of the following components:

 1 The Protocol is specified first, http in the example above and is followed
by a colon. The World Wide Web has two protocols. HTTP (HyperText
Transfer Protocol) which is for standard Web pages and is the default
for most Web browsers and HTTPS (HyperText Transfer Protocol Secure)
which is for pages served encrypted via the Secure Socket Layer (SSL).

 2 The Host Name is specified next, www.example.com in the example above.
The host name can be anything defined by a domain name registrar. It
need not necessarily begin with www, the same server may be accessible
using example.com or by an IP address such as 127.0.0.1.

 3 The Port Number follows the host name, 80 in the example above. The
port number can usually be left off because a default is assumed based
on the protocol. HTTP defaults to port 80 and HTTPS defaults to port
443.

 4 The File Path follows a forward slash, /folder/file.html in the example
above. The Web server uses this path to locate the desired file
relative to the root of the Web serving folder configured for
the specified domain name. The root of the Web serving folder
is typically C:\InetPub\wwwroot\ for Windows 2000 servers and
/Library/WebServer/Documents for Mac OS X servers.

HTTP Request
The URL is used by the Web browser to assemble an HTTP request which is
actually sent to the Web server. The HTTP request resembles the header of
an email file. It consists of several lines each of which has a label followed
by a colon and a value.

Note: Most current Web browsers and Web servers support the HTTP/1.1
standard. Lasso Professional 7 also supports this standard. However, the
examples in this book are written for the HTTP/1.0 standard in order to
provide maximum compatibility with older Web browser clients.

2 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 – W E B A P P L I C A T I O N F U N D A M E N T A L S

The URL http://www.example.com/folder/file.html becomes the following HTTP
request:

GET /folder/file.html HTTP/1.0
Accept: */*
Host: www.example.com
User-Agent: Web Browser/4.1

The HTTP request is comprised of the following components:

 1 The first line defines the HTTP request. The action is GET and the path
to what should be returned is specified /folder/file.html. The final piece of
information is the protocol and version which should be used to return
the data, HTTP/1.0 in the example above.

 2 The Accept line specifies the types of data that can be accepted as a
return value. */* means that any type of data will be accepted.

 3 The Host line specifies the host which was requested in the URL.

 4 The User-Agent line specifies what type of browser is requesting the
information.

HTTP Response
Once an HTTP request has been submitted to a server, an HTTP response is
returned. The response consists of two parts: a response header which has
much the same structure as the HTTP request and the actual text or binary
data of the page or image which was requested.

The URL http://www.example.com/folder/file.html might result in the following
HTTP response header:

HTTP/1.0 200 OK
Server: Lasso Professional 7.0
MIME-Version: 1.0
Content-type: text/html; charset=iso-8859-1
Content-length: 7713

The HTTP response header is comprised of the following components:

 1 The first line defines the type of response. The protocol and version are
given followed by a response code, 200 OK in the example above.

 2 The Server line specifies the type of Web server that returned the data.
Lasso Professional 7 returns Lasso Professional 7.0 in the example above.

 3 The MIME-Version line specifies the version of the MIME standard used
to define the remaining lines in the header.

 4 The Content-type line defines the type of data returned. text/html means
that ASCII text is being returned in HTML format. This line could also

2 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 – W E B A P P L I C A T I O N F U N D A M E N T A L S

read text/xml for XML data, image/gif for a GIF image or image/jpeg for a
JPEG image.

The charset=iso-8859-1 parameter specifies the character set of the page.
Lasso returns pages in UTF-8 encoding by default or in the character set
specified in the [Content_Type] tag.

 5 Content-length specifies the length in bytes of the data which is
returned along with this HTTP response header.

The header is followed by the text of the HTML page or binary data of the
image which was requested.

Requesting a Web Page
The following are the series of steps which are performed each time a URL
is requested from a Web server:

 1 The Web browser determines the protocol for the URL. If the protocol
is not HTTP then it might be passed off to another application. If the
protocol is HTTPS then the Web browser will attempt a secure connec-
tion to the server.

 2 The Web browser looks up the IP address of the server through a
Domain Name Server (DNS).

 3 The Web browser assembles an HTTP request including the path to the
requested page.

 4 The Web browser parses the HTML returned by the request and renders it
for display to the visitor.

 5 If the HTML contains any references to images or linked style sheets then
additional HTTP requests with appropriate paths are generated and sent
to the Web server.

 6 The images and linked style sheets are used to modify the rendered
HTML page.

 7 Client-side scripting language such as JavaScript are interpreted and may
further modify the rendered page.

The Web browser opens a new HTTP request for each HTML page, style
sheet, or image file that is requested. All HTTP requests for a given HTML
page can be sent to the same Web server or to different Web servers
depending on how the HTML page is written. For example, many HTML
pages reference advertisements served from a completely different Web
server.

2 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 – W E B A P P L I C A T I O N F U N D A M E N T A L S

Character Sets
All Web pages must be transmitted from server to client using a character
set that maps the actual bytes in the transmission to characters in the fonts
used by the client’s Web browser. The Content-Type header in the HTTP
response specifies to the Web browser what character set the contents of
the page has been encoded in.

Lasso processes all data internally using double-byte Unicode strings. Since
two bytes are used to represent each character characters from single-byte
ASCII are padded with an extra byte. Double-byte strings also allow for 4-
byte or even larger characters using special internally encoded entities..

For transmission to the Web browser Lasso uses another Unicode standard
UTF-8 which uses one byte to represent each character. UTF-8 corresponds
roughly to traditional ASCII and the Latin-1 (ISO 8859-1) character set.
Double-byte or 4-byte characters are represented by entities. For example,
the entity 並 represents the double byte character .

For older browsers or other Web clients it may be necessary to send data
in a specific character set. Some clients may expect data to be transmitted
in the pre-Unicode standard of Latin-1 (ISO 8859-1). Lasso will honor the
[Content_Type] tag in order to decide what character set to use for transmis-
sion to the Web browser. Using the following tag will result in the Latin-1
(ISO 8859-1) character set being used.

[Content_Type: 'text/html; charset=iso-8859-1']

Note: UTF-8 is an abbreviation for the 8-bit (single-byte) UCS Transformation
Format. UCS is in turn an abbreviation for Universal Character Set. Since 8-bit
Universal Character Set Transformation Format is such a mouthful it helps to
think of UTF-8 simply as the most common Unicode character encoding.

Cookies
Cookies allow small amounts of information to be stored in the Web
browser by a Web server. Each time the Web browser makes a request to a
specific Web server, it sends along any cookies which the Web server has
asked to be saved. This allows for the Web server to save the state of a visi-
tor’s session within the Web browser and then to retrieve that state when
the visitor next visits the Web site, even if it is days later.

Cookies are set in the HTTP header for a file that is sent from the Web
server. A single HTML file can set many cookies and cookies can even be
set in the headers of image files. Each cookie has a name, expiration date,
value, and the IP address or host name of a Web server. The following line
in an HTTP header would set a cookie named session-id that expired on

2 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 – W E B A P P L I C A T I O N F U N D A M E N T A L S

January 1, 2010. The cookie will be returned in the HTTP request for any
domains that end in example.com.

Set-Cookie: session-id=102-2659358; path=/; domain=.example.com;
expires=Wednesday, 1-January-2010 08:00:00 GMT

Each time a request is made to a Web server, any cookies which are labeled
with the IP address or host name of the Web server are sent along with
all HTTP requests for HTML files or image files. The Web server is free
to read these cookies or ignore them. The HTTP request for any file on
example.com or www.example.com would include the following line.

Cookie: session-id=102-2659358

Cookies are useful because small items of information can be stored on
the client machine. This allows a customer ID number, shopping cart ID
number, or simple site preferences to be stored and retrieved the next time
the user visits the site.

Cookies are dependent upon support from the Web browser. Most Web
browsers allow for cookie support to be turned off or for cookies to be
rejected on a case-by-case basis. The maximum size of cookies is Web
browser dependent and may be limited to 32,000 characters or fewer for
each cookie or for all cookies combined.

Cookies can be set to expire after a certain number of minutes or at the
end of the current user’s session (until they quit their Web browser).
However, this expiration behavior should not be counted on. Some Web
browsers do not expire any cookies until the Web browser quits. Others
do not expire cookies until the machine hosting the Web browser restarts.
Some Web browsers even allow visitors to alter the expiration dates of
stored cookies.

Authentication
Web browsers support authentication of the visitor. A username and
password can be sent along with each HTTP request to the server. This
username and password can be read or ignored by the Web server. If the
Web server is expecting a username and password and does not find any or
does not find a valid username and password then the server can send back
a challenge which forces the browser to display an authentication dialog
box.

The following lines added to an HTTP response header will force most
Web browsers to challenge the visitor for a username and password. The
response code 401 Unauthorized informs the Web browser that the user is not
authorized to view the requested file.

HTTP/1.0 401 Unauthorized

3 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 – W E B A P P L I C A T I O N F U N D A M E N T A L S

There are two ways for a visitor to authenticate themselves to a Web server.
The first is through an authentication dialog box in response to a challenge
by the Web server. The second is by specifying a username and password in
a URL directly as follows:

http://username:password@www.example.com/folder/default.lasso

In either case, the username and password are transmitted to the Web
server with each HTTP request in plain text unless a secure protocol such
as HTTPS is used. The following line would be added to an HTTP request
based on the URL above. The username and password are encoded, but are
not encrypted.

Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=

The same username and password will continue to be transmitted to the
Web server until the user re-authenticates or quits the Web browser applica-
tion.

Note: See the section on Authentication Tags in Chapter 22: Lasso Control
Tags for information about LDML tags that automatically prompt for authenti-
cation information.

Web Server Overview
The World Wide Web is served to end-users by Web server applications.
Popular Web servers include Apache, WebSTAR, and Microsoft Internet
Information Services (IIS). The Web server handles incoming HTTP
requests for URLs from Web browsers. The interaction described in the
previous section from the Web browser’s point of view looks a little
different from the Web server’s point of view.

The following are the series of steps which are performed each time a URL
is requested from a Web server:

 1 The HTTP request is received on one of the ports which is being listened
to by the Web server. Most Web servers listen on port 80 for HTTP
requests and on port 443 for secure HTTPS requests.

 2 The HTTP request is parsed and split into its components: protocol, host
name, file path.

 3 The host name is used to decide what virtual host to serve a Web page
from. Most Web servers operate from a single IP address, but serve
pages for several different domain names. These may be as simple as
www.example.com and example.com.

3 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 – W E B A P P L I C A T I O N F U N D A M E N T A L S

 4 The path to the page request is added to the server root for the specified
virtual host. The virtual hosts may all start in a different folder on the
hard drive.

 5 The security settings of the server are checked to see if the user needs
to be authenticated to receive the page they are requesting. If an appro-
priate username and password are not specified in the HTTP request
then a challenge is sent in the HTTP response instead of the request
page.

 6 Server-side plug-ins or modules are called upon to process the request
page. For example, requests for HTML pages that have a file name with
the suffix .lasso will be sent to Lasso Service for processing. The processed
page is returned to the Web server and may even be sent through
multiple server-side plug-ins or modules before being served.

 7 The requested HTML page or image is returned to the user with an
appropriate HTTP response header.

HTML Forms and URL Parameters
HTML forms and URLs allow for significant amounts of data to be trans-
mitted along with the simple HTTP requests defined in the previous
sections. The data to be transmitted can either be included in the URL or
passed in the HTTP request itself.

URL Parameters
A URL can include a series of name/value parameters following the file
path. The name/value parameters are specified following a question mark
?. The name and value are separated by an equal sign = and multiple
name/value parameters are attached to a single URL with ampersands
&. The following URL has two name/value parameters: name1=value1 and
name2=value2.

http://www.example.com/folder/file.lasso?name1=value1&name2=value2

The URL parameters are simply added to the file path which is specified
in the HTTP request. The URL above might generate the following HTTP
request. Since the parameters follow the word GET they are often referred
to as GET parameters.

GET /folder/file.lasso?name1=value1&name2=value2 HTTP/1.0
Accept: */*
Host: www.example.com
User-Agent: Web Browser/4.1

3 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 – W E B A P P L I C A T I O N F U N D A M E N T A L S

Since the characters : / ? & = @ # % are used to define the structure of a URL,
the file path and URL parameters cannot include these characters without
modifying them so that the structure of the URL is not disturbed. The char-
acters are modified by encoding them into %nnn entities where nnn is the
hexadecimal ASCII code for the character being replaced. / is encoded as
%2f for example.

HTML Forms
HTML forms provide user interface elements in the Web browser so that a
visitor can customize the parameters which will be transmitted to the Web
server along with an HTTP request. HTML forms can be used to modify the
GET parameters of a URL or can be used to send POST parameters.

Note: A full discussion of the HTML tags possible within an HTML form is
beyond the scope of this section. Please see an HTML reference for a full
listing of HTML form elements.

Example of an HTML form with a GET method:

The following HTML form has an action which specifies the URL that
will be returned when this form is submitted. In this case the URL is
http://www.example.com/folder/file.lasso. The method of the form is defined to be
GET. This ensures that the parameters specified by the HTML form inputs
will be added to the URL as GET parameters.

<form action="http://www.example.com/folder/file.Lasso" method="GET">
 <input type="text" name="value1" value="value1">
 <input type="submit" name="value2" value="value2">
</form>

This form generates the following HTTP request. It is exactly the same as
the HTTP request created by the URL http://www.example.com/folder/file.lasso?nam
e1=value1&name2=value2.

GET /folder/file.lasso?name1=value1&name2=value2 HTTP/1.0
Accept: */*
Host: www.example.com
User-Agent: Web Browser/4.1

Example of an HTML form with a POST method:

The following HTML form has an action which specifies the URL that
will be returned when this form is submitted. In this case the URL is
http://www.example.com/folder/file.lasso. The method of the form is defined to be
POST. This ensures that the parameters specified by the HTML form inputs
will be added to the HTTP request as POST parameters and that the URL
will be left unmodified.

3 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 – W E B A P P L I C A T I O N F U N D A M E N T A L S

<form action="http://www.example.com/folder/file.Lasso" method="POST">
 <input type="text" name="value1" value="value1">
 <input type="submit" name="value2" value="value2">
</form>

This form generates the following HTTP request. The request file is simply
that which was specified in the action, but the method is now POST. The
HTML form parameters are specified as the content of the HTTP request.
They are still URL encoded, but now appear at the end of the HTTP
request, rather than as part of the URL.

POST /folder/file.lasso HTTP/1.0
Accept: */*
Host: www.example.com
User-Agent: Web Browser/4.1
Content-type: application/x-www-form-urlencoded
Content-length: 27
value1=value1&name2=value2

HTML Forms and URL Responses
The GET and POST parameters passed in HTML forms or URLs are most
often used by server-side plug-ins or modules to provide interactive or
data-driven Web pages. The GET and POST parameters are how values are
passed to Lasso in order to specify database actions, search parameters, or
for any purpose a Lasso developer wants.

Web Application Servers
A Web Application Server is a program that works in conjunction with
a Web server and provides programmatically generated HTML pages or
images to Web visitors. Web application servers include programs that
adhere to the Common Gateway Interface (CGI), programs which have
built-in Web servers, plug-ins or modules for Web server applications, and
services or dæmons that communicate with Web server applications.

Lasso Professional 7 is a Web application server which runs as a back-
ground service and communicates with the Web server Apache via a
module called Lasso Connector for Apache, the Web server WebSTAR V via
a plug-in called Lasso Connector for WebSTAR, or IIS via an ISAPI filter
called Lasso Connector for IIS.

Web application servers are triggered in different ways depending on
the Web server being used. Many Web application servers are triggered
based on file suffix. For example, all file names ending in .lasso could be
processed by Lasso Service. Any file suffix can be configured to trigger

3 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 – W E B A P P L I C A T I O N F U N D A M E N T A L S

processing by Lasso Service including .html so all HTML pages will be
processed before being served. Web application servers can usually also be
set to process all pages that are served by a Web server.

Most Web application servers function by interpreting a programming or
scripting language. Commands in the appropriate language are embedded
in format files and then executed when an appropriate HTML form or URL
is selected by a Web site visitor. The Web application server accepts the GET
and POST parameters in the HTML form or URL, interprets the commands
contained within the referenced format file, and returns a rendered HTML
page to the Web site visitor.

Developers can choose to develop complete Web sites using the scripting
language provided by a Web application server or they can purchase solu-
tions which are written using the scripting language of a particular Web
application server.

Lasso Professional 7 is a scriptable Web application server with a powerful
tag-based language called Lasso Dynamic Markup Language (LDML).
Custom solutions can be created by following the instructions contained
in this Lasso 7 Language guide. Links to pre-packaged, third party solutions
can be found on the OmniPilot Web site.

http://www.blueworld.com/

Web Application Server Languages
There are two main types of languages provided by Web application
servers.

 • Scripting Languages are used to specify programming logic and are
generally close in function to traditional programming languages.
Scripting languages can be used to assemble HTML pages and output
them to the Web visitor. Server-Side JavaScript is an example of a
scripting language.

 • Tag-Based Languages are used to specify data formatting and program-
ming logic within pre-formatted HTML or XML format files. The tags
embedded in the format file are interpreted and the output is modified
before the page is served to the Web visitor. Server Side Includes (SSI) is
an example of a tag-based language.

Lasso Professional 7 provides one language, LDML, which functions as
both a scripting language and a tag-based language. LDML tags can be
used in LassoScripts as a scripting language to define programming logic.
LassoScripts can be used to render individual HTML tags or to render

3 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 – W E B A P P L I C A T I O N F U N D A M E N T A L S

complete HTML documents programmatically. LDML tags can also be used
as a tag-based language inside square brackets within HTML or XML code.

Error Reporting
When syntax or logical errors occur while processing a format file, Lasso
will display an error page. The amount of information which is provided
on the error page can be customized in a number of ways.

 • The error reporting level can be adjusted in Lasso Administration to
control how much information is provided on the default error page. A
reporting level of None provides only a statement that an error occurred
with no details. A level of Minimal provides only the error code and a brief
error message. A level of Full provides detailed troubleshooting informa-
tion.

 • The error reporting level can be adjusted for a single format file using
the [Lasso_ErrorReporting] tag. For example, the global error reporting
level could be set to Minimal. While a page is being coded it can use
[Lasso_ErrorReporting] to set the level for that page only to Full.

 • Using the -Local keyword, the [Lasso_ErrorReporting] tag can be used to
limit the error information from sensitive custom tags or include files.
With this keyword the tag adjusts the error level only for the immediate
context.

 • A custom error.lasso page can be created for each site. This custom error
page can provide an appropriate level of detail to site visitors and can
be presented in the same appearance as the rest of the Web site. In
addition, the custom error page can log or even email errors to the site
administrator.

 • A custom server-wide error.lasso page can be created which will override
the built-in error page entirely. This custom page can be created on a
shared server to provide appropriate error information to all users of the
server.

More information about each of these options can be found in Chapter
21: Error Control. Consult that chapter for full details about how to use
the [Lasso_ErrorReporting] tag and how to create custom error pages.

3 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 – W E B A P P L I C A T I O N F U N D A M E N T A L S

3
Chapter 3

Format Files

This chapter introduces the concept of format files that contain LDML
tags. Understanding how to create and use format files is critical to under-
standing Lasso 7. All new users of Lasso 7 should read this chapter.

 • Introduction includes basic information about how format files are
created and used in Lasso 7.

 • Storage Types introduces the different methods of storing and retrieving
format files.

 • Naming Format Files describes the rules for naming format files.

 • Character Encoding describes how Lasso uses the Unicode byte order
mark to determine whether to read a file using the UTF-8 or Latin-1
(also known as ISO 8859-1) character set.

 • Editing Format Files explains the options which are available for editing
format files.

 • Functional Types describes the various ways in which format files are
used and introduces functional names for different types of format files.

 • Action Methods introduces the concept of actions and describes how
format files and LDML interact to create an action.

 • Securing Format Files explains the importance of maintaining security
for your format files.

 • Output Formats shows how to use a format file to create output of
various types.

 • File Management explains how the architecture of Lasso 7 influences
where files are stored and how they can be manipulated.

 • Specifying Paths shows how URLs, HTML forms, and paths can be used
to refer to format files.

 • Format File Execution Time Limit describes the built-in limit on the
length of time that format files will be allowed to execute.

3 7

L A S S O 7 . 1 L A N G U A G E G U I D E

Introduction
Format files are text files that contain embedded Lasso 7 code. When a
format file is processed by Lasso Service, the embedded LDML tags are
interpreted, executed, and the results are substituted in place of the tags.
The resulting document is then returned to the client. Web sites powered
by Lasso 7 are programmed by creating format files which include user
interface elements, database actions, and display logic.

This chapter describes the different methods of storing, naming, and
editing format files. It also discusses how multiple format files and LDML
work together to create actions. The chapter finishes with discussions of
how to output different types of data with format files and how to refer-
ence format files from within LDML tags, URLs, and HTML forms.

Note: Many of the terms used in this chapter are defined in Appendix A:
Glossary of the Lasso Professional 7 Setup Guide. Please consult this glossary
if you are unsure how any words are being used in this language guide.

Storage Types
The term Format File is used to describe any text file that contains
embedded Lasso 7 code. Format files are usually stored on the local disk
of the machine which hosts a Lasso Web server connector, but can also be
stored on a remote machine, the machine which hosts Lasso Service, or
even in a database field.

Format files are always text-based, but the structure of the text is not
important to Lasso. Lasso will find the embedded LDML 7 tags, process
them, and replace them with the results. Lasso will not disturb the text that
surrounds the LDML tags, but may modify text which is contained within
LDML container tags. The most common types of format files are described
below.

 • HTML Format Files contain a mix of LDML tags and HTML tags. HTML
format files can be edited in leading visual Web authoring programs with
LDML tags represented as icons or displayed as plain text. The output is
usually HTML suitable for viewing in a Web browser.

 • XML Format Files contain a mix of LDML tags and XML tags. When
a developer creates an XML format file it may not be strictly valid XML
code. However, it is constructed in such a way that the output after
being processed by Lasso is valid XML code. XML format files can
be constructed so that their output conforms to any Document Type
Definition (DTD) or XML Schema.

3 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

 • Text Format Files contain a mix of LDML tags and ASCII text. Text
format files can be used as the body of email messages or can be used to
output data in any ASCII-compatible form.

 • LDML Format Files contain only LDML tags. Pure LDML format files
usually contain programming logic and include other content types as
needed. A pure LDML format file could be a placeholder that returns the
appropriate type of content to whatever client loads the page.

Lasso format files can be stored in a variety of locations depending on how
they are going to be used. Four locations are listed below, along with brief
descriptions of how format files stored within them are used.

 • Web Server – Format files are typically stored as text files on the
machine which hosts the Web serving software with a Lasso Web server
connector. The format files are stored along with the HTML and image
files that comprise the Web site. As the client browses the site, they may
visit some pages which are processed by Lasso Service and others that are
served without any processing.

 • Lasso Service – Format files can be stored on the machine which hosts
Lasso Service. Usually, these format files serve a special purpose such as
library files in the LassoStartup folder that contain code which is executed
when Lasso Service starts up.

 • Database Field – Format files can be stored as text in a database field.
When a database action is performed the contents of the field are
returned to the client as if a disk-based text file had been processed and
served. Permission must be granted in Lasso’s administration interface in
order to use a database field in this fashion. See Chapter 7: Setting Up
Data Sources in the Lasso Professional 7 Setup Guide for more informa-
tion.

 • Remote Server – Lasso will not process LDML code which is stored on
remote servers, but it can incorporate content from remote Web servers
into the results served to the client or trigger CGI actions on remote
servers using the [Include_URL] tag. See Chapter 20: Files and Logging
for more information.

Naming Format Files
The Lasso Professional 7 Installer will automatically configure your Web
server to pass files named with a .lasso suffix to Lasso Service for processing.
Once it has finished processing a file, Lasso Service passes the resulting
file back to the Web server, which in turn sends the file to the client’s Web
browser. Files with other extensions, such as .gif or .jpg image files or .html

3 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

files are served directly by the Web server without being processed by Lasso
Service.

In addition, the Web server can be configured to send LDML format
files with other extensions such as .xml or .wml to Lasso Service. It is even
possible to configure the Web server to send all .html files to Lasso Service
for processing. See Chapter 6: Setting Global Preferences and the config-
uration chapters in the Lasso Professional 7 Setup Guide for more informa-
tion.

In order to promote the portability of your format files between Macintosh,
Windows, and UNIX platforms, it is best to name them in a multi-plat-
form friendly fashion. Never use reserved characters such as : ? & / \ # % " ' in
file names. Avoid spaces, punctuation, stray periods, and extended ASCII
characters. The safest file names contain only letters, numbers, and under-
scores. Some file systems are case-sensitive. Make sure that all references to
a file are specified using the same case as the actual file name on disk. One
option is to standardize on lowercase characters for all filenames.

Character Encoding
Lasso uses the standard Unicode byte order mark to determine if a format
file is encoded in UTF-8. If no byte order mark is present then the format
file will be assumed to be encoded using the Macintosh (or Mac-Roman)
character set on Mac OS X or the Latin-1 (or ISO 8859-1) character set on
Windows or Linux. Lasso does not support UTF-16 or UTF-32 format files.

Standard text editors such as Bare Bones BBEdit can save files using UTF-8
encoding with the byte order mark included. Consult the manual for the
text editor to see how to change the encoding of format files and how to
include the proper byte order mark to specify the encoding.

Note: It is recommended to use the Macintosh or Latin-1 character set only
for format files that do not contain extended, accented, or foreign characters.

Editing Format Files
Lasso format files can be edited in any text editor. If a format file contains
markup from a specific language such as HTML, WML, or XML then it can
be edited using an application which is specific to creating that type of file.

In order to make creating and editing Lasso format files which contain
HTML easier, OmniPilot supplies a product called Lasso Studio. Lasso
Studio provides tag-specific inspectors, wizards, and builders which allow
a developer to quickly build Lasso format files within either Macromedia

4 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

Dreamweaver, or Adobe GoLive. More information about Lasso Studio is
available at the following URL:

http://www.LassoStudio.com/

To ease editing of Lasso format files within leading text editors such as Bare
Bones BBEdit or Macromedia Home Site consult the Lasso Solutions page
at the following URL for links to various third-party solutions:

http://www.blueworld.com/blueworld/products/lassosolutions.html

Functional Types
Format files can be classified based on the types of LDML tags they contain
or based on the commands they will perform within a Web site. The
following list contains terms commonly used to refer to different types of
format files. A format file can be classified as being one or more of these
types.

 • Pre-Lasso is used to refer to a format file that contains only command
tags within HTML form inputs and URLs. Since Lasso does not perform
any substitutions on command tags, these format files do not require
any processing by Lasso before they are served to a client. Pre-Lasso
format files can be named with a .html file name extension and can
even be served from a Web server that does not have a Lasso Web server
connector installed.

 • Post-Lasso format files are the most common type of format files.
Post-Lasso format files can contain any combination of tags in
square brackets, command tags in HTML form inputs and URLs, and
LassoScripts. Post-Lasso format files need to be processed by Lasso
Service before they are served to the client. They are usually named with
a .lasso file name extension.

 • Library format files are used to modify Lasso’s programming environ-
ment by defining new tags and data types, setting up global constants,
and performing initialization code. Libraries are included in other
format files to modify the environment in which a single format file
is processed or loaded at startup to modify the global environment in
which all format files are processed.

 • Add Page, Search Page, Update Page, Listing Page, Detail Page
and others are format file names based upon the action which the client
will perform when they load the page in their Web browser. For example,
a format file might implement the search page of a site. An update page
would allow a user to edit a record from a database. A listing page is

4 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

usually the result of a search and contains links to a detail page which
presents more information about each of the records listed.

 • Add Response, Search Response, Delete Response and others are
format files named based on the action which results in the format file
being served to the client. These are typically called response pages. For
example, a delete response is served in response to the client opting to
delete a record from the database.

 • Error Page, Add Error, Search Error and others are format files that
provide an error message to the client based on the current action.

Action Methods
Web servers and Lasso Service are passive by nature. The software waits
until an action is initiated by a client before any processing occurs. Every
page load which is processed by Lasso can be thought of as an action
with two components: a source and a response. A visitor selects a URL
or submits an HTML form within the source format file and receives the
response format file. The different types of Lasso actions are summarized
in the table below and then described in more detail in the sections that
follow.

Table 1: Action Methods

Action Method Example

URL Action http://www.example.com/default.lasso

HTML Form Action <form action="Action.Lasso" method="post"> … </form>

Inline Action [Inline: -Database='Contacts', …, -Search] … [/Inline]

Scheduled Action [Event_Schedule: -URL='default.lasso', -Delay='10']

Startup Action /LassoStartup/startup.lasso

URL Action
A URL action is initiated or called when a client selects a URL in a source
file. The source file could be an HTML file from the same Web site, an
HTML file from another Web site, the “favorites” of a Web browser, or
could be a URL typed directly in a Web browser. The selected URL triggers
a designated response file that is processed and returned to the client.

4 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

The characteristics of the URL determine the nature of the action which is
performed.

 • HTML – If the URL references a file with a .html file name extension
then no processing by Lasso will occur (unless the Web server has been
configured to send .html files to Lasso Service.). The referenced HTML file
will be returned to the client unchanged from how it is stored on disk.

http://www.example.com/default.html

 • Lasso – If the URL references a file with a .lasso file name extension
then Lasso Service will be called upon to process the file. The referenced
format file will be returned to the client after Lasso Service has evaluated
all the LDML tags contained within.

http://www.example.com/default.lasso

 • Action.Lasso – If the URL references Action.Lasso then any command tags
contained in the URL will be evaluated and an appropriate response will
be returned to the user. The response to an Action.Lasso URL will always
be processed by Lasso Service whether it is a .html file, a .lasso file, or a
database field.

http://www.example.com/Action.Lasso?-Response=default.html

Note: Lasso will only process files with extensions that have been registered
within Lasso Administration. See Chapter 6: Setting Global Preferences of
the Lasso Professional 7 Setup Guide for more information.

HTML Form Action
An HTML form action is initiated or called when a client submits an HTML
form in a source file. The source file could be an HTML file from the same
Web site or an HTML file from another Web site. The form action and
inputs of the form are evaluated and trigger a designated response file that
is processed and returned to the client.

The characteristics of the form action determine the nature of the action
which is performed.

 • Lasso – If the HTML form references a file with a .lasso file name exten-
sion then Lasso Service will be called upon to process the file. The refer-
enced format file will be returned to the client after Lasso Service has
evaluated all the LDML tags contained within the inputs of the form.

<form action="default.lasso" method="post">
 …
</form>

 • Action.Lasso – If the HTML form references Action.Lasso then any
command tags contained in the inputs in the form will be evaluated and

4 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

an appropriate response will be returned to the user. The response to an
HTML form with an Action.Lasso form action will always be processed by
Lasso Service whether it is a .html file, a .lasso file, or a database field.

<form action="Action.Lasso" method="post">
 <input type="hidden" name="-Response" value="default.lasso"
 …
</form>

Note: Lasso will only process files with extensions that have been registered
within Lasso Administration. See Chapter 6: Setting Global Preferences of
the Lasso Professional 7 Setup Guide for more information.

Inline Action
Inline actions are initiated when the format file in which they are
contained is processed by Lasso Service. The result of an inline action is
the portion of the format file contained within the [Inline] … [/Inline] tags
that describe the action. As with all Lasso format files, inline actions are
processed as the result of a URL being visited or an HTML form being
submitted. However, inline actions are not reliant on command tags speci-
fied in the URL or HTML form.

 • Inline Tag – The [Inline] … [/Inline] container tags can be used to imple-
ment an inline action within a format file. The action described in the
opening [Inline] tag is performed and the contents of the [Inline] … [/Inline]
tags is processed as a sub-format file specific to that action.

[Inline: … Action Description …]
 … Response …
[/Inline]

 • Multiple Inlines – A single format file can contain many [Inline] … [/Inline]
container tags. Each set of tags is implemented in turn. A single format
file can be used to perform many different database actions in different
databases as the result of a single URL action or HTML form action.

[Inline: … Action One Description …]
 … Response One …
[/Inline]

[Inline: … Action Two Description …]
 … Response Two …
[/Inline]

 • Nested Inlines – Inlines can be nested so that the results of one inline
action are used to influence the processing of subsequent inline actions.
Nested inline actions allow for complex processing to be performed such

4 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

as copying records from one database to another or summarizing data in
a database.

[Inline: … Action One Description …]
 [Inline: … Action Two Description …]
 … Combined Response …
 [/Inline]
[/Inline]

 • Named Inlines – Inlines can be processed at the top of a format file and
their results can be used later in the format file. This allows the logical
processing of an action to be separated from the data formatting. The
results of the inline action are retrieved by specifying the inline’s name
in the [Records] … [/Records] container tag.

[Inline: -InlineName='Action', … Action Description …]
 … Empty …
[/Inline]
…
[Records: -InlineName='Action']
 … Response …
[/Records]

Scheduled Action
Scheduled actions are initiated when they are queued using the
[Event_Schedule] tag in a source file. The source file could be a format file
which is loaded as the result of an action by a client or could be loaded
as a startup action. The response to the scheduled action is not processed
until the designated date and time for the action is reached.

Any type of format file can be called as a scheduled action, but the results
will not be stored. Scheduled format files can effectively be thought of as
pure LDML format files. Scheduled format files can use logging or email
messages to notify a client that the action has occurred. See Chapter 22:
Control Tags for more information.

 • Lasso – The URL referenced when the action is scheduled will usually
contain a .lasso file name extension. The referenced format file will
be processed when the designated date and time is reached, but the
results will not be returned to any client. For example, the following
[Event_Schedule] tag schedules a call to a page that will send an email
report to the administrator of the site every 24 hours (1440 minutes),
even after server restarts:

[Event_Schedule: -URL='http://www.example.com/admin/emailreport.lasso',
 -Delay='1440', -Repeat=True, -Restart=True]

4 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

Startup Action
Startup actions are initiated when Lasso Service is launched by placing
format files in the LassoStartup folder. Format files which are processed at
startup are library files which are used to set up the global environment
in which all other pages will be processed. For example, they can add tags
and custom data types to the global environment, set up global constants,
or queue scheduled actions.

 • Lasso – Format files with .lasso file name extensions are used at startup
to queue scheduled actions or perform routine tasks on the databases or
files managed by Lasso Service. Any format files in the LassoStartup folder
will be processed every time Lasso Service is launched.

 • Library – Libraries of LDML tags and custom data types can be
processed at startup in order to extend the global environment in which
all other pages are processed. All LDML tags and data types in a library
processed at startup will be available to all other format files processed
by Lasso Service. See Chapter 20: Files and Logging for more informa-
tion about libraries.

Securing Format Files
The information being collected or served in a Web site is often of a sensi-
tive nature. Credit card numbers and visitor’s personal information must
be kept secure. Proper format file security is the first step toward creating a
Web site which only provides the information you want it to publish.

The LDML code contained in a format file should be secured so visitors
cannot examine it. Format files contain information about how to access
your databases. They may contain passwords, table and field names, or
custom calculations.

LDML code in a format file is implicitly secured if it is stored in a format
file with a .lasso file extension. The code in the file will always be processed
by Lasso before it is served to visitors. Visitors can access the HTML source
of the file they receive, but cannot access the LDML source of the original
format file.

It is important to ensure that your format files cannot be accessed unse-
curely through other Internet technologies such as FTP, Telnet, or file
sharing. Make sure that the files in your Web serving folder can only be
accessed by trusted developers and administrators. See Chapter 8: Setting
Up Security in the Lasso Professional 7 Setup Guide for more information.

4 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

Output Formats
Although Lasso format files are always text files, they can be used to output
a wide variety of different data formats. The most basic format files match
the output format. For example, HTML format files are used to return
HTML output to Web browsers. But, pure LDML format files can be used
to return data in almost any format through the use of the [Include] tag and
data from database fields.

This section describes how to output the most common data formats from
Lasso format files.

Text Formats
Lasso can be used to output any text-based data format. Format files are
usually based on a file of the desired type. The following are common
output formats:

 • HTML is the most common output format. Usually, HTML output
is generated from HTML format files. The embedded LDML tags are
processed, altering and adding to the content of the file, but the essential
characteristics of the file remain unchanged.

 • XML is rapidly becoming a standard for data exchange on the Internet.
XML output is usually generated through Lasso by processing XML
format files. The embedded LDML tags are processed, altering and
adding content to the XML data in the file. The resulting XML data can
be made to conform to any Document Type Definition (DTD) or XML
Schema desired.

 • WML is the language used to communicate with WAP-enabled wireless
devices. WML is a language which is based on XML. It is an example of a
DTD or XML Schema to which output data must conform. Lasso usually
generates WML output by processing WML format files. Developers
can create WML format files by using a WML authoring tool and then
embedding LDML tags within.

 • PDF or Portable Document Format is Adobe’s machine-independent
format for distribution of electronic documents. Lasso can be used in
concert with PDFs in several ways. Lasso can be used to process forms
embedded within PDF files and to return results to a client. Lasso can
be used to generate ASCII PDFs through custom programming. Finally,
Lasso can be used to provide access control to PDFs so only authorized
users are able to download certain PDFs.

4 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

Binary Formats
Lasso can be used to output a variety of binary data formats. Generally,
Lasso is not used to perform any processing on the binary data being
served, but is just a conduit through which pre-existing binary data is
routed. See Chapter 26: Images and Multimedia for more informa-
tion about each of these methods. The following list describes common
methods of outputting binary data.

 • URLs can be created and manipulated using LDML. For example, a data-
base could contain a file name in a field. LDML can be used to convert
that file name into a valid URL which will then be served as part of an
HTML page. The binary data will be fetched from the client directly
without any further action by Lasso.

 • Database Fields can be used to store binary data such as image files
in a container or binary format. If a Lasso data source connector for the
appropriate database supports fetching binary data, then Lasso can serve
the binary data or image files directly from the database field using the
[Field], [Image_URL] or -Image tags.

 • Binary Files can be served through Lasso using a combination of the
[Include_Raw] tag to output the binary data and the [Content_Type] tag to
report to the client what type of data is being served.

File Management
Lasso 7 introduces a new distributed architecture. Lasso Service can
be installed on one machine and a Lasso Web server connector can be
installed into a Web server on a different machine. It is important to realize
where format files are stored so they can be located on the appropriate
machine.

Note: In most Lasso 7 installations Lasso Service and a Lasso Web server
connector will be installed on the same machine. The discussion below still
applies since the various components of Lasso 7 will operate out of different
folders. An administrator can set up a machine so the same files are shared
by all components of Lasso.

Lasso Web Server Connector
Most format files for a Web site will be stored on the same machine as a
Lasso Web server connector in the Web serving folder which contains the
HTML and image files for the Web site.

4 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

 • Client Format Files are stored alongside the HTML and image files
which comprise a Web site. To the client, these format files appear no
different from plain HTML files except that they contain dynamic data.

 • Included Files are stored in the Web serving folder. These are files which
are incorporated into format files using the [Include] and [Include_Raw]
tags. Included files could be other format files, plain HTML files, images
files, PDF files, etc.

 • Library Files can be stored in the Web serving folder. These files contain
definitions for LDML tags and data types. Library files are referenced
much like included files. The custom tags and data types defined in the
library file are available only in the pages which load the library file.

 • Administrative Files are stored in the Web serving folder in a folder
named Lasso. These files comprise the Web-based administration inter-
face for Lasso Service.

Lasso Service
Format files which are stored on the same machine as Lasso Service are
used primarily when Lasso Service starts up to set up the global environ-
ment. However, other files which are manipulated by Lasso’s logging and
file tags are also stored on the Lasso Service machine.

 • Startup Format Files are stored in the LassoStartup folder with Lasso
Service. These files are processed when Lasso Service is launched and can
perform routine tasks or modify the global environment in which all
other Lasso format files will be processed. Any LDML tags, data types, or
global constants defined in these libraries will be available to all pages
which are processed by Lasso Service.

 • Startup LassoApps are stored in the LassoStartup folder with Lasso
Service. The default page of each LassoApp is processed at startup and
the LassoApp is pre-loaded into memory for fast serving.

 • Log Files are created using the [Log] tag. These files can be used to store
information about the format files which have been processed by Lasso
Service. Log files are created on the same machine as Lasso Service.

 • Uploaded Files are stored in a temporary location in a folder with
Lasso Service. Files can be uploaded by a client using a standard HTML
file input. Uploaded files must be moved from their temporary location
to a permanent folder before the page on which they were uploaded
finishes processing.

 • File Tags operate on files in folders on the same machine as Lasso
Service. The file tags can be used to manipulate log files or uploaded
files. The file tags are also used to manipulate HTML and other format

4 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

files in the Web serving folder if Lasso Service is installed on the same
machine as a Lasso Web server connector or if file sharing between the
two machines facilitates accessing the files as a remote volume. See
Chapter 20: Files and Logging for more information.

Note: A user can only access files to which the group they belong has
been granted access . See Chapter 8: Setting Up Security in the Lasso
Professional 7 Setup Guide for more information.

Database
Format files can be stored in any database which is available to Lasso
Service. They can be stored in the local Lasso MySQL database or in a
remote database hosted on another machine.

 • Format Files stored in database fields can be included in a page using
the [Process] tag. In the following example, the field LDML_Template is
processed using the [Process] tag:

[Process: (Field: 'LDML_Template')]

Database fields can also be referenced through appropriate URL or
HTML form parameters. See Chapter 7: Setting Up Data Sources in the
Lasso Professional 7 Setup Guide for more information about granting
permission to use a field as a format file. In the following example, the
field LDML_Template is used to format the response to the URL:

http://www.example.com/Action.Lasso?-Response=Field:LDML_Template

Specifying Paths
Format files can be referenced in many different ways depending on how
they are being used. They can be referenced in any of the following ways:

 • A URL can be used to reference a format file with a .lasso file extension
directly:

http://www.example.com/default.lasso

 • A URL can be used to reference format files with any file exten-
sions by calling Action.Lasso and then specifying the format file in a
-Response command tag:

http://www.example.com/Action.Lasso?-Response=default.html

 • An HTML form can be used to reference a format file with a .lasso file
extension directly in the form action:

5 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

<form action="default.lasso" method="post">
 …
</form>

 • An HTML form can be used to reference format files with any file exten-
sions by calling Action.Lasso as the form action and then specifying the
format file in a -Response hidden input:

<form action="Action.Lasso" method="post">
 <input type="hidden" name="-Response" value="default.html">
 …
</form>

 • A format file can be referenced from within certain LDML tags. For
instance, the [Include] tag takes a single format file name as a parameter:

[Include: 'default.lasso']

Paths are specified for format files differently depending on what type of
format file contains the path designation and to which type of format file
is being referred.

Note: Lasso cannot be used to reference files outside of the Web server root
unless specific permission has been granted within Lasso Administration. See
Chapter 8: Setting Up Security in the Lasso Professional 7 Setup Guide for
more information.

Relative and Absolute Paths
Most paths in Lasso format files follow the same rules as the paths between
HTML files served by the Web server. Relative and absolute paths are inter-
preted either by the client’s Web browser or by Lasso Service. These paths
are all defined within the context of the Web serving folder established by
the Web server which is hosting a Lasso Web server connector. If a single
Web server is used to host multiple sites, the Web serving folder could be
different for each virtual host.

 • Relative Paths between files can be specified using all the rules and
features of URL file paths. For example, the following anchor tag desig-
nates a response in the same folder as the current page:

Response

 • Paths can use ../ to specify a higher level folder. The following anchor
tag designates a response in the folder one level higher than that which
contains the current page:

Response

 • Relative paths designated within LDML tags follow the same basic rules
except that ../ cannot be used to access the parent folder for a format

5 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

file. For example, the following [Include] tag includes a file from the same
folder as the current page.

[Include: 'include.lasso']

 • Absolute Paths are referenced from the root of the Web serving folder
as designated by the Web serving software. The Web server root is speci-
fied using the / character. The following anchor tag designates a response
file contained at the root level of the current Web site:

Response

 • Absolute paths designated within LDML tags work the same as absolute
paths in URLs. The following [Include] tag includes a file contained at the
root level of the current Web site.

[Include: '/include.lasso']

For more information about specifying relative and absolute paths, consult
your favorite HTML reference or the documentation for your Web serving
application.

Action.Lasso Paths
If a format file has been called using Action.Lasso in either a URL or in an
HTML form action then all paths within the format file will be evaluated
relative to the stated location of Action.Lasso.

 • Action.Lasso could be specified as Action.Lasso so it appears to be located in
the same folder as the calling format file. All paths must then be speci-
fied as if the referenced format file was located in the same folder as the
calling format files. Paths relative to the referenced format file will fail,
but paths relative to the calling format file will succeed.

Response

 • Action.Lasso could be specified as /Action.Lasso so it appears to be located
at the root of the Web serving folder. All paths must then be specified as
if the referenced format file was located at the root of the Web serving
folder. Paths relative to the referenced format file will fail.

Response

 • Action.Lasso can also be specified using an arbitrary path such as
/Folder/Action.Lasso. In this case all paths will be relative to the specified
location of Action.Lasso.

Response

5 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

Database Field Paths
The path to database fields which are going to be used as format files is a
special case since these files are not contained on the local disk of the Web
serving machine.

 • In a URL, a field named Example_Template can be referenced as follows.
Usually, Action.Lasso is used as the target of a URL and the field is speci-
fied in a -Response command tag. The URL must contain a valid data-
base action that returns a record from which the field will be used. The
following example searches for a person from the Contacts database
whose ID is 1. The value of Example_Template for that person is used as the
response format file.

http://www.example.com/Action.Lasso?-Database=Contacts&-Table=People&
 -KeyField=ID&-KeyValue=1&-Search&-Response=Field:Example_Template

 • In an HTML form, a field named ExampleTemplate can be referenced as
follows. Usually, Action.Lasso is used as the form action and the field is
specified in a hidden input using a -Response command tag. This form
uses the same database action defined in the URL above.

<form action="Action.Lasso" method="post">
 <input type="hidden" name="-Search" value="">
 <input type="hidden" name="-Database" value="Contacts">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-KeyField" value="ID">
 <input type="hidden" name="-KeyValue" value="1">
 <input type="hidden" name="-Response" value="Field:Example_Template ">
</form>

Note: Permission must be granted in Lasso Administration for a field to be
used as a response field. See Chapter 7: Setting Up Data Sources in the
Lasso Professional 7 Setup Guide for more information.

Lasso Service Paths
Paths to format files on the machine hosting Lasso Service are speci-
fied differently than those which are used in format files on the machine
hosting a Lasso Web server connector. Format files on the machine hosting
Lasso Service are usually only referenced by the file tags and log tag.

 • Most paths should be Fully Qualified Paths specified from the root of
the disk on which Lasso Service is installed. For example, the following
path would represent a file in the same folder as Lasso Service in a
typical install on a Windows 2000 machine:

C://Program Files/OmniPilot Communications/Lasso Professional 7/default.lasso

5 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

 • The following path would represent the same file if it were in the same
folder as Lasso Service in a typical install on a Mac OS X machine:

///Applications/Lasso Professional 7/default.lasso

In Mac OS X, the hard drive name is set to a slash / so the fully qualified
paths must start with three slashes ///. Paths starting with a single slash
/ are defined to be relative to the Web server root.

For more information about specifying fully qualified paths, consult
Chapter 20: Files and Logging.

Note: Fully qualified paths can also be specified in a platform
specific fashion. For example, the path above could be written as
C:\\Program Files\Blue World Communications\Lasso Professional 7\default.lasso on
Windows or as Applications:Lasso Professional 7:default.lasso on Macintosh.

Format File Execution Time Limit
Lasso includes a limit on the length of time that a format file will be
allowed to execute. This limit can help prevent errors or crashes caused by
infinite loops or other common coding mistakes. If a format file runs for
longer than the time limit then it is killed and a critical error is returned
and logged.

The execution time limit is set to 10 minutes (600 seconds) by default and
can be modified or turned off in the Setup > Global > Settings section of
Lasso Admin. The execution time limit cannot be set below 60 seconds.

The limit can be overrided on a case by case basis by including the
[Lasso_ExecutionTimeLimit] tag at the top of a format file. This tag can set the
time limit higher or lower for the current page allowing it to exceed the
default time limit. Using [Lasso_ExecutionTimeLimit: 0] will deactivate the time
limit for the current format file altogether.

On servers where the time limit should be strictly enforced, access to the
[Lasso_ExecutionTimeLimit] tag can be restricted in the Setup > Global > Tags
and Security > Groups > Tags sections of Lasso Admin.

Asynchronous tags and compound expressions are not affected by the
execution time limit. These processes run in a separate thread from the
main format file execution.

Note: When the execution time limit is exceeded the thread that is
processing the current format file will be killed. If there are any outstanding
database requests or network connections open there is a potential for some
memory to be leaked. The offending page should be reprogrammed to
run faster or exempted from the time limit using [Lasso_ExecutionTimeLimit: 0].
Restarting Lasso Service will reclaim any lost memory.

5 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 – F O R M A T F I L E S

4
Chapter 4

LDML 7 Tag Language

This chapter introduces the methodology behind programming data-driven
Web sites powered by Lasso 7. This chapter introduces terminology which
is used through the remainder of this language guide. All new users of
Lasso Professional 7 should read through this chapter to familiarize them-
selves with the structure of Lasso Dynamic Markup Language (LDML).

 • Introduction describes the layout of this chapter in detail.

 • Syntax Types describes the ways to embed LDML 7 tags in format files.

 • Tag Types introduces the five types of LDML 7 tags including substitu-
tion tags, process tags, container tags, member tags, and command tags.

 • Tag Categories and Naming introduces the logic behind the names of
LDML 7 tags.

 • Parameter Types describes the different types of parameters that can be
specified within a tag.

 • Encoding contains a discussion of character encoding features for substi-
tution tags.

 • Data Types describes the different data types which LDML 7 offers.

 • Expressions and Symbols introduces the concept of performing calcula-
tions directly within parameters.

 • Delimiters includes a technical description of the characters used to
delimit LDML 7 tags in any syntax.

Introduction
This chapter describes the syntax features of LDML 7. Most of the topics in
this chapter are interrelated, and many of the terms used in this chapter are

5 5

L A S S O 7 . 1 L A N G U A G E G U I D E

defined in Appendix A: Glossary of the Lasso Professional 7 Setup Guide.
Consult this glossary if you are unsure of how any terms are used in this
guide.

The first part of this chapters describes the various syntax types that can be
used when coding in LDML, and the describes the different categories of
LDML tags.

The next part of the chapter describes the syntax of individual tags. The
different components of tags are discussed, followed by an introduction to
the various parameters that can be specified in LDML tags. Next, the focus
shifts to the values which are used to specify parameters. A discussion of
Lasso’s built-in data types sets the stage for the introduction of symbols
and expressions which can be used to modify values.

Finally, the chapter ends with a technical description of the delimiters used
to specify all the different tag types within Lasso and a brief discussion of
syntax rules and guidelines which make coding format files within Lasso
easier.

Syntax Types
LDML tags can be specified in several different ways within a format file.
They can be embedded in square brackets, LassoScripts, compound expres-
sions, HTML form inputs or URLs. Each of these methods is listed in the
table below and then described in more detail in the sections that follow:

Table 1: LDML 7 Syntax Types

Syntax Type Example

Square Brackets [Field: 'Company_Name']

LassoScript <?LassoScript Field: 'Company_Name'; ?>

Compound Expression [Output: {If: $Num == '1'; Return:'Yes'; /If;}->Run]

HTML Form Inputs <input type="hidden" name="-Required">

URLs http://www.example.com/default.lasso?-Token.Num=32

Square Brackets
A single LDML tag can be embedded within square brackets in a format
file by specifying its tag name and parameters within the brackets. The
entire square bracketed tag will be replaced by the result of the tag when
the format file is served to a client. For example, the following [Field] tag is
replaced by the value of the specified field in the current database:

5 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

[Field: 'Image_URL'] ➜ /Images/Portrait.gif

The square brackets serve to distinguish LDML tags from markup tags in
the format file, such as HTML and XML tags which are delimited by angle
brackets. LDML tags can be written on their own or within HTML or XML
tags. Lasso will not disturb the markup tags, but will replace the square
bracketed tag by its value in place when the format file is served. For
example, the [Field] tag can be used to specify the value of the src attribute
for an HTML tag:

 ➜

Any of the various tag types can be embedded within square brackets. See
the section on Tag Types below for more details. Some tags do not return
a value in which case they will be evaluated and removed from the output
when the format file is served.

Note: Lasso will attempt to interpret any expression that is contained within
square brackets in a format file and return the results. See Chapter 31:
Upgrading Your Solutions for information about how to use square brackets
in JavaScript without having Lasso interpret their contents.

LassoScript
Multiple LDML tags can be embedded within a LassoScript in a format file
by specifying the tags inside the LassoScript container <?LassoScript … ?>.
The entire LassoScript is replaced by the result of all the tags included in
the LassoScript when the format file is served to a client. For example, the
following LassoScript will return the value of the included [Field] tag:

<?LassoScript
 Field: 'Image_URL';
?>

➜ /Images/Portrait.gif

Individual LDML tags inside a LassoScript are separated by semi-colons.
Multiple tags can be included in the same line as long as they are sepa-
rated by semi-colons, but usually each tag is specified in its own line.
Parentheses can optionally be used around individual tags in order to
make it clear which parameters belong to which tag. For example, the
following LassoScript contains two [Output] tags and a [Field] tag each speci-
fied in its own line. The result of the LassoScript is the concatenation of the
values of all three tags.

5 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

<?LassoScript
 Output: '<img src=\"';
 Field: 'Image_URL';
 Output: '\">';
?>

➜

The same LassoScript as in the previous example can be written in a single
line with optional parentheses included so that the parameters of each tag
can be clearly distinguished. Note that even when parentheses are specified
around a tag, the semi-colon still must be included between tags:

<?LassoScript
 (Output: '');
?>

➜

Comments can be included at the end of any line of a LassoScript after two
forward slash characters //. The comment continues only until the end of
the line. Longer comments can be created by starting subsequent lines with
the // characters. For example, the LassoScript from above can be written as
follows with comments explaining each of the elements of the LassoScript.
The output is the same as above since the comments are all disregarded
when the LassoScript is processed:

<?LassoScript
 // A LassoScript to output an HTML tag for field 'Image_URL'.
 Output: '<img src=\"';
 // Output the start of the tag up to the first quote mark.
 Field: 'Image_URL';
 // Output the value of the field 'Image_URL' from the database.
 Output: '\">;
 // Output the end of the tag from the final quote mark.
?>

➜

Any of the various tag types can be embedded within LassoScripts. See the
section on Tag Types later in this chapter for more details.

Compound Expression Syntax
Compound expression syntax is a combination of square bracket syntax
and LassoScript whereby a LassoScript expression can be contained
within a custom tag with square bracket syntax. In the example below, a
LassoScript conditional statement is used within the [Output] tag to display
Yes or No based on the value of the variable MyTest.

5 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

[Variable: 'myTest'= 'Yes']
[Output: { If: $myTest; Return: 'Yes'; Else; Return: 'No'; /If; }->Eval]

➜ Yes

Instead of using the LassoScript container <?LassoScript … ?>, the LassoScript
syntax is delimited by curly braces {...} within square bracket syntax. Inside
the curly braces, all syntax rules for LassoScript apply. Compound expres-
sion syntax combines the conciseness of LassoScript with the distinguish-
ability of square bracket syntax for streamlined coding.

Compound expression syntax is most useful when creating custom tags,
and is described in detail in Chapter 5: Advanced Programming Topics of
the Extending Lasso 7 Guide. The [Tag] tag, which is required for use with
compound expressions, is also described in that chapter.

HTML Form Inputs
LDML tags can be embedded within HTML form inputs in two different
ways. An LDML command tag can be embedded as the name parameter
of an <input>, <select>, or <textarea> tag. LDML tags in square brackets can
be embedded as either the name or value parameters. For example, the
following <input> tag includes an LDML command tag -ResponseAnyError as
the name parameter and an LDML substitution tag [Response_FilePath] as the
value parameter.

<input type="hidden" name="-ResponseAnyError" value="[Response_FilePath]">

When the format file that includes the -ResponseAnyError tag is served to a
client, the -ResponseAnyError tag will not be processed until the HTML form
in which this <input> is embedded is submitted by a client. However, the
[Response_FilePath] substitution tag is replaced by the name of the current
Web page to yield the following HTML for the <input> tag.

➜ <input type="hidden" name="-ResponseAnyError" value="/form.lasso">

Any of the various tag types can be embedded within HTML form inputs,
but the details differ for each type of tag. See the section on Tag Types
below for more details.

URLs
LDML tags can be embedded within the parameters of URLs in two
different ways. An LDML command tag can be embedded as the name half
of a parameter. LDML tags in square brackets can be embedded as either
the name or value half of a parameter. For example, the following URL
includes an LDML command tag -Token.Name as the name half of the first

5 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

parameter and an LDML substitution tag [Client_Username] as the value half
of the first parameter.

When the format file that includes this tag is served to a client the
-Token.Name command tag will remain unchanged. This tag will not be
processed until the URL is selected by a client. The [Client_Username] substi-
tution tag will be replaced by the name of the current user logged in.

➜

Any of the various tag types can be embedded within URLs, but the details
differ for each type of tag. See the section on Tag Types below for more
details.

Tag Types
LDML 7 tags are divided into five different types depending on how the
tags are used and how their syntax is specified. Each of the five tag types is
listed in the table below and then discussed in more detail in the sections
that follow, including details of how each tag type can be used within a
format file.

Table 2: LDML 7 Tag Types

Tag Type Example

Substitution Tag [Field: 'Company_Name']

Process Tag [Event_Schedule: -URL='http://www.example.com/']

Member Tag [Output: 'String'->(Get: 3)]

Container Tag [Loop: 5] … Looping Text … [/Loop]

Command Tag <input type="hidden" name="-Required">

Substitution Tags
Substitution tags return a value which is substituted in place of the tag
within the format file being served to a client. Most of the tags in LDML
are substitution tags. Substitution tags are used to return field values from
a database query, return the results of calculations, or to display informa-
tion about the state of Lasso Service and the current page request.

The basic format for substitution tags is a tag name followed by a colon
and then one or more parameters separated by commas. Every substitu-
tion tag also accepts an optional encoding keyword as described later. The

6 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

following example shows the structure of substitution tags expressed in
square brackets:

[Substitution_Tag: Tag_Parameter, -EncodingKeyword]

Substitution tags have the same basic form when they are expressed in
a LassoScript as when they are expressed in square brackets, except that
each tag must end with a semi-colon when expressed in a LassoScript. The
following example shows the format of substitution tags and process tags
expressed in a LassoScript:

<?LassoScript
 Substitution_Tag: Tag_Parameter, -EncodingKeyword;
?>

To embed a substitution tag within square brackets:

 • Specify the substitution tag on its own. The tag will be replaced by its
value when the page is served to a client. For example, the following
[Field] tags will be replaced by the company’s information from the data-
base:

[Field: 'Company_Name'] ➜ OmniPilot
[Field: 'Company_URL'] ➜ http://www.blueworld.com

 • Specify the substitution tag within HTML or XML markup tags. The
LDML tag will be replaced by its value when the page is served to a
client, but the markup tags will be served as written. For example, the
following [Field] tags are replaced by the company’s information from the
database within an HTML anchor tag.

[Field: 'Company_Name']

➜ OmniPilot

To embed a substitution tag within a LassoScript:

 • Specify the substitution tag inside the LassoScript container followed by
a semi-colon. The value of the LassoScript will be the value of the lone
substitution tag. For example, the [Field] tag is the value of the LassoScript
in the following code:

<?LassoScript
 Field: 'Company_Name';
?>

➜ OmniPilot

 • Specify multiple substitution tags on separate lines of the LassoScript.
End each tag with a semi-colon. The value of the LassoScript will be
the concatenation of the value of all the substitution tags. For example,

6 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

the [Output] tags and [Field] tag define the value of the LassoScript in the
following code:

<?LassoScript
 Output: '', -EncodeNone;
 Field: 'Company_Name';
 Output: '', -EncodeNone;
?>

➜ OmniPilot

Note: Every substitution tag accepts an optional encoding parameter which
specifies the output format for the value which is being returned by the tag.
Please see the section on Encoding below for more details.

Process Tags
Process tags perform an action which does not return a value. They can
be used to alter the HTTP header of an HTML file being served, to store
values, to schedule tasks for later execution, to send email messages, and
more.

The basic format for process tags is identical to substitution tags: a tag
name followed by a colon and then one or more parameters separated by
commas.

[Process_Tag: Tag_Parameter]

Process tags have the same basic form when they are expressed in a
LassoScript as when they are expressed in square brackets. Except that
each tag must end with a semi-colon when expressed in a LassoScript.
The following example shows the format of process tags expressed in a
LassoScript:

<?LassoScript
 Process_Tag: Tag_Parameter;
?>

To embed a process tag within square brackets:

 • Specify the process tag on its own. The tag will be removed from the
format file when it is served. For example, the following [Email_Send] tag
will send an email to a specified email address, but will return no value
in the Web page being served.

[Email_Send: -Host='smtp.myserver.com',
 -To='Somebody@example.com',
 -From='Nobody@example.com',
 -Subject='This is the subject of the email',
 -Body='This is the message text of the email']

6 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

To embed a process tag within a LassoScript:

 • Specify the process tag inside the LassoScript container followed by a
semi-colon. Since the process tag does not return a value it will not
affect the return value of the LassoScript. For example, the following
[Email_Send] tag will send an email to a specified email address, but
since the LassoScript contains only this tag it will return no value in the
format file being served:

<?LassoScript
 Email_Send: -Host='smtp.myserver.com',
 -To='Somebody@example.com',
 -From='Nobody@example.com',
 -Subject='This is the subject of the email',
 -Body='This is the message text of the email';
?>

A combination of substitution and process tags can be included in a
LassoScript, but the output value of the LassoScript will be determined
solely by the value of the substitution tags.

Member Tags
Member tags modify or return data from a value of a specific data type.
Each data type in Lasso has different member tags. Member tags can either
be used in the fashion of process tags to alter a value or they can be used
in the fashion of substitution tags to return a value.

Member tags differ from substitution and process tags in that they must be
called using the member symbol -> and a value from the appropriate data
type. The following example shows the structure of member tags:

[Value->(Tag_Name: Parameters)]

For example the [String->Get] member tag requires a value of type string.
Member tags are always written in this fashion in the documentation: the
data type followed by the member symbol and the specific tag name. The
following code fetches the third character of the specified string literal:

[Output: 'The String'->(Get: 3)] ➜ e

Member tags are defined for any of the built-in data types and third parties
can create additional member tags for custom data types. The built-in data
types include String, Integer, Decimal, Map, Array, and Pair. More informa-
tion can be found in the section on Data Types below.

6 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

To embed a member tag within square brackets:

 • Specify the member tag as the parameter of an [Output] substitution tag.
This makes it clear that you want to output the value returned by the
member tag.

[Output: 'The String'->(Get: 3)] ➜ e
[Output: 123->(Type)] ➜ Integer

To embed a member tag within a LassoScript:

 • Specify the member tag as the parameter of an [Output] substitution tag.
This makes it clear that you want to output the value returned by the
member tag.

<?LassoScript
 Var:'Text'='The String';
 Output: $Text->(Get: 3);
?>

➜ e

 • Member tags can be specified directly if they are being used
in the fashion of a process tag. In the following example, the
[String->Append] member tag is used to add text to the string, but no result
is returned.

<?LassoScript
 Var:'Text'='The String';
 $Text->(Append: ' is longer.');
?>

Container Tags
Container tags are a matching pair of tags which enclose a portion of a
format file or LassoScript and either alter the enclosed contents or change
the behavior of tags within the enclosed contents. The opening tag uses the
same syntax as a substitution or process tag. The closing tag has the same
name as the opening tag, but the closing tag is specified with a leading
forward slash. This is similar to how HTML markup tags are paired.

In the documentation, container tags are referred to by specifying both
tags with an ellipsis representing the enclosed content. The loop tag will be
referred to as [Loop] … [/Loop]. When the attributes or parameters of one half
of the container tag pair is being discussed, then just the single tag will be
named. The opening loop tag is [Loop] and the closing loop tag is [/Loop].

For example, the following [Loop] tag has a single parameter which specifies
the number of times the contents of the tag will be repeated. The [/Loop] tag
defines the end of the area which will be repeated:

6 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

[Loop: 5] Repeated [/Loop]

➜ Repeated Repeated Repeated Repeated Repeated

To embed a container tag within square brackets:

 • Specify the opening container tag followed by the contents of the
container tags and the closing container tag. The contents of the
container tags will be affected by the parameters passed to the opening
container tag. For example, the following [If] tag will output its contents
if its parameter evaluates to True. Since 1 does indeed equal 1 the output
is True.

[If: 1 == 1] True [/If] ➜ True

Note: Both the opening and closing tags of a container tag must be
contained within the same format file. Container tags can be nested, but all
enclosed container tags must be closed before the enclosing container tag is
closed. See Chapter 13: Conditional Logic for more information.

To embed a container tag within a LassoScript:

 • Specify the opening container tag followed by the contents of the
container tag and the closing container tag. Each tag must end with
a semi-colon. For readability, the contents of a container tag is often
indented. For example, the following [If] tag will output the contents of
the enclosed tags if its parameter evaluates to True. Since 1 does indeed
equal 1 the output is True.

<?LassoScript
 If: 1 == 1;
 Output: True;
 /If;
?>

➜ True

Command Tags
Most command tags are actually parameters of the [Inline] tag, but can be
used on their own within HTML forms or URLs. Command tags are used
to send additional information in a form submission or URL request that
is flagged for special use by Lasso. This includes specifying field search
operators, required form fields, error response pages, and passing token
information.

Command tags names always start with a hyphen, e.g. -Required. Command
tags can be though of as “floating parameters“, as they use the same

6 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

hyphenated syntax conventions as substitution, process, and container tag
parameters, and can also be used directly as [Inline] tag parameters.

The basic format for a command tag is a tag name starting with a hyphen
and an associated value. Since command tags can be specified within
HTML form inputs, URLs, and as parameters of the [Inline] tag, the form of a
command tag is different in each situation.

To embed command tags within an HTML form:

 • Specify multiple command tags within the HTML form inputs. Each
command tag should be specified in its own form input with the
command tag as the name of the input tag.

<input type="hidden" name="-CommandTag" value="Command Value">

The following example shows a form that contains Lasso command tags.
Each -Operator command tag is contained in an HTML hidden input,
which augments a field inputs below it. When the form is submitted,
each field passed to the searchresponse.lasso page will be passed with an
Equals operator, meaning the field value submitted must match values in
a database exactly before results will be returned.

<form action="searchresponse.lasso" method="post">
 <input type="hidden" name="-Operator" value="equals">
 <input type="text" name="Field1" value="">
 <input type="hidden" name="-Operator" value="equals">
 <input type="text" name="Field2" value="">

 <input type="submit" value="Search">

</form>

 • Command tags occasionally accept a parameter which is specified just
after the name of the tag following a period. For example, the -Token tag
has a name parameter and a value parameter. The -Token tag can be speci-
fied in a form as follows:

<input type="text" name="-Token.Name" value="Default Value">

To embed command tags within a URL:

 • Specify multiple command tags within the parameters of the URL. A
URL consists of a page reference followed by a question mark and one or
more URL parameters. Each command tag parameter should be specified
as the command tag followed by an equal sign then its value. Individual
command tag parameters should be separated in the URL by amper-
sands.

http://www.example.com/default.lasso?-CommandTag=Command%20Value

6 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

A full action would be specified as follows. The result of selecting
this URL in a Web browser would be that the response page
searchresponse.lasso will be returned to the visitor with the result of the
search from the specified database and table.

http://www.example.com/searchresponse.lasso?-Operator=Equals&Field1=Value1&
-Operator=Equals&Field2=Value2

To embed command tags within an [Inline]:

 • Specify multiple command tags within the opening [Inline] tag. The
command tags will specify the action which the [Inline] is to perform.
The contents of the [Inline] … [/Inline] tags will be affected by the results of
this action. The following example shows how the -Op tags can be used
directly within an [Inline] tag.

[Inline:
 -Database='Contacts'
 -Table='People',
 -KeyField='ID',
 -Op='eq',
 'Field1'='Value1',
 -Op='eq',
 'Field2'='Value2',
 -Search]
 …
[/Inline]

Tag Categories and Naming
All of the tags in LDML 7 are grouped and named according to a few
simple rules. These rules define where the tag can be found in Lasso 7
documentation and in Lasso Administration.

Tag Categories
The following chart describes the major tag categories in LDML 7. Each tag
category is discussed in more detail later in the book. Look for a chapter
which has the same name as the tag category or use the index to locate a
particular tag.

Table 3: LDML 7 Tag Categories

Tag Category Description

Administration Administration and security tags.

Array Array, map, and pair member tags.

6 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

Client Information about the current visiting client.

Conditional Conditional logic and looping tags.

Custom Tag Create custom LDML tags and data types.

Data Types Tags to cast values to specific data types.

Database Information about the current database.

Date Date manipulation tags.

Encoding Tags for encoding data.

Encryption Encrypt data so it can be transmitted securely.

Error Tags for reporting and handling errors.

File Tags for manipulating files.

Image Tags for manipulating images.

Include Allows data to be included in a format file.

Link Link to other records in the current found set.

Math Mathematical operations and integer member tags.

Operator Set and retrieve logical and field-level operators.

Output Tags for formatting or suppressing output.

Network Tags for performing network operartions.

PDF Tags for creating PDF documents.

Results Results from the current Lasso action.

String String operations and string member tags.

Technical Tags for performing low-level operations.

Utility Tags which don't fit in any other category.

Variable Tags for creating and manipulating variables.

XML Tags for processing XML.

Tag Naming Conventions
Tags in LDML are named according to a set of well-defined naming
conventions. Understanding these conventions will make it easier to locate
the documentation for specific tags. We also recommend the following
naming conventions when creating custom tags, libraries, and modules.

 • Case is unimportant in both tag name and tag parameter names. All
LDML tags can be written in uppercase, lowercase, or any combination
of mixed case. Tags are always written in title case in the documentation.
The following tag names would all be equivalent, but the first, e.g. title
case, is preferred:

[Tag_Name] [tag_name]
[TAG_NAME] [TaG_NaMe]

6 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

 • Core language tags usually have simple tag names and do not contain
underscore characters. For example:

[Variable] [Field]
[If] … [Else] … [/If] [Inline] … [/Inline]

 • Most tag names include a category name followed by an underscore then
the specific tag name. For example: [Math_Sin] is the tag in the “Math”
category that performs the function “Sine.” Similarly, [Link_NextRecordURL]
is the tag in the “Link” category that returns the URL of the next record
in the found set. Category names appear in tag names based on the
following format:

[Category_TagName]

 • Tag names never start with an underscore character. These tag names are
reserved for internal use.

 • Some tag names reference another tag or other component of Lasso
7 followed by an underscore then a specific tag name. For example
[MaxRecords_Value] returns the value of the -MaxRecords command tag.
There is no underscore in the words MaxRecords since it is referring to
another tag. This association can be expressed as follows:

[TagReference_TagName]

 • Many tag names include a word at the end that specifies what the output
of the tag will be. For instance, [Link_NextRecord] … [/Link_NextRecord] is a
container tag that links to the next record, but [Link_NextRecordURL] is a
substitution tag that returns the URL of the next record. Tags that end
in “URL” output URLs. Tags that end in “List” and most tags that have
plural names output arrays. Tags that end in “Name” return the name of
a database entity. Tags that end in “Value” return the value of the named
database entity.

[Link_NextRecordURL] [File_ListDirectory]
[Action_Params] [Variables]
[KeyField_Name] [KeyField_Value]

 • Member tag names are written in the documentation with the data type
followed by the member symbol then the tag name. For example, the
Get tag of the data type string would be written: [String->Get]. All of the
member tags of a particular data type are considered to be part of the
category which has the same name as the data type. All of the string
member tags are part of the string category.

 • Tags created by third parties should start with a prefix which identifies
the creator of the tag. For example, tags from “Example Company” might
all start with Ex_. This ensures that the third party tags do not conflict
with built-in tags or other third party tags.

6 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

[Ex_TagName] [ExCategory_TagName]

Synonyms and Abbreviations
The following charts detail some standard synonyms and abbreviations in
LDML 7. Any of the synonyms or abbreviations in the right column can be
used instead of the term in the left column, but the term in the left column
is preferred.

Table 4: LDML 7 Synonyms

Preferred Term Synonym Example

Field Column [Field_Name] [Column_Name]

Record Row [Records] [Rows]

KeyValue RecordID [KeyField_Value] [RecordID_Value]

Table Layout [Table_Name] [Layout_Name]

Table 5: LDML 7 Abbreviations

Preferred Term Abbreviation Example

Operator Op -Operator -Op

Required Req -Required -Req

Variable Var [Variable] [Var]

Some tags which were synonyms in earlier version of Lasso are no longer
supported. Please see Chapter 31: Upgrading Your Solutions for more
information. For a complete list of synonyms and abbreviations please
consult the LDML 7 Reference.

7 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

Parameter Types
This section introduces the different types of parameters which can be
specified within LDML tags. This discussion is applicable to substitution
tags, process tags, the opening tag of container tags, and member tags.
Command tag parameters are fully described in the previous section.

Table 6: Parameter Types

Parameter Type Example

Value [Field: 'Field_Name']

Keyword [Error_CurrentError: -ErrorCode]

Keyword/Value [Inline: -Database=(Database_Name), …]

Name/Value [Variable: 'Variable_Name'='Variable_Value']

Some parameters are required for a tag to function properly. The [Field]
and [Variable] tags require that the field or variable to be returned is speci-
fied. In contrast, the keyword in [Error_CurrentError] is optional and can be
safely omitted. If no keyword is specified for an optional parameter then
a default will be used. For a complete listing of required, optional, and
default parameters for each tag, please consult the LDML 7 Reference.

A Value is the most basic parameter type, and consists of a basic data type
contained within a tag after a colon character (:). Values include string
literals, integer literals, decimal literals, sub-tags, and complex expressions.

[Field: 'Field_Name'] [Date: '09/29/2003']
[Var_Defined: 'Variable_Name'] [Output: 123]

A value can also be the value of a sub-tag. Any substitution tag or member
tag can be used as a sub-tag. The syntax of the sub-tag is the same as that
for the substitution tag or member tag except that the tag is enclosed in
parentheses rather than square brackets. The following [Output] tags are used
to output the value of several different sub-tags:

[Output: (Field: 'Field_Name')] [Output: (Date)]
[Output: (Loop_Count)] [Output: 'String'->(Get: 3)]

A Keyword is a tag-specific parameter that alters the behavior of a tag.
Keyword names always start with a hyphen. This makes it easy to distin-
guish tag-specific keywords from user-defined parameters. The following
examples of [Server_Date] show how the same tag can be used to generate
different content based on the keyword that is specified:

[Server_Date: -Short] ➜ 3/24/2001
[Server_Date: -Long] ➜ March 24, 2001
[Server_Date: -Abbrev] ➜ Mar 24, 2001
[Server_Date: -Extended] ➜ 2001-03-24

7 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

Note: For backwards compatibility, some tags will accept keyword names
without the leading hyphen. This support is not guaranteed to be in future
versions of Lasso so it is recommended that you write all keyword names with
the leading hyphen.

A Keyword/Value parameter is the combination of a tag specific keyword
and a user-defined value which affects the output of a tag. The keyword
name is specified followed by an equal sign and the value. Keyword/value
parameters are sometimes referred to as named parameters. For example,
the [Date] tag accepts multiple keyword/value parameters which specify the
characteristics of the date which should be output:

[Date: -Year=2001, -Day=24, -Month=3] ➜ 3/24/2001

Command tags are used like keyword/value parameters in the [Inline] tag.
The command tag functions like the keyword and is written with a leading
hyphen. For example, the following [Inline] contains several command tags
that define a database action:

[Inline: -FindAll
 -Database='Contacts',
 -Table='People',
 -KeyField='ID']
 … Results …
[/Inline]

A Name/Value parameter is the combination of a user-defined name with
a user-defined value. The name and the value are separated by an equal
sign. Name/value parameters are most commonly used in the [Inline] tag
to refine the definition of a database action. For example, the previous
[Inline] example can be modified to search for records where the field
First_Name starts with the letter s by the addition of a name/value parameter
'First_Name'='s':

[Inline: -Search,
 'First_Name'='s',
 -Database='Contacts',
 -Table='People',
 -KeyField='ID']
 … Results …
[/Inline]

Encoding
Encoding keyword parameters specify the character format in which the
data output from a substitution tag should be rendered. Encoding ensures
that reserved or illegal characters are changed to entities so that they will

7 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

display properly in the desired output format. Encoding keywords allow
substitution tags to be used to output data in any of the following formats:

 • HTML text for display in a Web browser (default).

 • HTML tags for display in a Web browser.

 • XML data for data interchange.

 • URL parameters to construct a hyperlink.

 • ASCII text for inclusion in an email message or log file.

The following table demonstrates each of the encoding keywords available
in LDML 7.

Table 7: Encoding Keywords

Keyword Encoding Performed

-EncodeNone No encoding is performed.

-EncodeHTML Reserved, illegal, and extended ASCII characters are
changed to their hexadecimal equivalent HTML entities.

-EncodeSmart Illegal and extended ASCII characters are changed to
their hexadecimal equivalent HTML entities. Reserved
HTML characters are not changed.

-EncodeBreak ASCII carriage return characters are changed to HTML

.

-EncodeURL Illegal and extended ASCII characters are changed to
their equivalent hexadecimal HTTP URL entities.

-EncodeStrictURL Reserved, illegal and extended ASCII characters are
changed to their equivalent hexadecimal HTTP URL
entities.

-EncodeXML Reserved, illegal, and extended ASCII characters are
changed to their UTF-8 equivalent XML entities.

To use an encoding keyword:

Append the desired encoding keyword at the end of a substitution tag. For
example, angle brackets are reserved characters in HTML. If you want to
include an angle bracket in your HTML output it needs to be changed into
an HTML entity. The entity for < is < and the entity for > is >.

[Output: 'HTML Text', -EncodeHTML] ➜ HTML Text

See Chapter 18: Encoding for more information.

7 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

Data Types
Every value in Lasso is defined as belonging to a specific data type. The
data type determines what member tags are available and how symbols
affect the value. Data types generally correspond to everyday descriptions
of a value with the addition of some data types for structured data. The
following table lists the primary data types available in Lasso:

Table 8: Primary LDML 7 Data Types

Data Type Example

String 'This is a string surrounded by single quotes'

Integer 1500

Decimal 3.14159

Date 9/29/2002 19:12:02

Duration 168:00:00

Array [Array: 'red', 'green', 'blue', 'yellow']

Map [Map: 'Company_Name'='OmniPilot', 'City'='Bellevue']

Note: This section describes the primary data types which are used most
frequently in LDML. There are many other special-purpose data types in
LDML, including PDF, Image, File, and Network Types. These special-purpose
types are described in appropriate chapters later in this guide.

Strings
Strings are any series of alphanumeric characters. String literals are
surrounded by single quotes. The results of a substitution tag will be
considered a string if it contains any characters other than numbers. Please
see Chapter 14: String Operations for more information.

Some examples of string values include:

 • 'String literal' is a string surrounded by single quotes.

 • '123456' is a string literal since it is surrounded by single quotes.

 • 'A string with \'quotes\' escaped' is a string that contains quote marks. The
quote marks are considered part of the string since they are preceded by
back slashes.

 • The following [Field] tag returns a string value. Notice that the value of a
substitution tag is a string value since it contains alphabetic characters:

[Field: 'Company_Name'] ➜ OmniPilot

7 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

 • The following code sets a variable to a string value, then retrieves that
value:

[Variable: 'String' = 'abcdef']
[Variable: 'String'] ➜ abcdef

Integers
Integers are any series of numeric characters that represent a whole
number. Integer literals are never surrounded by quotes. The results of a
substitution tag will be considered an integer if it contains only numeric
characters which represent a whole number. Please see Chapter 15: Math
Operations for more information.

Some examples of integer values include:

 • 123456 is an integer literal since it is not surrounded by quotes.

 • (-50) is an integer literal. The minus sign (hyphen) is used to define a
negative integer literal. The parentheses are required if the literal is to be
used as the right-hand parameter of a symbol.

 • The following [Field] tag returns an integer value. The value is recognized
as an integer since it contains only numeric characters and represents a
whole number:

[Field: 'Employee_Age'] ➜ 23

 • The following code sets a variable to an integer value, then retrieves that
value:

[Variable: 'Integer' = 1000]
[Variable: 'Integer'] ➜ 1000

Decimals
Decimals are any series of characters that represent a decimal number.
Decimal literals are never surrounded by quotes. Decimal values must
include a decimal point and can be expressed in exponential notation.
Please see Chapter 15: Math Operations for more information.

Some examples of decimal values include:

 • 123.456 is a decimal literal since it contains a decimal point and is not
surrounded by quotes.

 • (-50.0) is a negative decimal literal. The parentheses are required if the
literal is to be used as the right-hand parameter of a symbol.

 • The following [Field] tag returns a decimal value. The value is recognized
as a decimal since it contains numeric characters and a decimal point:

[Field: 'Annual_Percentage_Rate'] ➜ 0.12

7 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

 • The following code sets a variable to a decimal value, then retrieves that
value:

[Variable: 'Decimal' = 137.48]
[Variable: 'Decimal'] ➜ 137.48

Dates
Dates are a special data type that represent a date and/or time string. Dates
in Lasso 7 can be manipulated in a similar manner as integers, and calcu-
lations can be performed to determine date differences, durations, and
more. For Lasso to recognize a string as a date data type, the string must
be explicitly cast as a date data type using the [Date] tag. When casting as a
date data type, the following date formats are automatically recognized as
valid date strings by Lasso:

1/1/2001
1/1/2001 12:34
1/1/2001 12:34:56
1/1/2001 12:34:56 GMT
2001-01-01
2001-01-01 12:34:56
2001-01-01 12:34:56 GMT

The “/”, “-”, and “:” characters are the only punctuation marks recognized
in valid date strings by Lasso. If using a date format not listed above,
custom date formats can be defined as date data types using the [Date] tag
with the -Format parameter. See Chapter 16: Date and Time Operations
for more information.

Some examples of dates include:

 • [Date:'9/29/2002'] is a valid date data type recognized by Lasso.

 • [Date:'9.29.2002'] is not recognized by Lasso as a valid date data type due to
its punctuation, but can be converted to a date data type using the [Date]
tag with the -Format parameter.

[Date:'9.29.2002', -Format='%m.%d.%Y']

 • Specific date and time information can be obtained from date data types
using accessors.

[(Date:'9/29/2002')->DayofYear] ➜ 272

 • Date data types can be manipulated using math symbols. Date and time
durations can be specified using the [Duration] tag.

[(Date:'9/29/2002') + (Duration: -Day=2)] ➜ 10/01/2002

 • A valid date data type can be displayed in an alternate format using the
[Date_Format] tag.

7 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

[Date_Format:(Date:'9/29/2002'), -Format='%Y-%m-%d'] ➜ 2002-09-29

Note: Lasso uses internal standardized date libraries to automatically
adjust for leap years and day light savings time when performing date
calculations. The current time and time zone are based on that of the Web
server. For information on special cases with date calculations during day
light saving time, see Chapter 16: Date and Time Operations.

Durations
Durations are a special data type that represent a length of time in hours,
minutes, and seconds. Durations are not 24-hour clock times, and can
represent any length of time. Duration data types in Lasso 7 are related to
date data types, and can be manipulated in a similar manner. For Lasso
to recognize a string as a duration data type, the string must be explicitly
cast as a duration data type using the [Duration] tag. Any numeric string
formatted as hours:minutes:seconds or just seconds may be cast as a duration
data type.

168:00:00
60

Colon characters (:) are the only punctuation marks recognized in valid
duration strings by Lasso. The [Duration] tag always outputs values in
hours:minutes:seconds format regardless of what the input format was. See
Chapter 16: Date and Time Operations for more information.

Some examples of durations include:

 • [Duration:'169:00:00'] is a valid duration data type recognized by Lasso,
and represents a duration of 169 hours. This duration will be output as
169:00:00.

 • [Duration:'300'] is a valid duration data type recognized by Lasso, and
represents a duration of 300 seconds. This duration will be output as
00:05:00 (five minutes).

Arrays
Arrays are a series of values which can be stored and retrieved by numeric
index. Arrays can contain values of any other data type, including other
arrays. Only certain substitution tags return array values. Array values are
never returned from database fields. Please see Chapter 17: Arrays and
Maps for more information.

Some examples of how to work with arrays include:

 • Create an array using the [Array] tag. The following two examples create
an array with the days of the week in it, where each day of the week is a

7 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

string literal. The second example shows abbreviated syntax where the
colon (:) character is used to specify the start of an array data type.

[Array: 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
[: 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']

 • Store an array in a variable using the following code which stores the
array created in the code above in a variable named Week.

[Variable: 'Week' = (Array: 'Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday', 'Sunday')]

 • Fetch a specific item from the array using the [Array->Get] member tag.
This code fetches the name of the third day of the week.

[Output: (Variable: 'Week')->(Get:3)] ➜ Wednesday

 • Set a specific item from the array using the [Array->Get] member tag. The
following code sets the name of the third day of the week to its Spanish
equivalent Miercoles.

[(Variable: 'Week')->(Get:3) = 'Miercoles']

The new value of the third entry in the array can now be fetched.

[Output: (Variable: 'Week')->(Get:3)] ➜ Miercoles

Maps
Maps are a series of values which can be stored and retrieved by name.
Maps can contain values of any other data type, including arrays or other
maps. Only certain substitution tags return map values. Map values are
never returned from database fields. Please see Chapter 17: Arrays and
Maps for more information.

Some examples of how to work with maps include:

 • Create a map using the [Map] tag. The following creates a map with some
user information in it. The name of each item is a string literal, the
values are either string literals or decimal literals:

[Map:
 'First Name'='John',
 'Last Name'='Doe',
 'Age'=25]

 • Store a map in a variable using the following code which stores the map
created in the code above in a variable named Visitor:

[Variable: 'Visitor' = (Map:
 'First Name'='John',
 'Last Name'='Doe',
 'Age'=25)]

7 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

 • Fetch a specific item from the map using the [Map->Get] member tag. This
code fetches the visitor’s first name:

[Output: (Variable: 'Visitor')->(Get:'First Name')] ➜ John

 • Set a specific item from the map using the [Map->Get] member tag. This
code sets the age of the visitor to 29. Notice that the [Output] tag returns
no value since the member tag is being used in the fashion of a process
tag to set a value.

[Output: (Variable: 'Visitor')->(Get:'Age') = 29]

The new value of the age entry in the map can now be fetched:

[Output: (Variable: 'Visitor')->(Get:'Age')] ➜ 29

Note: There are other, less common data types in LDML that are not defined
here. These include pair, boolean, and null. Please see Chapter 17: Arrays
and Maps for more information about the pair type, Chapter 22: Control
Tags for more information about the null type, and Chapter 13: Conditional
Logic for more information about the boolean type.

Expressions and Symbols
Virtually all of the values shown in this chapter so far have been simple
string, integer or decimal literals. Any tag in LDML which accepts a value
as a parameter can accept an expression in place of that value. This allows
nested operations to be performed within the parameters of LDML tags.

This section discusses each of the different types of expressions that can
be used as values within LDML. It starts with simple expressions and
then moves on to more complex expressions. The [Output] tag will be used
throughout this section to output the value of expressions.

Table 9: Types of LDML 7 Expressions

Expression Example

Literal 'String Literal', 100, 150.34

Sub-Tag (Variable: 'Variable_Name')

Member tag (Array: 1, 2, 3, 4)->(Get: 4)

String Expression 'String One' + 'String Two'

Math Expression 100 / 4 + 25 - (-20)

Complex Expression '' + 100 / 4 + ''

Conditional Expression 'azure' == 'blue'

Logical Expression ('blue' != 'orange') || ('red' != 'green')

Tag Reference \Tag_Name

7 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

This section also describes each of the different symbols that can be used
to modify expressions specific to each type of expression.

Literals
Any string literal, integer literal, or decimal literal can be used as a value in
LDML. These are the most basic types of values and the simplest examples
of expressions. These literals are defined in the previous section on Data
Types. Some examples of outputting literal values include:

[Output: 'String Literal'] [Output: 123]
[Output: 100.14] [Ouput: (-123)]

Note: The [Output] tag is not technically required in these expressions.
[123] will evaluate to the integer value 123. However, for clarity, the use of the
[Output] tag is recommended for displaying expressions.

Sub-Tags
Substitution tags are LDML tags that return a value and any substitution
tag can be used as a simple expression in LDML. The syntax of the sub-tag
is the same as that for the substitution tag except that the tag is enclosed
in parentheses rather than square brackets. The value of the expression
is simply the value of the substitution tag. For example, the following
[Output] tags output the value of the specified sub-tag.

[Output: (Field: 'Field_Name')] [Output: (Date)]
[Output: (Loop_Count)]

Note: Substitution tags have a default encoding keyword of
-EncodeHTML applied when they are the outermost tag. However, when substi-
tution tags are used as sub-tags or in square brackets without an [Output] tag,
no encoding is applied by default. See Chapter 18: Encoding for more infor-
mation.

Member Tags
Member tags that return values can be used as simple expressions in
LDML. An appropriate member tag for any given data type can be attached
to a value of that data type using the member symbol ->. For example, the
following member tag returns a character from the specified string literal:

[Output: 'String'->(Get: 3)]

The value on the left side of the member symbol can be any expression
which is valid in LDML. It can be a string literal, integer literal, decimal
literal, sub-tag, or any of the expressions which are defined below. For

8 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

example, the following member tag would return the third character of the
name which is returned from the database:

[Output: (Field: 'First Name')->(Get: 3)]

Note: The [Output] tag is not technically required in member tag expressions.
['String'->(Get: 3)] will evaluate to the character r. However, for clarity, the use of
the [Output] tag is recommended.

Table 10: Member Tag Symbol

Symbol Name Example

-> Member [Output: 'abcdef'->(Get: 3)] ➜ c

String Expressions
String expressions are the combination of string values with one or more
string symbols. A string expression defines a series of operations that
should be performed on the string values. The string values which are to be
operated upon can be either string literals or any expressions which return
a string value.

Symbols should always be separated from their parameters by spaces and
string literals should always be surrounded by single quotes. Otherwise,
Lasso may have a difficult time distinguishing literals and LDML tags.

The most common string symbol is + for concatenation. This symbol can
be used to combine multiple string values into a single string value. For
example, to add bold tags to the output of a [Field] tag we could use the
following string expression:

[Output: -EncodeNone, '' + (Field: 'CompanyName') + '']

➜ OmniPilot

String symbols can also be used to compare strings. String symbols can
check if two strings are equal using the equality == symbol or can check
whether strings come before or after each other in alphabetical order using
the greater than < or less than > symbols. For example, the following code
reports the proper order for two strings:

[If: 'abc' == 'def']
 abc equals def
[Else: 'abc' < 'def']
 abc comes before def
[Else: 'abc' > 'def']
 abc comes after def
[/If]

➜ abc comes before def

8 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

Note: Always place spaces between a symbol and its parameters. The
- symbol can be mistaken for the start of a negative number, command tag,
keyword, or keyword/value parameter if it is placed adjacent to the parameter
that follows.

Table 11: String Expression Symbols

Symbol Name Example

+ Concatenation [Output: 'abc' + 'def'] ➜ abcdef

* Repetition [Output: 'abc' * 2] ➜ abcabc

- Deletion [Output: 'abcdef' - 'cde'] ➜ abf

>> Contains [Output: 'abcdef' >> 'bcd'] ➜ True

!>> Not Contains [Output: 'abcdef' !>> 'bcd'] ➜ False

== Equality (Value Only) [Output: 'abc' == 'def'] ➜ False

=== Equality (Value & Type) [Output: '123' == 123] ➜ False

!= Inequality (Value Only) [Output: 'abc' != 'def'] ➜ True

!== Inequality (Value & Type) [Output: '123' != 123] ➜ True

< Less Than [Output: 'abc' < 'def'] ➜ True

> Greater Than [Output: 'abc' > 'def'] ➜ False

Please see Chapter 14: String Operations for more information.

Math Expressions
Math expressions are the combination of decimal or integer values with
one or more math symbols. A math expression defines a series of opera-
tions that should be performed on the decimal or integer values. The
numeric values which are to be operated upon can be either decimal or
integer literals or any expressions which return a numeric value.

Symbols should always be separated from their parameters by spaces. This
ensures that the + and - symbols are not mistaken for the sign of one of the
parameters.

Simple math operations can be performed directly within an expression.
For example, the following [Output] tags return the value of the specified
simple math calculations.

[Output: 10 + 5] ➜ 15 [Output: 10 - 5] ➜ 5
[Output: 10 * 5] ➜ 50 [Output: 10 / 5] ➜ 2

If the second parameter of the expression is negative it should be
surrounded by parentheses.

[Output: 10 + (-5)] ➜ 5 [Output: 10 * (-5)] ➜ -50

8 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

Math expressions can be used on either decimal or integer values. If both
parameters of a math symbol are integer values then an integer result will
be returned. However, if either parameter of a math symbol is a decimal
value then a decimal value will be returned. Decimal return values always
have at least six significant digits.

Note: Always place spaces between a symbol and its parameters. The
- symbol can be mistaken for the start of a negative number, command tag,
keyword, or keyword/value parameter if it is placed adjacent to the parameter
that follows.

Table 12: Math Expression Symbols

Symbol Name Example

+ Addition [Output: 100 + 25] ➜ 125

- Subtraction [Output: 100 - 25] ➜ 75

* Multiplication [Output: 100 * 25] ➜ 2500

/ Division [Output: 100 / 25] ➜ 4

% Modulo [Output: 100 % 25] ➜ 0

== Equality (Value Only) [Output: 100 == 25] ➜ False

=== Equality (Value & Type) [Output: 100 == 100.0] ➜ False

!= Inequality (Value Only) [Output: 100 != 25] ➜ True

!= Inequality (Value & Type) [Output: 100 !== 100.0] ➜ True

> Greater Than [Output: 100 > 25] ➜ True

>= Greater Than or Equal [Output: 100 >= 25] ➜ True

< Less Than [Output: 100 < 25] ➜ False

<= Less Than or Equal [Output: 100 <= 25] ➜ False

Please see Chapter 15: Math Operations for more information.

Complex Expressions
Complex expressions can be created by combining sub-expressions
together using one or more string or math symbols. The results of the
sub-expressions are used as the parameters of the enclosing parameters.
Expressions can be enclosed in parentheses so that the order of operation
is clear.

For example, the following complex math expression contains many
nested math expressions. The expressions in the innermost parentheses
are processed first and the result is used as a parameter for the enclosing
expression. Notice that spaces are used on either side of each of the math-
ematical symbols.

8 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

[Output: (1 + (2 * 3) + (4.0 / 5) + (-6))] ➜ 1.8

The following complex string expressions contains many nested string
expressions. The expressions in the innermost parentheses are processed
first and the result is used as a parameter for the enclosing expression:

[Output: ('abc' + ('def' * 2) + ('abcdef' - 'def') + 'def')] ➜ abcdefdefabcdef

String and math expressions can be combined. The behavior of the
symbols in the expression is determined by the parameters of the symbol.
If either parameter is a string value then the symbol is treated as a string
symbol. Only if both parameters are decimal or integer values will the
symbol be treated as a math symbol. For example, the following code
adds two numbers together using the math addition + symbol and then
appends bold tags to the start and end of that value using the string
concatenation + symbol:

[Output: '' + (100 + (-35)) + '', -EncodeNone] ➜ 65

Conditional Expressions
Conditional expressions are the combination of values of any data type
with one or more conditional symbols. A conditional expression defines a
series of comparisons that should be performed on the parameter values.
The values which are to be operated upon can be valid values or expres-
sions.

Conditional symbols were introduced in the String Expressions and Math
Expressions sections above in the context of comparing string or math
values. They can actually be used on values of any data type including
arrays, maps, and custom types defined by third parties.

Values are automatically converted to an appropriate data type for a
comparison. For example, the following comparison returns True even
though the first parameter is a number and the second parameter is a
string. The second parameter is converted to the same type as the first
parameter, then the values are compared:

[Output: 123 == '123'] ➜ True

Conditional expressions are used in the [If] … [/If] and
[While] … [/While] container tags to specify the condition under which the
contents of the tag will be output. For example, the following [If] tag
contains a conditional expression that will evaluate to True only if the
company name is OmniPilot:

[If: (Field: 'Company_Name') == 'OmniPilot']
 The company name is OmniPilot
[/If]

8 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

Table 13: Conditional Expression Symbols

Symbol Name Example

>> Contains [Output: 'abcdef' >> 'bcd'] ➜ True

!>> Not Contains [Output: 'abcdef' !>> 'bcd'] ➜ False

== Equality (Value Only) [Output: 100 == 25] ➜ False

=== Equality (Value & Type) [Output: 100 == '100'] ➜ False

!= Inequality (Value Only) [Output: 100 != 25] ➜ True

!== Inequality (Value & Type) [Output: 100 !== '100'] ➜ True

> Greater Than [Output: 100 > 25] ➜ True

>= Greater Than or Equal [Output: 100 >= 25] ➜ True

< Less Than [Output: 100 < 25] ➜ False

<= Less Than or Equal [Output: 100 <= 25] ➜ False

Please see Chapter 13: Conditional Logic for more information.

Logical Expressions
Logical expressions are made up of multiple conditional sub-expressions
combined with one or more logical symbols. The values of the conditional
sub-expressions are combined according to the operation defined by the
logical symbol.

Logical expressions are most commonly used in the [If] … [/If] container tag
to specify the condition under which the contents of the tag will be output.
A single [If] tag can check multiple conditional expressions if they are
combined into a single logical expressions.

For example, the following [If] tag contains a logical expression that will
evaluate to True if one or the other of the sub-expressions is True. The
[If] … [/If] container tag will display its contents only if the company name is
OmniPilot or the product name is Lasso Professional:

[If: ((Field: 'Company_Name') == 'OmniPilot') ||
 ((Field: 'Product_Name') == 'Lasso Professional')]
 The company name is OmniPilot
[/If]

Table 14: Logical Expression Symbols

Symbol Name Example

&& And [Output: True && False] ➜ False

|| Or [Output: True || False] ➜ True

! Not [Output: ! True] ➜ False

8 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

Please see Chapter 13: Conditional Logic for more information.

Note: These logical symbols should not be confused with the logical search
operators which can be used to assemble complex search criteria. See
Chapter 6: Database Interaction Fundamentals for more information about
logical search operators.

Tag References
The back slash \ can be used to reference tags by name. This allows the
member tags of the tag data type to be used on both built-in and custom
tags. For more information about the tag data type consult the Extending
Lasso Guide.

For example, \Field returns a reference to the built-in [Field] tag. Each of the
following code samples is an equivalent way of calling the [Field] tag.

<?LassoScript

 Field: 'First_Name';

 \Field->(Run: -Params=(Array: 'First_Name'));

 \Field->(Invoke: 'First_Name');

?>

Simiarly, the member tags of a data type can be referenced using the ->
symbol and the back slash \ symbol together. For example, Array->\Join
would return a reference the [Array->Join] tag. Each of the following code
samples is an equivalent way of calling the [Array->Join] tag.

<?LassoScript

 (Array: 'One', 'Two')->(Join: ' - ');

 (Array: 'One', 'Two')->\Join->(Run: -Params=(Array: ' - '));

 (Array: 'One', 'Two')->\Join->(Invoke: ' - ');

?>

8 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

Delimiters
This section describes the delimiters which are used to define LDML and
HTML. It is important to understand how delimiters are used so that tags
can be constructed with the proper syntax.

Table 15: LDML 7 Delimiters

Symbol Name Function

[Square Bracket Start of tag square bracket syntax.

] Square Bracket End of tag in square bracket syntax.

/ Forward Slash Closing container tag name.

\ Back Slash Escapes special characters in strings or
 returns a reference to a tag or member tag.

: Colon Separates tag name from tag parameters.

, Comma Separates tag parameters.

= Equal Sign Separates name/value parameter.

- Hyphen Starts command tag name and keyword names.

' Single Quote Start and end of LDML string value.

(Parentheses Start of sub-tag or expression.

) Parentheses End of sub-tag or expression.

<?LassoScript LassoScript Start of LassoScript.

?> LassoScript End of LassoScript.

{ Curly Brace Start of compound expression syntax (LassoScript
 contained within square bracket syntax).

} Curly Brace End of compound expression syntax.

; Semi-Colon Separates tags within LassoScript.

// Double Slash Start of line comment in LassoScript.

/* Asterisk Slash Start of extended comment in LassoScript.

*/ Asterisk Slash End of extended comment in LassoScript.

-> Member Symbol Separates data value from member tag.

 Space Specified between symbols and their parameters.

When possible, parentheses should be used around all expressions, sub-tag
calls, and negative literals. The parentheses will ensure that Lasso accurately
parses each expression. If an expression does not seem to be working
correctly, try adding parentheses to make the order of operation explicit.

Unlike symbols, white space is generally not required around delimiters.
White space may be used to format code in order to make it more read-
able.

8 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

Note: The double quote " was a valid LDML separator in earlier versions of
Lasso but has been deprecated in Lasso Professional 7. It is not guaranteed
to work in future versions of Lasso.

The following table shows the delimiters which are used in HTML pages
and HTTP URLs.

Table 16: HTML/HTTP Delimiters

Symbol Name Function

< Angle Bracket Start of an HTML or XML tag.

> Angle Bracket End of an HTML or XML tag.

= Equal Sign Separates name/value parameter or attribute.

" Double Quote Start and end of HTML string value.

? Question Mark Separates path from parameters in URL.

Hash Mark Separates path from target in URL.

& Ampersand Separates URL parameters.

/ Forward Slash Folder delimiter in URL paths or designation of
 Web server root if used at the start of a URL path.

../ Dot Dot Slash Up one folder level in URL paths.

 Space Separates tag attributes.

Illegal Characters
The following chart details characters which can cause Lasso problems if
they appear in a format file or within LDML code outside of a string literal.
These characters are not valid in tag names, keyword names, or parameter
names.

For best results use a dedicated HTML editor such as Macromedia
Dreamweaver or Adobe GoLive or a text editor such as BareBones BBEdit
or Microsoft NotePad to create LDML format files. The Zap Gremlins option

8 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

in BBEdit is particularly useful in eliminating problem characters such as
these.

Table 17: Illegal Characters

Symbol Name Function

 Non-Breaking Space Non-breaking spaces can be used within string
 literals, but are not valid white space within LDML
 code. Often typed Option-Space on Macintosh.

\0 Null Character The null-character is often used as and end-of-file
 marker. Lasso may abort processing if it reads a
 null character within a format file.

8 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

9 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 4 – L D M L 7 T A G L A N G U A G E

5
Chapter 5

LDML 7 Reference

This chapter documents how to use the LDML 7 Reference.

 • Overview provides an overview of the LDML 7 Reference and how to
access it.

 • Search discusses searching the LDML 7 Reference.

 • Browse discusses browsing the LDML 7 Reference by tag type or cate-
gory.

 • Detail discusses how to view information about LDML tags, and what
information can be displayed.

 • List discusses how all available tags can be listed.

Overview
The LDML 7 Reference is a resource provided by OmniPilot for finding
descriptions, usage guidelines, and detailed examples of LDML tags. It is
the official reference for all tags in LDML 7.

The LDML 7 Reference is a locally-stored LassoApp and Lasso MySQL data-
base included with each installation of Lasso Professional 7, and is also
available on the OmniPilot Web site.

To access the LDML 7 Reference:

 • The LDML 7 Reference can be accessed through the Support > LDML
Reference section in Lasso Administration.

 • The LDML 7 Reference can also be accessed on the local machine at
the following URL, substituting the actual IP address or host name of

9 1

L A S S O 7 . 1 L A N G U A G E G U I D E

the Web server for www.example.com. The LDML 7 Reference requires the
administrator username and password for local access.

http://www.example.com/Lasso/LDMLReference.LassoApp

 • The LDML 7 Reference can be accessed at OmniPilot at the following
URL. This reference is open for anyone to use and includes a public
comment interface.

http://ldml.blueworld.com/

 This version contains the same information as the locally-stored LDML 7
Reference, however, it also contains documentation comments and code
examples from users and developers. This is useful for finding further
examples and information about particular tags.

Components
The local version of the LDML 7 Reference consists of two components.
The interface is provided by the LDMLReference.LassoApp file located in the
Lasso directory of the Web server root. The data for the reference is stored
within Lasso MySQL in a database named LDML7_Reference. Both compo-
nents are installed as part of the standard Lasso Professional 7 installation.

Figure 1: LDML 7 Reference

Search Browse Detail List

Basic Advanced Comments Examples Quick Search: array

LDML 7 Tag Search

Tag array

Category Any

Type Any

Set Any

Support Any

Sort Results by Name

Search Find All Clear

Tags Listing

Name Type Set Support

[Array->Find] Member LDML60 Preferred

[Array->Get] Member LDML60 Preferred

[Array->Insert] Member LDML60 Preferred

[Array->Last] Member LDML60 Preferred

[Array->Merge] Member LDML60 Preferred

[Array->RemoveAll] Member LDML60 Preferred

[Array->Remove] Member LDML60 Preferred

[Array->Size] Member LDML60 Preferred

[Array->Sort] Member LDML60 Preferred

[Array] Substitution LDML60 Preferred

search sorted by Name.
Showing 1 to 10 of 10 tags.

Lasso Professional 7 • LDML 7 Reference

© 1996-2003 Blue World Communications. Inc.

Submit a comment or write to to report any problems with this LassoApp.documentation@blueworld.com

Sections of the Interface
The interface is divided into four sections, navigable via tabs at the top of
the screen. These sections are:

 • Search – Allows searching the LDML 7 Reference database.

9 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

 • Browse – Allows browsing the LDML 7 Reference database by category.

 • Detail – Shows descriptions, comments, and examples of specific LDML
tags.

 • List – Shows a listing of all available LDML tags summarized by category.

Navigation
Navigation occurs by selecting the tab for the desired section at the top
of the interface. Doing so will display the default screen for that tab and
additional tabs for any subsections. Many screens contain two panels. The
left panel generally provides a search interface or a list of options. The right
panel provides search results or details for any selected option.

Navigation within extended lists occurs via Prev and Next buttons. Listings
are displayed in groups of ten or fifteen depending on the section.

Search
This section describes searching for LDML tags in the LDML 7 Reference
using the Search section of the interface.

Basic Searching
The Basic page allows one to specify a basic search for LDML tags and view
the results. LDML 7 preferred tags and their synonyms, and abbreviations
will be returned as well as symbols and delimiters.

Figure 2: Basic Search Page

Search Browse Detail List

Basic Advanced Comments Examples Quick Search: array

LDML 7 Tag Search

Tag array

Category Any

Type Any

Set Any

Support Any

Sort Results by Name

Search Find All Clear

Tags Listing

Name Type Set Support

[Array->Find] Member LDML60 Preferred

[Array->Get] Member LDML60 Preferred

[Array->Insert] Member LDML60 Preferred

[Array->Last] Member LDML60 Preferred

[Array->Merge] Member LDML60 Preferred

[Array->RemoveAll] Member LDML60 Preferred

[Array->Remove] Member LDML60 Preferred

[Array->Size] Member LDML60 Preferred

[Array->Sort] Member LDML60 Preferred

[Array] Substitution LDML60 Preferred

search sorted by Name.
Showing 1 to 10 of 10 tags.

Lasso Professional 7 • LDML 7 Reference

© 1996-2003 Blue World Communications. Inc.

Submit a comment or write to to report any problems with this LassoApp.documentation@blueworld.com

9 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

Tags can be searched by entering or selecting values from the following
fields, and then selecting the Search button:

 • Tag – Specifies the LDML tag by name.

 • Category – Pull-down menu listing all 30 tag categories.

 • Type – Pull-down menu listing all possible tag types.

 • Set – Pull-down menu listing all available tag sets. All preferred Lasso
Professional 7 tags belong to the LDML 7.0 set.

 • Support – Pull-down menu listing the types of tag support in Lasso
Professional 7. A Preferred tag is part of the core syntax for LDML 7. An
Abbreviation is an abbreviation of a preferred tag. A Synonym is a synonym
of a preferred tag. A Deprecated tag is supported in LDML 7, but may not
be supported in a future version.

Note: Deprecated tags can only be searched using the Advanced search
page.

 • Sort Results By – Allows results to be sorted by tag name, type, set, or
support.

Selecting the Find All button finds all LDML 7 tags in the LDML 7 Reference.
Selecting the Clear button resets all search fields for a new search.

Search Results

Search results are displayed in the Tags Listing panel, which appears to the
right. The Prev and Next buttons are shown if more results are returned than
can be shown. Selecting the name of a tag takes one to the Detail > Tag
page for that particular tag.

Advanced Searching
The Advanced page provides the same search fields and functionality as
the Basic page. The results from the Advanced page include deprecated
and unsupported tags in addition to the preferred tags returned by basic
searches.

9 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

Figure 3: Advanced Search Page

Search Browse Detail List

Basic Advanced Comments Examples Quick Search: array

LDML 7 Tag Search

Tag array

Category Any

Type Any

Data Source Any

Description

Output Type

Set Any

Support Any

Edition Any

Version Any

Change Any

Security Options Any

Sort Results by Name

Search Find All Clear

Tags Listing

Name Type Set Support

[Array->Find] Member LDML60 Preferred

[Array->Get] Member LDML60 Preferred

[Array->Insert] Member LDML60 Preferred

[Array->Last] Member LDML60 Preferred

[Array->Merge] Member LDML60 Preferred

[Array->RemoveAll] Member LDML60 Preferred

[Array->Remove] Member LDML60 Preferred

[Array->Size] Member LDML60 Preferred

[Array->Sort] Member LDML60 Preferred

[Array] Substitution LDML60 Preferred

Search sorted by Name.
Showing 1 to 10 of 10 tags.

Lasso Professional 7 • LDML 7 Reference

© 1996-2003 Blue World Communications. Inc.

documentation@blueworld.com

Many additional search options are available including:

 • Data Source – Specifies the data source for which the tag is used.

 • Description – Allows searching within the tag description.

 • Output Type – Allows searching for tags that output a value of a partic-
ular data type, e.g. Array.

 • Version – Specifies the version of Lasso from which the tag originated
(e.g. 7.0, 6.0, 5.0, 3.6.6.2, etc.).

 • Change – Specifies whether a tag is new, updated, or unchanged
between the last major release and the current release.

 • Security Options – Specifies whether the tag is controlled by Lasso
Security. The options are Classic Lasso for tags that are disabled when
Classic Lasso support is disabled, Tag Permissions for tags that can be
enabled or disabled by tag permissions, File Permissions for tags that can
be enabled or disabled by file permissions, Database Permissions for tags
that depend on database or table-level security settings, and LJAPI for
tags that are disabled when LJAPI support is disabled.

 • Implementation – Specifies the implementation of the tag. This can be
one of the following:

 LDML – Implemented in LDML as part of the in Startup.LassoApp file.

 LCAPI – Implemented in C++.

 LJAPI – Implemented in Java. Will not work without a JRE installed on te
system.

9 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

 Internal – Implemented in C++ as a core internal language construct.
These tags have the lowest-level implementation in LDML.

 • Source Available – Specifies whether or not the tag source code is avail-
able.

Selecting the Find All button finds all LDML 7 tags in the LDML 7 Reference.
Selecting the Clear button resets all search fields for a new search.

Search Results

Search results are displayed in the Tags Listing panel, which appears to the
right. The Prev and Next buttons are shown if more results are returned than
can be shown. Selecting the name of a tag takes one to the Detail > Tag
page for that particular tag.

Comments Searching
The Comments page allows any of the visitor-entered comments to be
searched.

Figure 4: Comments Search Page

Search Browse Detail List

Basic Advanced Comments Examples Quick Search: array

Comment Search

Tag

Author

Subject

Comment

Sort Results by Date

Search Find All Clear

Comments Listing

Subject Tag Date

Uploaded file name [File_Uploads] 02/27/02

Logging a SQL query [Log] ... 02/27/02

Little Example [Decimal->Set... 03/02/02

Value retains its value for m... [Decimal->Set... 03/02/02

Variable does not hold setfor... [Decimal->Set... 03/02/02

GroupChar does work with inte... [Integer->Set... 03/02/02

client side javascript... [] Square Br... 03/03/02

feature! client side javascri... [] Square Br... 03/05/02

Refresh required... [Database_Cre... 03/09/02

[_datasource_reload] usage [Database_Cre... 03/09/02

Search sorted by Name.
Showing 1 to 10 of 33 comments. Next >

Lasso Professional 7 • LDML 7 Reference

© 1996-2003 Blue World Communications. Inc.

Submit a comment or write to to report any problems with this LassoApp.documentation@blueworld.com

The following search options are available.

 • Tag – Specifies the tag for which the comment was entered.

 • Author – The name of the author of the comment.

 • Subject – The subject of each comment can be searched.

 • Comment – The text of each comment can be searched.

Selecting the Find All button finds all comments which have been entered in
the LDML 7 Reference. Selecting the Clear button resets all search fields for
a new search.

9 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

Search Results

Search results are displayed in the Comments Listing panel, which appears to
the right. The Prev and Next buttons are shown if more results are returned
than can be shown. Selecting the subject of a comment takes one to the
Detail > Comments page for that particular comment.

Examples Searching
The Examples page allows any of the tag examples to be searched.

Figure 5: Examples Search Page

Search Browse Detail List

Basic Advanced Comments Examples Quick Search: array

Example Search

Tag array

Title

Description

Example

Results

Sort Results by Title

Search Find All Clear

Examples Listing

Title Tag

To create an array of the days of the week: [Array]

To find an element in an array of pairs: [Array->Find]

To find
and remove an element from an array:

[Array->Remov...

To insert a new element into an array: [Array->Insert]

To merge two arrays: [Array->Merge]

To remove an element from an array: [Array->Remove]

To return an element from an array: [Array->Get]

To return the last element of an array: [Array->Last]

To return the size of an array: [Array->Size]

To sort the elements in an array: [Array->Sort]

Search sorted by Title.
Showing 1 to 10 of 10 examples.

Lasso Professional 7 • LDML 7 Reference

© 1996-2003 Blue World Communications. Inc.

Submit a comment or write to to report any problems with this LassoApp.documentation@blueworld.com

The following search options are available.

 • Tag – Specifies the tag for which the example is shown.

 • Title – The title of each example can be searched.

 • Description – The description of each example can be searched.

 • Example – The text of each example’s code can be searched.

 • Results – The text of each example’s results can be searched.

Selecting the Find All button finds all examples which have been entered in
the LDML 7 Reference. Selecting the Clear button resets all search fields for
a new search.

Search Results

Search results are displayed in the Examples Listing panel, which appears to
the right. The Prev and Next buttons are shown if more results are returned
than can be shown. Selecting the title of an example takes one to the
Detail > Tag page for that particular example.

9 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

Quick Search
A Quick Search field appears in the upper right corner of every page. Entering
text in the Quick Search field and pressing Return or Enter on the keyboard
performs a basic search on the tag name field and returns results to the
Tags Listing panel in the Search > Basic page. The last search term entered
is displayed in the Quick Search field until a new term is entered or a new
search is performed.

Browse
The Browse page allows one to browse the LDML 7 Reference by tag cate-
gory and tag name for information about LDML tags.

Browsing by Category
The Category page allows one to browse the LDML 7 Reference by tag cate-
gory and tag name for information about LDML tags.

Figure 6: Category Tags Page

Search Browse Detail List

Category Legacy Quick Search:

Tag Categories Listing

Category Category

Action Include

Administration Link

Array Math

Client Operator

Conditional Output

Custom Tag Response

Data Type Results

Database Session

Date String

Delimiter Symbol

Encoding Technical

Encryption Utility

Error Variable

File

Tags Listing for Action

Name Type Set Support

-Add Command LDML50, ... Preferred

-Delete Command LDML50, ... Preferred

-Duplicate Command LDML50, ... Preferred

-FindAll Command LDML50, ... Preferred

-Image Command LDML50, ... Preferred

-Nothing Command LDML50, ... Preferred

-Random Command LDML50, ... Preferred

-Search Command LDML50, ... Preferred

-Show Command LDML50, ... Preferred

-SQL Command LDML50 Preferred

-Update Command LDML50, ... Preferred

Showing 1 to 11 of 11 tags.

Lasso Professional 7 • LDML 7 Reference

© 1996-2003 Blue World Communications. Inc.

.documentation@blueworld.com

Viewing Tag Categories

The Tag Categories Listing panel shows a listing of all the 29 tag categories in
LDML 7, except legacy tags, which are covered in the next section.

9 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

Tags Listing

When a category is selected in the Tag Categories Listing panel, it shows all
tags in that category in the Tags Listing panel, which appears to the right.
Prev and Next buttons appear for navigation if there are more than ten tags
in a selected category. Selecting the name of a tag takes one to the Tag page
with the current tag selected, which is described later in this chapter.

Browsing Legacy Tags
The Legacy page allows one to browse all legacy tags in the LDML 7
Reference.

Figure 7: Legacy Tags Page

Search Browse Detail List

Category Legacy Quick Search:

Tag Categories Listing

Category Category

Administration Math

Client Operator

Conditional Output

Database Response

Delimiter Results

Encoding String

File Technical

Link Utility

List

Tags Listing for Database

Name Type Set Equivalent

-Datasource Command LDML25, ... -Database

-DoScript Command LDML25, ... -FMScript

-DoScript.Post Command LDML25, ... -FMScriptPost

-DoScript.Pre Command LDML25, ... -FMScriptPre

-DoScript.PreSort Command LDML25, ... -FMScriptPreSort

-RecID Command LDML25, ... -KeyValue

-RecordID Command LDML3x -KeyValue

[ChoiceListItem] Substitution LDML3x [Value_ListItem]

[Choice_ListItem] Substitution LDML3x

[Choice_List] ... Container LDML3x

[Datasource_Name] Substitution LDML3x [Database_Name]

[DB_LayoutNameItem] Substitution LDML3x [Database_TableNameItem]

[DB_LayoutNames] ... Container LDML3x [Database_TableNames] ...

[DB_NameItem] Substitution LDML3x [Database_NameItem]

[DB_Names] ... Container LDML3x [Database_Names] ...

Showing 1 to 15 of 21 tags. Next >

Lasso Professional 7 • LDML 7 Reference

© 1996-2003 Blue World Communications. Inc.

Legacy tags include all deprecated tags from LDML 3 and earlier. As
support for select legacy tags may be dropped in future releases of Lasso
Professional, using these tags to build Lasso solutions is not recom-
mended.

One is able to browse all legacy tags in the Legacy page in the same manner
as in the Category page, covered in the previous section.

9 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

Detail
The Detail section shows information and comments about any selected tag.

Tag Detail
The Tag page shows all information about a selected tag. One is taken here
after selecting a tag from the Search, Browse, or List sections. All information
is shown in the left panel, and includes the following:

 • Description – Defines what a tag does, and how and where it is used.

 • Syntax – Shows the syntax for the tag.

 • Parameters – Lists all parameters or modifiers that can be used with the
tag. Required Parameters must be present in the tag syntax for the tag to
work properly, while Optional Parameters do not.

 • Examples – Provides examples of how the tag can be used to perform a
specific function within a Lasso solution.

 • Change Notes – Provides information about how a tag has changed
from different versions of Lasso, and if applicable, what tag it replaces.

Figure 8: Tag Detail Page

Search Browse Detail List

Tag Comments Code Quick Search: array

[Array->Find] Next >

Description

[Array->] returns an array of elements that match the parameter. Accepts a single parameter of
any data type.

If the array contains any pair values, only the first part of the pair is compared with the parameter of
the [Array->] tag.

If no elements in the array match the parameter to the [Array->] tag then an empty array is
returned.

Find

Find

Find

Syntax

[->(: 'Find Value')]Array Find

Parameters

Required Parameters

Array The array which should be searched.

Find Value The value which should be searched for in the array.

Examples

To find an element in an array of pairs:

Use the [Array->] tag with the value of the first element of the pairs that should be returned
from the array. The following example shows an array of pairs returned from the tag, each of which
has a first element of 'John Doe'.

Find

[Var: 'People_Array'=(Array: 'John Doe'='Person One', 'Jane Doe'='Person Two', 'Joe Surname'=
'Person Three', 'John Doe'='Person Four')]
[Output: $People_Array->(: 'John Doe')]Find

(Array: (Pair: (John Doe)=(Person One), (John Doe)=(Person Four)))

Tag Link [Array->Find]

Category Array

Type Member

Set LDML60

Support Preferred

Edition Standard,
Developer

Version 6.0

Change New

Data Source Any

Output Type Any

Security None

Page Number 294

Comments 0

Related Tags

[Array->Get]
[Array]
[Map->Find]

Lasso Professional 7 • LDML 7 Reference

© 1996-2003 Blue World Communications. Inc.

Submit a comment or write to to report any problems with this LassoApp.documentation@blueworld.com

1 0 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

The top panel shows the current tag selected. If a search was performed,
one can navigate through the found set by selecting the Prev and Next
buttons. If no search was performed, the Prev and Next buttons will navi-
gate through the tags in each category alphabetically.

The right panel lists the following tag information:

 • Category – Specifies the tag category (e.g. Array, Encoding, etc.). Selecting
the tag category displays the Browse > Category page.

 • Type – Specifies the tag type (e.g. Command, Container, etc.).

 • Set – Specifies the versions of LDML in which the tag is supported. All
native Lasso Professional 7 tags belong to the LDML 7.0 set.

 • Support – Specifies the tag support in Lasso Professional 7. A Preferred
tag is part of the core syntax for LDML 7. An Abbreviation is an abbrevia-
tion of a preferred tag. A Synonym is a synonym of a preferred tag. A
Deprecated tag is supported in LDML 7, but support may be dropped in a
future version of Lasso. Deprecated tags are not recommended for use in
new projects. Any returns all support types.

 • Version – Specifies the version of Lasso from which the tag originated
(e.g. 7.0, 6.0, 5.0, 3.6.6.2, etc.).

 • Change – Specifies whether a tag is new, updated, or unchanged
between the last major release and the current release.

 • Data Source – Specifies the data source with which the tag can be used.

 • Output Type – Specifies what data type the tag will output. Many tags
output multiple data types in which case each data type or Any is shown.

 • Security – Specifies whether access to the tag can be controlled through
Lasso Administration. Options include Classic for tags that are disabled
with Classic Lasso, Tag for tags that are controlled by tag permissions,
File for tags that are controlled by file permissions, Database for tags
that are controlled by database permissions, and LJAPI for tags that are
disabled if LJAPI support is disabled.

 • Page Number – Specifies what page number in the Lasso 7 Language
Guide contains the primary reference for the tag. Some tags are also
documented in the Extending Lasso Guide. These tags are marked ELG.

 • Comments – Indicates the number of comments that have been entered
for the tag. Selecting the link takes the visitor to the Comments page.

The lower right panel contains links to other tags in the database. The
following types of tags are listed.

 • Synonyms – Lists any tags that are synonyms of the current tag.
Synonyms accept the same parameters and can be used interchangeably.

 • Abbreviations – Lists any abbreviations for the current tag.

1 0 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

 • Related Tags – Lists any related tags, which are tags that have similar
functions or are used in a similar manner.

 • Required Tags – Lists all tags and technologies (e.g. Java) that are
required for the selected tag to work.

 • LDML 3 Equivalent – For tags which have been updated since LDML 3,
an LDML 3 tag is listed that provides similar functionality to the current
tag.

 • LDML 7 Equivalent – For tags which are not preferred LDML 7 syntax,
an equivalent LDML 7 tag is listed that provides similar functionality to
the current tag.

Tag Comments
The Comments page allows users to add their own notes and comments
about a tag to the LDML Reference. The top panel shows the current tag
selected. One can navigate through the tags alphabetically by selecting the
Prev and Next buttons.

Figure 9: Tag Comments Page

Search Browse Detail List

Tag Comments Code Quick Search: array

[File_Uploads]

Comments Listing

Subject From Date

Uploaded file name Kyle 02/27/2002 15:42:50

Comment Detail

Author Kyle

Date 02/27/2002 15:42:50

Subject Uploaded file name

Comment This custom tag will return just the name part of the
uploaded file no matter which file path delimiter is used.
It takes one parameter which is the uploaded file's path.

[define_tag: 'getName']
[return: (params->get:1)->(split:'/')->last->(split:'\\')->
last]
[/define_tag]

Add Comment

Your Name

Your Email Address

Subject

Comment

Add Comment

Note: Comments will be publicly accessible on this Web site.
Posted comments may be edited for accuracy or content.

Lasso Professional 7 • LDML 7 Reference

© 1996-2003 Blue World Communications. Inc.

Submit a comment or write to to report any problems with this LassoApp.documentation@blueworld.com

Comments Listing

The Comments Listing panel shows a list of all comments about a selected
tag. Prev and Next buttons appear at the bottom of this panel for navigation

1 0 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

if there are more then five comments. Selecting the subject name under
Subject shows the comment in the Comment Detail panel. Selecting the name
of the author under From will display the author’s email address. The date
and time of when the comment was added is shown under Date.

Adding Comments

The Add Comment panel allow users of the LDML Reference LassoApp to add
comments about the selected tag.

To add a comment:

 1 Enter your name in the Your Name field.

 2 Enter your email address in the Your Email field.

 3 Enter the subject of the comment in the Subject field.

 4 Enter your comment in the Comment field.

 5 Select Add Comment.

Comment Detail

The Comment Detail panel displays the comment author, the date of the
comment, the subject, and the comment.

The LDML 7 Reference stores all user comments locally, and only
comments from users of the LDML Reference LassoApp on that machine
are shown. A version of the LDML 7 Reference can also be accessed on the
OmniPilot Web site at:

http://ldml.blueworld.com/

This version contains the same information as the locally-stored LDML 7
Reference, however it also contains comments from other users and devel-
opers. This is useful for finding further examples and information about
particular tags.

1 0 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

List
The List section provides a listing of all LDML tags by category.

Preferred Tags
The Preferred page provides a listing of all preferred tags, which represent
the core syntax for Lasso Professional 7.

Figure 10: Preferred Tags Page

Search Browse Detail List

Preferred Legacy All Quick Search: array

LDML 7 Preferred Tags Next >

Action

Name Type Set Support

-Add Command LDML60, ... Preferred

-Delete Command LDML60, ... Preferred

-Duplicate Command LDML60, ... Preferred

-FindAll Command LDML60, ... Preferred

-Image Command LDML60, ... Preferred

-Nothing Command LDML60, ... Preferred

-Random Command LDML60, ... Preferred

-Search Command LDML60, ... Preferred

-Show Command LDML60, ... Preferred

-SQL Command LDML60 Preferred

-Update Command LDML60, ... Preferred

Administration

Name Type Set Support

[Admin_ChangeUser] Substitution LDML60 Preferred

[Admin_CreateUser] Substitution LDML60 Preferred

[Admin_GroupAssignUser] Substitution LDML60 Preferred

[Admin_GroupListUsers] Substitution LDML60 Preferred

(Continued)Administration

Name Type Set Support

[Admin_GroupRemoveUser] Substitution LDML60 Preferred

[Admin_ListGroups] Substitution LDML60 Preferred

[Auth] Process LDML60 Preferred

[Auth_Admin] Process LDML60, ... Preferred

[Lasso_DatasourceIsFileMaker] Substitution LDML60, ... Preferred

[Lasso_DatasourceIsLassoMySQL] Substitution LDML60 Preferred

[Lasso_DatasourceIsMySQL] Substitution LDML60 Preferred

[Lasso_DatasourceModuleName] Substitution LDML60, ... Preferred

[Lasso_TagExists] Substitution LDML60, ... Preferred

[Lasso_TagModuleName] Substitution LDML60, ... Preferred

[Lasso_Version] Substitution LDML60, ... Preferred

[Tags] Substitution LDML60 Preferred

Array

Name Type Set Support

[Array->Find] Member LDML60 Preferred

[Array->Get] Member LDML60 Preferred

[Array->Insert] Member LDML60 Preferred

Lasso Professional 7 • LDML 7 Reference

© 1996-2003 Blue World Communications. Inc.

Submit a comment or write to to report any problems with this LassoApp.documentation@blueworld.com

All tags are listed alphabetically beneath their category name (e.g. Array,
Database, etc.) and the list spans both panels. The listing can be navigated
by selecting the Prev and Next buttons at the top of the page. Selecting a tag
name takes one to the Tag page, covered in the previous section.

1 0 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

Legacy Tags
The Legacy page provides a listing of all legacy tags, which are deprecated
tags from LDML 6, LDML 5, and LDML 3.

Figure 11: Legacy Tags Page

Search Browse Detail List

Preferred Legacy All Quick Search: array

LDML 7 Legacy Tags Next >

Administration

Name Type Set Equivalent

[Lasso_DatasourceIs4D] Substitution LDML3x

[Lasso_DatasourceIsODBC] Substitution LDML3x

[Lasso_DataType] Substitution LDML3x [Null->Type]

Client

Name Type Set Equivalent

[Client_Addr] Substitution LDML1x, ... [Client_Address]

Conditional

Name Type Set Equivalent

[Else:If] Substitution LDML25, ... [Else]

[Lasso_Abort] Process LDML3x [Abort]

[LoopAbort] Process LDML3x [Loop_Abort]

[LoopCount] Substitution LDML3x [Loop_Count]

Database

Name Type Set Equivalent

-Datasource Command LDML25, ... -Database

-DoScript Command LDML25, ... -FMScript

(Continued)Database
Name Type Set Equivalent

-DoScript.Post Command LDML25, ... -FMScriptPost

-DoScript.Pre Command LDML25, ... -FMScriptPre

-DoScript.PreSort Command LDML25, ... -FMScriptPreSort

-RecID Command LDML25, ... -KeyValue

-RecordID Command LDML3x -KeyValue

[ChoiceListItem] Substitution LDML3x [Value_ListItem]

[Choice_ListItem] Substitution LDML3x

[Choice_List] ... Container LDML3x

[Datasource_Name] Substitution LDML3x [Database_Name]

[DB_LayoutNameItem] Substitution LDML3x [Database_TableNameItem]

Lasso Professional 7 • LDML 7 Reference

© 1996-2003 Blue World Communications. Inc.

Submit a comment or write to to report any problems with this LassoApp.documentation@blueworld.com

All tags are listed alphabetically beneath their category name (e.g. Array,
Database, etc.) and the list spans both panels. The listing can be navigated
by selecting the Prev and Next buttons at the top of the page. Selecting a tag
name takes one to the Tag page, covered earlier in this chapter.

All Tags
The All page provides a listing of all LDML tags available in LDML 7
including preferred tags and legacy tags. All tags are listed alphabetically,
and span both panels. The listing can be navigated by selecting the Prev
and Next buttons at the top of the page. Selecting a tag name takes one to
the Tag page, covered earlier in this chapter.

1 0 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

1 0 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 5 – L D M L 7 R E F E R E N C E

II
Section II

Database Interaction

This section includes an introduction to interacting with databases in Lasso
Professional 7 and more specific discussions of particular database actions
and tags and techniques particular to Lasso MySQL and FileMaker Pro
databases.

 • Chapter 6: Database Interaction Fundamentals introduces the
concepts required to work with databases in Lasso Professional 7.

 • Chapter 7: Searching and Displaying Data discusses how to create
search queries and display the results of those queries.

 • Chapter 8: Adding and Updating Records discusses how to create
queries to add, update, and delete database records.

 • Chapter 9: MySQL Data Sources documents tags specific to the Lasso
MySQL data source connector and MySQL data source connector
including tags to create database schema programmatically.

 • Chapter 10: FileMaker Data Sources documents tags specific to the
FileMaker Pro and FileMaker Server Advanced data source connector
including tags to execute FileMaker scripts, return images from a
FileMaker database, and display information in repeating fields and
portals.

 • Chapter 11: JDBC Pro Data Sources documents tags specific to the
JDBC data source connector.

1 0 7

L A S S O 7 . 1 L A N G U A G E G U I D E

1 0 8

L A S S O 7 . 1 L A N G U A G E G U I D E

S E C T I O N I I – D A T A B A S E I N T E R A C T I O N

6
Chapter 6

Database Interaction
Fundamentals

One of the primary purposes of LDML is to perform database actions
which are a combination of pre-defined and visitor-defined parameters and
to format the results of those actions. This chapter introduces the funda-
mentals of specifying database actions in LDML.

 • Inline Database Actions includes full details for how to use the [Inline]
tag to specify database actions.

 • Action Parameters describes how to get information about an action.

 • Results includes information about how to return details of an LDML
database action.

 • Showing Database Schema describes the tags that can be used to
examine the schema of a database.

 • SQL Statements describes the -SQL command tag and how to issue raw
SQL statements to SQL-compliant data sources.

 • SQL Transactions describes how to perform reversible SQL transactions
using Lasso.

Inline Database Actions
The [Inline] … [/Inline] container tags are used to specify a database action and
to present the results of that action within a Lasso format file. The database
action is specified using parameters as keyword/value parameters within
the opening [Inline] tag. Additional name/value parameters specify the user-
defined parameters of the database action. A single action can be specified

1 0 9

L A S S O 7 . 1 L A N G U A G E G U I D E

in an [Inline]. Additional actions can be performed in subsequent or nested
[Inline] … [/Inline] tags.

Table 1: Inline Tag

Tag Description

[Inline] … [/Inline] Performs the database action specified in the opening
tag. The results of the database action are available
inside the container tag.

The results of the database action can be displayed within the contents of
the [Inline] … [/Inline] container tags using the [Records] … [/Records] container
tags and the [Field] substitution tag. Alternately, the [Inline] can be named
and the results can be displayed later.

The entire database action can be specified directly in the opening
[Inline] tag or visitor-defined aspects of the action can be retrieved from an
HTML form submission. [Link_…] tags can be used to navigate a found set
in concert with the use of [Inline] … [/Inline] tags. Nested [Inline] … [/Inline] tags
can be used to create complex database actions.

An inline can be named by specifing an -InlineName parameter within the
opening [Inline] tag. A subsequent [Records] … [/Records] tag with the same
-InlineName in the opening [Records] parameter will then return the results
for the inline. Each -InlineName value should be unique within a single page.

Database Actions
A database action is performed to retrieve data from a database or to
manipulate data which is stored in a database. Database actions can be
used in Lasso to query records in a database that match specific criteria, to
return a particular record from a database, to add a record to a database,
to delete a record from a database, to fetch information about a database,
or to navigate through the found set from a database search. In addition,
database actions can be used to execute SQL statements in compliant data-
bases.

The database actions in Lasso are defined according to what action param-
eter is used to trigger the action. The following table lists the parameters
which perform database actions that are available in LDML.

Table 2: Inline Database Action Parameters

Tag Description

-Search Finds records in a database that match specific criteria,
returns detail for a particular record in a database, or
navigates through a found set of records.

1 1 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

-FindAll Returns all records in a specific database table.

-Random Returns a single, random record from a database table.

-Add Adds a record to a database table.

-Update Updates a specific record from a database table.

-Duplicate Duplicates a specific record in a database table. Only
works with FileMaker Pro databases.

-Delete Removes a specified record from a database table.

-Show Returns information about the tables and fields within a
database.

-SQL Executes a SQL statement in a compatible data
source. Only works with Lasso MySQL and other SQL
databases.

-Nothing The default action which performs no database
interaction, but simply passes the parameters of the
action.

Note: The Database Action Parameters table lists all of the database actions
that Lasso supports. Individual data source connectors may only support a
subset of these parameters. The Lasso Connector for Lasso MySQL and the
Lasso Connector for MySQL do not support the -Duplicate action. The Lasso
Connector for FileMaker Pro does not support the -SQL action. See the docu-
mentation for third party data source connectors for information about what
parameters they support.

Each database action parameter requires additional parameters in order to
execute the proper database action. These parameters are specified using
additional parameters and name/value pairs. For example, a -Database
parameter specifies the database in which the action should take place
and a -Table parameter specifies the specific table from that database in
which the action should take place. Name/value pairs specify the query
for a -Search action, the initial values for the new record created by an -Add
action, or the updated values for an -Update action.

Full documentation of which [Inline] parameters are required for each action
are detailed in the section specific to that action in this chapter, Chapter
7: Searching and Displaying Data, or Chapter 8: Adding and Updating
Records.

Example of specifying a -FindAll action within an [Inline]:

The following example shows an [Inline] … [/Inline] tag that has a -FindAll data-
base action specified in the opening tag. The [Inline] tag includes a -FindAll
parameter to specify the action, -Database and -Table parameters to specify
the database and table from which records should be returned, and a

1 1 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

-KeyField parameter which specifies the key field for the table. The entire
database action is hard-coded within the [Inline] tag.

The tag [Found_Count] returns how many records are in the database. The
[Records] … [/Records] container tags repeat their contents for each record in
the found set. The [Field] tags are repeated for each found record creating a
listing of the names of all the people stored in the Contacts database.

[Inline: -FindAll,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID']
 There are [Found_Count] record(s) in the People table.
 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

➜ There are 2 record(s) in the People table.
John Doe
Jane Doe

Example of specifying a -Search action within an [Inline]:

The following example shows an [Inline] … [/Inline] tag that has a -Search data-
base action specified in the opening tag. The [Inline] tag includes a -Search
parameter to specify the action, -Database and -Table parameters to specify
the database and table records from which records should be returned,
and a -KeyField parameter which specifies the key field for the table. The
subsequent name/value parameters, 'First_Name'='John' and 'Last_Name'='Doe',
specify the query which will be performed in the database. Only records
for John Doe will be returned. The entire database action is hard-coded
within the [Inline] tag.

The tag [Found_Count] returns how many records for John Doe are in the data-
base. The [Records] … [/Records] container tags repeat their contents for each
record in the found set. The [Field] tags are repeated for each found record
creating a listing of all the records for John Doe stored in the Contacts data-
base.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 'First_Name'='John',
 'Last_Name'='Doe']
 There were [Found_Count] record(s) found in the People table.

1 1 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

➜ There were 1 record(s) found in the People table.
John Doe

Using HTML Forms
The previous two examples show how to specify a hard-coded database
action completely within an opening [Inline] tag. This is an excellent way to
embed a database action that will be the same every time a page is loaded,
but does not provide any room for visitor interaction.

A more powerful technique is to use values from an HTML form or URL
to allow a site visitor to modify the database action which is performed
within the [Inline] tag. The following two examples demonstrate two
different techniques for doing this using the singular [Action_Param] tag and
the array-based [Action_Params] tag.

Example of using HTML form values within an [Inline] with [Action_
Param]:

An inline-based database action can make use of visitor specified param-
eters by reading values from an HTML form which the visitor customizes
and then submits to trigger the page containing the [Inline] … [/Inline] tags.

The following HTML form provides two inputs into which the visitor
can type information. An input is provided for First_Name and one for
Last_Name. These correspond to the names of fields in the Contacts data-
base. The action of the form is set to response.lasso which will contain
the [Inline] … [/Inline] tags that perform the actual database action. The action
tag specified in the form is -Nothing which instructs Lasso to perform no
database action when the form is submitted.

<form action="/response.lasso" method="POST">

First Name: <input type="text" name="First_Name" value="">

Last Name: <input type="text" name="Last_Name" value="">

<input type="submit" value="Search">
</form>

The [Inline] tag on response.lasso contains the name/value parameter
'First_Name'=(Action_Param: 'First_Name'). The [Action_Param] tag instructs Lasso
to fetch the input named First_Name from the action which resulted in
the current page being served, namely the form shown above. The [Inline]
contains a similar name/value parameter for Last_Name.

1 1 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 'First_Name'=(Action_Param: 'First_Name'),
 'Last_Name'=(Action_Param: 'Last_Name')]
 There were [Found_Count] record(s) found in the People table.
 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

If the visitor entered Jane for the first name and Doe for the last name then
the following results would be returned.

➜ There were 1 record(s) found in the People table.
Jane Doe

As many parameters as are needed can be named in the HTML form and
then retrieved in the response page and incorporated into the [Inline] tag.

Note: The [Action_Param] tag is equivalent to the [Form_Param] tag used in prior
versions of Lasso.

Example of using an array of HTML form values within an [Inline] with
[Action_Params]:

Rather than specifying each [Action_Param] individually, an entire set of
HTML form parameters can be entered into an [Inline] tag using the array-
based [Action_Params] tag. Inserting the [Action_Params] tag into an [Inline]
functions as if all the parameters and name/value pairs in the HTML form
were placed into the [Inline] at the location of the [Action_Params] parameter.

The following HTML form provides two inputs into which the visitor
can type information. An input is provided for First_Name and one for
Last_Name. These correspond to the names of fields in the Contacts data-
base. The action of the form is set to response.lasso which will contain
the [Inline] … [/Inline] tags that perform the actual database action. The data-
base action is -Nothing which instructs Lasso to perform no database action
when the HTML form is submitted.

<form action="/response.lasso" method="POST">

First Name: <input type="text" name="First_Name" value="">

Last Name: <input type="text" name="Last_Name" value="">

<input type="submit" value="Search">
</form>

The [Inline] tag on response.lasso contains the array parameter [Action_Params].
This instructs Lasso to take all the parameters from the HTML form or URL
which results in the current page being loaded and insert them in the [Inline]

1 1 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

as if they had been typed at the location of [Action_Params]. This will result
in the name/value pairs for First_Name, Last_Name, and the -Nothing action
to be inserted into the [Inline]. The latest action specified has precedence so
the -Search tag specified in the actual [Inline] tag overrides the -Nothing which
is passed from the HTML form.

[Inline: (Action_Params),
 -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID']
 There were [Found_Count] record(s) found in the People table.
 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

If the visitor entered Jane for the first name and Doe for the last name then
the following results would be returned.

➜ There were 1 record(s) found in the People table.
Jane Doe

As many parameters as are needed can be named in the HTML form.
They will all be incorporated into the [Inline] tag at the location of the
[Action_Params] tag. Any parameters in the [Inline] after the [Action_Params] tag
will override conflicting settings from the HTML form.

Note: [Action_Params] is a replacement for the -ReUseFormParams keyword in
prior versions of Lasso. See Chapter 31: Upgrading Your Solutions for more
information.

HTML Form Response Pages
Every HTML form or URL needs to have a response page specified so Lasso
knows what format file to process and return as the result of the action.
The referenced format file could contain simple HTML or complex LDML
calculations, but some format file must be specified.

To specify a format file within an HTML form or URL:

 • The HTML form action can be set to the location of a format file. For
example, the following HTML <form> tag references the file /response.lasso
in the root of the Web serving folder.

<form action="/response.lasso" method="POST"> … </form>

 • The URL can reference the location of a format file before the question
mark ? delimiter. For example, the following anchor tag references the

1 1 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

file response.lasso in the same folder as the page in which this anchor is
contained.

 Link

 • The HTML form can reference /Action.Lasso and then specify the path
to the format file in a -Response tag. For example, the following HTML
<form> tag references the file response.lasso in the root of the Web
serving folder. The path is relative to the root because the placeholder
/Action.Lasso is specified with a leading forward slash /.

<form action="/Action.Lasso" method="POST">
 <input type="hidden" name='-Response" value="response.lasso">
</form>

 • The URL can reference Action.Lasso and then specify the path to the
format file in a -Response tag. For example, the following anchor tag
references the file response.lasso in the same folder as the page in which
the link is specified. The path is relative to the local folder because the
placeholder Action.Lasso is specified without a leading forward slash /.

 Link

The -Response tag can be used on its own or action specific response tags
can be used so a form is sent to different response pages if different actions
are performed using the form. Response tags can also be used to send
the visitor to different pages if different errors happen when the database
action is attempted by Lasso. The following table details the available
response tags.

Table 3: Response Parameters

Tag Description

-Response Default response tag. The value for this response tag is
used if no others are specified.

-ResponseAnyError Default error response tag. The value for this response
tag is used if any error occurs and no more specific
error response tag is set.

-ResponseReqFieldMissingError Error to use if a -Required field is not given a value by
the visitor.

-ResponseSecurityError Error to use if a security violation occurs because the
current visitor does not have permission to perform the
database action.

See Chapter 21: Error Control for more information about using the error
response pages.

1 1 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

Setting HTML Form Values
If the format file containing an HTML form is the response to an HTML
form or URL, then the values of the HTML form inputs can be set to values
retrieved from the previous format file using [Action_Param].

For example, if a form is on default.lasso and the action of the form is
default.lasso then the same page will be reloaded with new form values each
time the form is submitted. The following HTML form uses [Action_Param]
tags to automatically restore the values the user specified in the form previ-
ously, each time the page is reloaded.

<form action="default.lasso" method="POST">

First Name:
 <input type="hidden" name="First_Name" value="[Action_Param: 'First_Name']">

First Name:
 <input type="hidden" name="Last_Name" value="[Action_Param: 'Last_Name']">

<input type="submit" value="Submit">
</form>

Tokens
Tokens can be used with HTML forms and URLs to order to pass data
along with the action. Tokens are useful because they do not affect the
operation of a database action, but allow data to be passed along with the
action. For example, meta-data could be associated with a visitor to a Web
site without using sessions or cookies.

 • Tokens can be set in a form using the -Token.TokenName=TokenValue param-
eter. Multiple named tokens can be set in a single form.

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Token.TokenName" value="TokenValue">
</form>

 • Tokens can be set in a URL using the -Token.TokenName=TokenValue param-
eter. Multiple named tokens can be set in a single URL.

 Link

 • Tokens set in an HTML form or URL are available in the response page
of the database action. Tokens are not available inside [Inline] … [/Inline]
tags on the responses page unless they are explicitly set within the [Inline]
tag itself.

 • Tokens can be set in an [Inline] using the -Token.TokenName=TokenValue
parameter. Multiple named tokens can be set in a single [Inline].

 • Tokens set in an [Inline] are only available immediately inside the [Inline].
They are not available to nested [Inlines] unless they are set specifically
within each [Inline].

1 1 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

 • By default, tokens are included in the [Link_…] tags and in [Action_Params].
Unless specifically set otherwise, tokens will be redefined on pages which
are returned using the [Link_…] tags.

Nesting Inline Database Actions
Database actions can be combined to perform compound database actions.
All the records in a database that meet certain criteria could be updated
or deleted. Or, all the records from one database could be added to a
different database. Or, the results of searches from several databases could
be merged and used to search another database.

Database actions are combined by nesting [Inline] ... [/Inline] tags. For example,
if [Inline] … [/Inline] tags are placed inside the [Records] … [/Records] container
tag within another set of [Inline] … [/Inline] tags then the inner [Inline] will
execute once for each record found in the outer [Inline].

All database results tags function for only the innermost set of
[Inline] … [/Inline] tags. Variables can pass through into nested [Inline] … [/Inline]
tags, but tokens cannot, these need to be reset in each [Inline] tag in the hier-
archy.

SQL Note: Nested inlines can also be used to perform reversible SQL trans-
actions in transaction-compliant SQL data sources. See the SQL Transactions
section at the end of this chapter for more information.

Example of nesting [Inline] … [/Inline] tags:

This example will use nested [Inline] … [/Inline] tags to change the last name
of all people whose last name is currently Doe in a database to Person. The
outer [Inline] … [/Inline] tags perform a hard-coded search for all records with
Last_Name equal to Doe. The inner [Inline] … [/Inline] tags update each record
so Last_Name is now equal to Person. The output confirms that the conver-
sion went as expected by outputting the new values.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 'Last_Name'='Doe',
 -MaxRecords='All']
 [Records]
 [Inline: -Update,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -KeyValue=(KeyField_Value),
 'Last_Name'='Person']

1 1 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

Name is now [Field: 'First_Name'] [Field: 'Last_Name']
 [/Inline]
 [/Records]
[/Inline]

➜ Name is now Jane Person
Name is now John Person

Array Inline Parameters
Most LDML parameter can be used within an [Inline] tag to specify an
action. In addition, parameters and name/value parameters can be stored
in an array and then passed into an [Inline] as a block. Any single value
in an [Inline] which is an array data type will be interpreted as a series of
parameters inserted at that location in the array. This technique is useful
for programmatically assembling database actions.

Many parameters can only take a single value within an [Inline] tag. For
example, only a single action can be specified and only a single database
can be specified. The last action parameter defines the value that will be
used for the action. The last, for example, -Database parameter defines the
value that will be used for the database of the action. If an array parameter
comes first in an [Inline] then all subsequent parameters will override any
conflicting values within the array parameter.

Example of using an array to pass values into an [Inline]:

The following LassoScript performs a -FindAll database action with the
parameters first specified in an array and stored in the variable Params, then
passed into the opening [Inline] tag all at once. The value for -MaxRecords in
the [Inline] tag overrides the value specified within the array parameter since
it is specified later. Only the number of records found in the database are
returned using the [Output] tag.

<?LassoScript
 Variable: 'Params'=(Array:
 -FindAll='',
 -Database='Contacts',
 -Table='People',
 -MaxRecords=50
);
 Inline: (Var: 'Params'), -MaxRecords=100;
 Output: 'There are ' + (Found_Count) + 'record(s) in the People table.';
 /Inline;
?>

➜ There are 2 record(s) in the People table.

1 1 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

Action Parameters
LDML has a set of substitution tags which allow for information about the
current action to be returned. The parameters of the action itself can be
returned or information about the action’s results can be returned.

The following table details the substitution tags which allow informa-
tion about the current action to be returned. If these tags are used within
an [Inline] … [/Inline] container tag they return information about the action
specified in the opening [Inline] tag. Otherwise, these tags return informa-
tion about the action which resulted in the current format file being served.

Even format files called with a simple URL such as
http://www.example.com/response.lasso have an implicit -Nothing action. Many of
these substitution tags return default values even for the -Nothing action.

Table 4: Action Parameter Tags

Tag Description

[Action_Param] Returns the value for a specified name/value parameter.
Equivalent to [Form_Param].

[Action_Params] Returns an array containing all of the parameters and
name/value parameters that define the current action.

[Database_Name] Returns the name of the current database.

[KeyField_Name] Returns the name of the current key field.

[KeyField_Value] Returns the name of the current key value if defined.
Equivalent to [RecordID_Value].

[Lasso_CurrentAction] Returns the name of the current Lasso action.

[MaxRecords_Value] Returns the number of records from the found set that
are currently being displayed.

[Operator_LogicalValue] Returns the value for the logicial operator.

[Response_FilePath] Returns the path to the current format file.

[SkipRecords_Value] Returns the current offset into a found set.

[Table_Name] Returns the name of the current table. Equivalent to
[Layout_Name].

[Token_Value] Returns the value for a specified token.

[Search_Arguments] Container tag repeats once for each name/value
parameter of the current action.

[Search_FieldItem] Returns the name portion of a name/value parameter of
the current action.

[Search_OperatorItem] Returns the operator associated with a name/value
parameter of the current action.

[Search_ValueItem] Returns the value portion of a name/value parameter of
the current action.

1 2 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

[Sort_Arguments] Container tag repeats once for each sort parameter.

[Sort_FieldItem] Returns the field which will be sorted.

[Sort_OrderItem] Returns the order by which the field will be sorted.

The individual substitution tags can be used to return feedback to site
visitors about what database action is being performed or to return
debugging information. For example, the following code inserted at the
top of a response page to an HTML form or URL or in the body of an
[Inline] … [/Inline] tag will return details about the database action that was
performed.

Action: [Lasso_CurrentAction]
Database: [Database_Name]
Table: [Table_Name]
Key Field: [KeyField_Name]
KeyValue: [KeyField_Value]
MaxRecords: [MaxRecords_Value]
SkipRecords: [SkipRecords_Value]
Logical Operator: [Operator_LogicialValue]

➜ Action: Find All
Database: Contacts
Table: People
Key Field: ID
KeyValue: 100001
MaxRecords: 50
SkipRecords: 0
Logical Operator: AND

The [Action_Params] tag can be used to return information about the entire
Lasso action in a single array. Rather than assembling information using
the individual substitution tags it is often easier to extract informa-
tion from the [Action_Params] array. The schema of the array returned by
[Action_Params] is detailed in Table 5: [Action_Params] Array Schema.

The schema shows the names of the values which are returned in the array.
Even if -Layout is used to specify the layout for a database action, the value
of that tag is returned after -Table in the [Action_Params] array.

To output the parameters of the current database action:

The value of the [Action_Params] tag in the following example is formatted
to show the elements of the returned array clearly. The [Action_Params] array
contain values for -MaxRecords, -SkipRecords, and -OperatorLogical even though
these aren’t specified in the [Inline] tag.

1 2 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID']
 [Action_Params]
[/Inline]

➜ (Array:
 (Pair: (-Search) = ()),
 (Pair: (-Database) = (Contacts)),
 (Pair: (-Table) = (People)),
 (Pair: (-KeyField) = (ID)),
 (Pair: (-MaxRecords) = (50)),
 (Pair: (-SkipRecords) = (0)),
 (Pair: (-OperatorLogical) = (AND))
)

1 2 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

Table 5: [Action_Params] Array Schema

Name Description

Action The action parameter is always returned first. The name
of the first item is set to the action parameter and the
value is left empty.

-Database If defined, the name of the current database.

-Table If defined, the name of the current table.

-KeyField If defined, the name of the field which holds the primary
key for the specified table.

-KeyValue If defined, the particular value for the primary key.

-MaxRecords Always included. Defaults to 50.

-SkipRecords Always included. Defaults to 0.

-OperatorLogical Always included. Defaults to AND.

-ReturnField If defined, can have multiple values.

-SortOrder, -SortField If defined, can have multiple values. -SortOrder
is always defined for each -SortField. Defaults to
ascending.

-Token If defined, can have multiple values each specified as
-Token.TokenName with the appropriate value.

Name/Value Parameter If defined, each name/value parameter is included.

-Required If defined, can have multiple values. Included in order
within name/value parameters.

-Operator If defined, can have multiple values. Included in order
within name/value parameters.

-OperatorBegin If defined, can have multiple values. Included in order
within name/value parameters.

-OperatorEnd If defined, can have multiple values. Included in order
within name/value parameters.

The [Action_Params] array contains all the parameters and name/value
parameters required to define a database action. It does not include any
-Response… parameters, the -Username and -Password parameters, -FMScript…
parameters, -InlineName keyword or any legacy or unrecognized parameters.

To output the name/value parameters of the current database action:

Loop through the [Action_Params] tag and display only name/value pairs for
which the name does not start with a hyphen, i.e. any name/value pairs
which do not start with a keyword. The following example shows a search
of the People table of the Contacts database for a person named John Doe.

1 2 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 'First_Name'='John',
 'Last_Name'='Doe']
 [Loop: (Action_Params)->Size]
 [If: !(Action_Params)->(Get: Loop_Count)->(First)->(BeginsWith: '-')]

[Output: (Action_Params)->(Get: Loop_Count)]
 [/If]
 [/Loop]
[/Inline]

➜
(Pair: (First_Name) = (John))

(Pair: (Last_Name) = (Doe))

To display action parameters to a site visitor:

The [Search_Arguments] … [/Search_Arguments] container tag can be
used in conjunction with the [Search_FieldItem], [Search_ValueItem] and
[Search_OperatorItem] substitution tags to return a list of all name/value
parameters and associated operators specified in a database action.

[Search_Arguments]

[Search_OperatorItem] [Search_FIeldItem] = [Search_ValueItem]
[/Search_Arguments]

The [Sort_Arguments] … [/Sort_Arguments] container tag can be used in
conjunction with the [Sort_FieldItem] and [Sort_OrderItem] substitution tags to
return a list of all name/value parameters and associated operators speci-
fied in a database action.

[Sort_Arguments]

[Sort_OperatorItem] [Sort_FIeldItem] = [Sort_ValueItem]
[/Sort_Arguments]

Results
The following table details the substitution tags which allow information
about the results of the current action to be returned. These tags provide
information about the current found set rather than providing data from
the database or providing information about what database action was
performed.

1 2 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

Table 6: Results Tags

Tag Description

[Field] Returns the value for a specified field from the result set.

[Found_Count] Returns the number of records found by Lasso.

[Records] … [/Records] Loops once for each record in the found set. [Field] tags
within the [Records] … [/Records] tags will return the
value for the specified field in each record in turn.

[Records_Array] Returns the complete found set in an array of arrays.
The outer array contains one item for every record in
the found set. The item for each record is an array
containing one item for each field in the result set.

[Shown_Count] Returns the number of records shown in the current
found set. Less than or equal to [MaxRecords_Value].

[Shown_First] Returns the number of the first record shown from the
found set. Usually [SkipRecords_Value] plus one.

[Shown_Last] Returns the number of the last record shown from the
found set.

[Total_Records] Returns the total number of records in the current table.
Works with FileMaker Pro databases only.

The found set tags can be used to display information about the current
found set. For example, the following code generates a status message that
can be displayed under a database listing.

Found [Found_Count] records of [Total_Records] Total.

Displaying [Shown_Count] records from [Shown_First] to [Shown_Last].

➜ Found 100 records of 1500 Total.
Displaying 10 records from 61 to 70.

These tags can also be used to create links that allow a visitor to navigate
through a found set. See Chapter 7: Searching and Displaying Data for
more information.

Showing Database Schema
The schema of a database can be inspected using the [Database_…] tags
or the -Show parameter which allows information about a database to be
returned using the [Field_Name] tag. Value lists within FileMaker Pro data-
bases can also be accessed using the -Show parameter. This is documented
fully in Chapter 10: FileMaker Pro Data Sources.

1 2 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

Table 7: -Show Parameter

Tag Description

-Show Allows information about a particular database and table
to be retrieved.

The -Show parameter functions like the -Search parameter except that no
name/value parameters, sort tags, results tags, or operator tags are required.
-Show actions can be specified in [Inline] … [/Inline] tags, HTML forms, or
URLs.

Table 8: -Show Action Requirements

Tag Description

-Show The action which is to be performed. Required.

-Database The database which should be searched. Required.

-Table The table from the specified database which should be
searched. Required.

-KeyField The name of the field which holds the primary key for
the specified table. Recommended.

The tags detailed in Table 9: Schema Tags allow the schema of a database
to be inspected. The [Field_Name] tag must be used in concert with a -Show
action or any database action that returns results including -Search, -Add,
-Update, -Random, or -FindAll. The [Database_Names] … [/Database_Names] and
[Database_TableNames] … [/Database_TableNames] tags can be used on their
own.

1 2 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

Table 9: Schema Tags

Tag Description

[Database_Names] Container tag repeats for every database available to
Lasso. Requires internal [Database_NameItem] tag to
show results.

[Database_NameItem] When used inside [Database_Names] … [/Database_
Names] container tags returns the name of the current
database.

[Database_RealName] Returns the real name of a database given an alias.

[Database_TableNames] Container tag repeats for every table within a database.
Accepts one required parameter, the name of the
database. Requires internal [Database_NameItem] tag
to show results. Synonym is [Database_LayoutNames].

[Database_TableNameItem] When used inside [Database_TableNames] …
[/Database_TableNames] container tags returns the
name of the current table. Synonym is [Database_
LayoutNameItem].

[Field_Name] Returns the name of a field in the current database and
table. A number parameter returns the name of the field
in that position within the current table. Other parameters
are described below. Synonym is [Column_Name].

[Field_Names] Returns an array containing all the field names in the
current result set. This is the same data as returned by
[Field_Name], but in a format more suitable for iterating
or other data processing. Synonym is [Column_Names].

[Required_Field] Returns the name of a required field. Requires one
parameter which is the number of the field name to
return or a -Count keyword to return the total number of
required fields.

[Table_RealName] Returns the real name of a table given an alias.
Requires a -Database parameter which specifies the
database in which the table or alias resides.

To list all the databases available to Lasso:

The following example shows how to list the names of all avail-
able databases using the [Database_Names] … [/Database_Names] and
[Database_NameItem] tags.

[Database_Names]

[Loop_Count]: [Database_NameItem]
[/Database_Name]

➜
1: Contacts

2: Examples

3: Site

1 2 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

To list all the tables within a database:

The following example shows how to list the names of all the tables within
a database using the [Database_TableNames] … [/Database_TableNames] and
[Database_TableNameItem] tags. The tables within the Site database are listed.

[Database_TableNames: 'Site']

[Loop_Count]: [Database_TableNameItem]
[/Database_TableName]

➜
1: _outgoingemail

2: _outgoingemailprefs

3: _schedule

4: _sessions

To list all the fields within a table:

The [Field_Name] tag accepts a number of optional parameters which allow
information about the tags in the current table to be returned. These
parameters are detailed in Table 10: [Field_Name] Parameters.

Table 10: [Field_Name] Parameters

Parameter Description

Number The position of the field name to be returned. Required
unless -Count is specified.

-Count Returns the number of fields in the current table.

-Type Returns the type of the field rather than the name.
Types include Text, Number, Image, Date/Time, Boolean,
or Unknown. Requires that a number parameter be
specified.

-Protection Returns the protection status of the field rather than the
name. Protection statuses include None or Read Only.
Requires that a number parameter be specified.

To return information about the fields in a table:

The following example demonstrates how to return information about
the fields in a table using the [Inline] … [/Inline] tags to perform a -Show
action. [Loop] … [/Loop] tags loop through the number of fields in the table
and the name, type, and protection status of each field is returned. The
fields within the Contacts Web table are shown.

[Inline: -Show,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID']
 [Loop: (Field_Name: -Count)]

1 2 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

[Loop_Count]: [Field_Name: (Loop_Count)]
 ([Field_Name: (Loop_Count), -Type], [Field_Name: (Loop_Count), -Protection])
 [/Loop]
[/Inline]

➜
1: Creation Date (Date, None)

2: ID (Number, Read Only)

3: First_Name (Text, None)

4: Last_Name (Text, None)

To list all the required fields within a table:

The [Required_Field] tag accepts a number of optional parameters which
allow information about the tags in the current table to be returned. These
parameters are detailed in Table 11: [Required_Field] Parameters.

Table 11: [Required_Field] Parameters

Parameter Description

Number The position of the field name to be returned. Required
unless -Count is specified.

-Count Returns the number of required fields in the current
table.

The [Required_Field] substitution tag can be used to return a list of all
required fields for the current action. A -Show action is used to retrieve
the information from the database and then [Loop] … [/Loop] tags are
used to loop through all the required fields. In the example that follows
the People table of the Contacts database has only one required field, the
primary key field ID.

[Inline: -Show,
 -Database='Contacts',
 -Table='People']
 [Loop: (Required_Field: -Count)]

[Required_Field: (Loop_Count)]
 [/Loop]
[/Inline]

➜
ID

SQL Statements
LDML 7 provides the ability to issue SQL statements directly to SQL-
compliant data sources, including the built-in Lasso MySQL data source.
SQL statements are specified within the [Inline] tag using the -SQL command

1 2 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

tag. Many third-party databases that support SQL statements also support
the use of the -SQL command tag.

SQL inlines can be used as the primary method of database interaction in
Lasso 7, or they can be used along side standard inline actions (e.g. -Search,
-Add, -Update, -Delete) where a specific SQL function is desired that cannot
be replicated using standard database commands.

SQL Language Note: Documentation of SQL itself is outside the realm
of this manual. Please consult the documentation included with your data
source for information on what SQL statements are supported by it.

FileMaker Note: The -SQL inline parameter is not supported for FileMaker
data sources.

Table 12: SQL Inline Parameters

Tag Description

-SQL Issues one or more SQL command to a compatible
data source. Multiple commands are delimited by a
semicolon. When multiple commands are used, all will
be executed, however only the last command issued will
return results to the [Inline] ... [/Inline] tags..

-Database A database in the data source in which to execute the
SQL statement.

-MaxRecords The maximum number of records to return. Optional,
defaults to 50.

-SkipRecords The offset into the found set at which to start returning
records. Optional, defaults to 1.

The -Database parameter can be any database within the data source in
which the SQL statement should be executed. The -Database parameter
will only be used to determine the data source, all table references within
the statement must include both a database name and a table name, e.g.
Contacts.People. For example, to create a new database in Lasso MySQL, a
CREATE DATABASE statement can be executed with -Database set to Site.

When referencing the name of a database and table in a SQL statement
(e.g. Contacts.People), only the true file names of a database or table can
be used as MySQL does not recognize Lasso aliases in a SQL command.
LDML 7 contains two SQL helper tags that return the true file name of a
SQL database or table, as shown in Table 13: SQL Helper Tags.

1 3 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

Table 13: -SQL Helper Tags

Tag Description

[Database_RealName] Returns the actual name of a database from an alias.
Useful for determining the true name of a database for
use with the -SQL tag.

[Table_RealName] This tag returns the actual name of a table from an
alias. Useful for determining the true name of a table for
use with the -SQL tag.

To determine the true database and table name for a SQL statement:

Use the [Database_RealName] and [Table_RealName] tags. When using the
-SQL tag to issue SQL statements to a MySQL host, only true database
and tables may be used (bypassing the alias). The [Database_RealName] and
[Table_RealName] tags can be used to automatically determine the true name
of a database and table, allowing them to be used in a valid SQL state-
ment.

[Var_Set:'Real_DB' = (Database_RealName:'Contacts_Alias')]
[Var_Set:'Real_TB' = (Table_RealName:'Contacts_Alias')]
[Inline: -Database ='Contacts_Alias', -SQL='select * from ((Var:'Real_DB') + '.' + (Var:
'Real_TB'))']

Results from a SQL statement are returned in a record set within the
[Inline] … [/Inline] tags. The results can be read and displayed using the
[Records] … [/Records] container tags and the [Field] substitution tag. However,
many SQL statements return a synthetic record set that does not corre-
spond to the names of the fields of the table being operated upon. This is
demonstrated in the examples that follow.

To issue a SQL statement:

Specify the SQL statement within [Inline] … [/Inline] tags in a -SQL command
tag.

 • The following example calculates the results of a mathematical expres-
sion 1 + 2 and returns the value as a [Field] value named Result. Note
that even though this SQL statement does not reference a database, a
-Database tag is still required so Lasso knows to which data source to
send the statement.

[Inline: -Database='Example', -SQL='SELECT 1+2 AS Result']

The result is: [Field: 'Result'].
[/Inline]

➜
The result is 3.

1 3 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

 • The following example calculates the results of several mathematical
expressions and returns them as field values One, Two, and Three.

[Inline: -Database='Example',
 -SQL='SELECT 1+2 AS One, sin(.5) AS Two, 5%2 AS Three']

The results are: [Field: 'One'], [Field: 'Two'], and [Field: 'Three'].
[/Inline]

➜
The results are 3, 0.579426, and 1.

 • The following example calculates the results of several mathematical
expressions using LDML and returns them as field values One, Two, and
Three. It demonstrate how the results of LDML expressions and substitu-
tion tags can be used in a SQL statement.

[Inline: -Database='Example',
 -SQL='SELECT ' + (1+2) + ' AS One, ' + (Math_Sin: .5) +
 ' AS Two, ' + (Math_Mod: 5, 2) + ' AS Three']

The results are: [Field: 'One'], [Field: 'Two'], and [Field: 'Three'].
[/Inline]

➜
The results are 3, 0.579426, and 1.

 • The following example returns records from the Phone_Book table where
First_Name is equal to John. This is equivalent to a -Search using LDML.

[Inline: -Database='Example',
 -SQL='SELECT * FROM Phone_Book WHERE First_Name = "John"']
 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

➜
John Doe

John Person

To issue a SQL statement with multiple commands:

Specify the SQL statements within [Inline] … [/Inline] tags in a -SQL command
tag, with each SQL command separated by a semi-colon. The following
example adds three unique records to the Contacts database. Note that all
single quotes within the SQL statement have been properly escaped using
the \ character, as described at the beginning of this chapter.

[Inline: -Database='Contacts',
 -SQL='INSERT INTO Contacts.People (First_Name, Last_Name) VALUES
 (\'John\', \'Jakob\');
 INSERT INTO Contacts.People (First_Name, Last_Name) VALUES
 (\'Tom\', \'Smith\');
 INSERT INTO Contacts.People (First_Name, Last_Name) VALUES
 (\'Sally\', \'Brown\')']
[/Inline]

1 3 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

To automatically format the results of a SQL statement:

Use the [Field_Name] tag and [Loop] … [/Loop] tags to create an HTML table
that automatically formats the results of a -SQL command. The -MaxRecords
tag should be set to All so all records are returned rather than the default
(50).

The following example shows a REPAIR TABLE Contacts.People SQL state-
ment being issued to a MySQL database, and the result is automatically
formatted. The statement returns a synthetic record set which shows the
results of the repair.

Notice that the database Contacts is specified explicitly within the SQL state-
ment. Even though the database is identified in the -Database command tag
within the [Inline] tag it still must be explicitly specified in each table refer-
ence within the SQL statement.

[Inline: -Database='Contacts',
 -SQL='REPAIR TABLE Contacts.People',
 -MaxRecords='All']
 <table border="1">
 <tr>
 [Loop: (Field_Name: -Count)]
 <td>[Field_Name: (Loop_Count)]</td>
 [/Loop]
 </tr>
 [Records]
 <tr>
 [Loop: (Field_Name: -Count)]
 <td>[Field: (Field_Name: Loop_Count)]</td>
 [/Loop]
 </tr>
 [/Records]
 </table>
[/Inline]

The results are returned in a table with bold column headings. The
following results show that the table did not require any repairs. If repairs
are performed then many records will be returned.

➜ Table➜Op Msg_Type Msg_Text
People Check Status OK

SQL Transactions
LDML 7 supports the ability to perform reversible SQL transactions
provided that the data source used (e.g. MySQL 4.x) supports this func-

1 3 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

tionality. See your data source documentation to see if transactions are
supported.

FileMaker Note: SQL transactions are not supported for FileMaker Pro data
sources.

SQL transactions can be achieved within nested [Inline] ... [/Inline] tags. A
single connection to MySQL or JDBC data sources will be held open from
the opening [Inline] tag to the closing [/Inline] tag. Any nested inlines that use
the same data source will make use of the same connection.

Note: When using named inlines, the connection is not available in subse-
quent [Records: -InlineName='Name'] ... [/Records] tags.

To open a transaction and commit or rollback in MySQL:

Used nested -SQL inlines, where the outer inline performs a transaction,
and the inner inline commits or rolls back the transaction depending on
the results of a conditional statement.

[Inline: -Database='Contacts', -SQL='START TRANSACTION
 INSERT INTO Contacts.People (Title, Company) VALUES (\'Mr.\', \'OmniPilot\');']
 [If: (Error_CurrentError) != (Error_NoError)]
 [Inline: -Database='Contacts', -SQL='ROLLBACK;']
 [/Inline]
 [Else]
 [Inline: -Database='Contacts', -SQL='COMMIT;']
 [/Inline]
 [/If]
[/Inline]

To fetch the last inserted ID in MySQL:

Used nested -SQL inlines, where the outer inline performs an insert query,
and the inner inline retrieves the ID of the last inserted record using the
MySQL last_insert_id() function. Because the two inlines share the same
connection, the inner inline will always return the value added by the
outer inline.

[Inline: -Database='Contacts',
 -SQL='INSERT INTO People (Title, Company) VALUES (\'Mr.\', \'OmniPilot\');’]
 [Inline: -SQL='SELECT last_insert_id()’]
 [Field: 'last_insert_id()']
 [/Inline]
[/Inline]

➜ 23

1 3 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 6 – D A T A B A S E I N T E R A C T I O N F U N D A M E N T A L S

7
Chapter 7

Searching and
Displaying Data

This chapter documents the LDML command tags which search for records
and data within Lasso compatible databases and display the results.

 • Overview provides an introduction to the database actions described in
this chapter and presents important security considerations.

 • Searching Records includes instructions for searching records within a
database.

 • Displaying Data describes the tags that can be used to display data that
result from database searches.

 • Linking to Data includes requirements and instructions for navigating
through found sets and linking to particular records within a database.

Overview
LDML provides command tags for searching records within Lasso compat-
ible databases. These command tags are used in conjunction with addi-
tional command tags and name/value parameters in order to perform the
desired database action in a specific database and table or within a specific
record.

The command tags documented in this chapter are listed in Table
1: Command Tags. The sections that follow describe the additional
command tags and name/value parameters required for each database
action.

1 3 5

L A S S O 7 . 1 L A N G U A G E G U I D E

Table 1: Command Tags

Tag Description

-Search Searches for records within a database.

-FindAll Finds all records within a database.

-Random Returns a random record from a database. Only works
with FileMaker Pro databases.

How Searches are Performed
This section describes the steps that take place each time a search is
performed using Lasso.

 1 Lasso checks the database, table, and field name specified in the search
to ensure that they are all valid.

 2 Lasso security is checked to ensure that the current user has permis-
sion to perform a search in the desired database, table, and field.
Filters are applied to the search criteria if they are defined within Lasso
Administration.

 3 The search query is formatted and sent to the database application.
FileMaker Pro search queries are formatted as URLs and submitted to
the Web Companion. Lasso MySQL search queries are formatted as SQL
statements and submitted directly to Lasso MySQL.

 4 The database application performs the desired search and assembles a
found set. The database application is responsible for interpreting search
criteria, wild cards in search strings, field operators, and logical opera-
tors.

 5 The database application sorts the found set based on sort criteria
included in the search query. The database application is responsible for
determining the order of records returned to Lasso.

 6 A subset of the found set is sent to Lasso as the result set. Only the
number of records specified by -MaxRecords starting at the offset specified
by -SkipRecords are returned to Lasso. If any -ReturnField command tags
are included in a search then only those fields named by the -ReturnField
command tags are returned to Lasso.

 7 The result set can be displayed and manipulated using LDML tags that
return information about the result set and LDML tags that return fields
or other values.

1 3 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Character Encoding
Lasso stores and retrieves data from data sources based on the preferences
established in the Setup > Data Sources section of Lasso Administration.
The following rules apply for each standard data source.

Lasso MySQL and MySQL – By default all communication is in the
Latin-1 (ISO 8859-1) character set. This is to preserve backwards compat-
ibility with prior versions of Lasso. The character set can be changed to
the Unicode standard UTF-8 character set in the Setup > Data Sources >
Tables section of Lasso Administration.

FileMaker Pro – By default all communication is in the MacRoman char-
acter set when Lasso Professional is hosted on Mac OS X or in the Latin-1
(ISO 8859-1) character set when Lasso Professional is hosted on Windows.
The preference in the Setup > Data Sources > Databases section of Lasso
Administration can be used to change the character set for cross-platform
communications.

JDBC – All communication with JDBC data sources is in the Unicode stan-
dard UTF-8 character set.

See the Lasso Professional 7 Setup Guide for more information about how
to change the character set settings in Lasso Administration.

Error Reporting
After a database action has been performed, Lasso reports any errors which
occurred via the [Error_CurrentError] tag. The value of this tag should be
checked to ensure that the database action was successfully performed.

To display the current error code and message:

The following code can be used to display the current error message. This
code should be placed in a format file which is a response to a database
action or within a pair of [Inline] … [/Inline] tags.

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

If the database action was performed successfully then the following result
will be returned.

➜ 0: No Error

To check for a specific error code and message:

The following example shows how to perform code to correct or report
a specific error if one occurs. The following example uses a conditional
[If] … [/If] tag to check the current error message and see if it is equal to
[Error_NoRecordsFound].

1 3 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

[If: (Error_CurrentError) == (Error_NoRecordsFound)]
 No records were found!
[/If]

Full documentation about error tags and error codes can be found in
Chapter 21: Error Control. A list of all Lasso error codes and messages can
be found in Appendix B: Error Codes.

Classic Lasso
If Classic Lasso support has been disabled within Lasso Administration
then database actions will not be performed automatically if they are speci-
fied within HTML forms or URLs. Although the database action will not
be performed, the -Response tag will function normally. Use the following
code in the response page to the HTML forms or URL to trigger the data-
base action.

[Inline: (Action_Params)]
 [Error_CurrentError: -ErrorCode]: [Error_CurrentError]
[/Inline]

See Chapter 6: Database Interaction Fundamentals in this Lasso 7
Language Guide and Chapter 6: Setting Global Preferences in the Lasso
Professional 7 Setup Guide for more information.

Note: The use of Classic Lasso has been deprecated. All solutions should be
transitioned over to the [Inline] … [/Inline] tag based methods described in this
chapter.

Security
Lasso has a robust internal security system that can be used to restrict
access to database actions or to allow only specific users to perform data-
base actions. If a database action is attempted when the current visitor has
insufficient permissions then they will be prompted for a username and
password. An error will be returned if the visitor does not enter a valid
username and password.

An [Inline] … [/Inline] can be specified to execute with the permissions of a
specific user by specifying -Username and -Password command tags within
the [Inline] tag. This allows the database action to be performed even though
the current site visitor does not necessarily have permissions to perform
the database action. In essence, a valid username and password are
embedded into the format file.

1 3 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Table 2: Security Command Tags

Tag Description

-Username Specifies the username from Lasso Security which
should be used to execute the database action.

-Password Specifies the password which corresponds to the
username.

To specify a username and password in an [Inline]:

The following example shows a -FindAll action performed within an [Inline]
tag using the permissions granted for username SiteAdmin with password
Secret.

[Inline: -FindAll,
 -Database='Contacts',
 -Table='People',
 -Username='SiteAdmin',
 -Password='Secret']

 [Error_CurrentError: -ErrorCode]: [Error_CurrentError]

[/Inline]

A specified username and password is only valid for the [Inline] … [/Inline] tags
in which it is specified. It is not valid within any nested [Inline] … [/Inline] tags.
See Chapter 8: Setting Up Security of the Lasso Professional 7 Setup
Guide for additional important information regarding embedding
usernames and passwords into [Inline] tags.

Searching Records
Searches can be performed within any Lasso compatible database using
the -Search command tag. The -Search command tag is specified within
[Inline] … [/Inline] tags. The -Search command tag requires that a number
of additional command tags be defined in order to perform the search.
The required command tags are detailed in Table 3: -Search Action
Requirements.

Note: If Classic Lasso syntax is enabled then the -Search command tag can
also be used within HTML forms or URLs. The use of Classic Lasso syntax has
been deprecated so solutions which rely on it should be updated to use the
inline methods described in this chapter.

Additional command tags are described in Table 4: Operator Command
Tags and Table 6: Results Command Tags in the sections that follow.

1 3 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Table 3: -Search Action Requirements

Tag Description

-Search The action which is to be performed. Required.

-Database The database which should be searched. Required.

-Table The table from the specified database which should be
searched. Required.

-KeyField The name of the field which holds the primary key for
the specified table. Recommended.

-KeyValue The particular value for the primary key of the record
which should be returned. Using -KeyValue overrides
all the other search parameters and returns the single
record specified. Optional.

Name/Value Parameters A variable number of name/value parameters specify the
query which will be performed.

Any name/value parameters included in the search action will be used to
define the query that is performed in the specified table. All name/value
parameters must reference a field within the database. Any fields which are
not referenced will be ignored for the purposes of the search.

To search a database using [Inline] … [/Inline] tags:

The following example shows how to search a database by specifying the
required command tags within an opening [Inline] tag. -Database is set to
Contacts, -Table is set to People, and -KeyField is set to ID. The search returns
records which contain John with the field First_Name.

The results of the search are displayed to the visitor inside the
[Inline] … [/Inline] tags. The tags inside the [Records] … [/Records] tags will repeat
for each record in the found set. The [Field] tags will display the value for
the specified field from the current record being shown.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 'First_Name'='John']

 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]

[/Inline]

If the search was successful then the following results will be returned.

➜
John Person

John Doe

1 4 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Additional name/value parameters and command tags can be used to
generate more complex searches. These techniques are documented in the
following section on Operators.

To search a database using visitor-defined values:

The following example shows how to search a database by specifying the
required command tags within an opening [Inline] tag, but allow a site
visitor to specify the search criteria in an HTML form.

The visitor is presented with an HTML form in the format file
default.lasso. The HTML form contains two text inputs for First_Name and
Last_Name and a submit button. The action of the form is the response page
response.lasso which contains the [Inline] … [/Inline] tags that will perform the
search. The contents of the default.lasso file include the following.

<form action="response.lasso" method="POST">

First Name: <input type="text" name="First_Name" value="">

Last Name: <input type="text" name="Last_Name" value="">

<input type="submit" name="-Nothing" value="Search Database">
</form>

The search is performed and the results of the search are displayed to the
visitor inside the [Inline] … [/Inline] tags in response.lasso. The values entered by
the visitor in the HTML form in default.lasso are inserted into the [Inline] tag
using the [Action_Param] tag. The tags inside the [Records] … [/Records] tags will
repeat for each record in the found set. The [Field] tags will display the value
for the specified field from the current record being shown. The contents of
the response.lasso file include the following.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 'First_Name'=(Action_Param: 'First_Name'),
 'Last_Name'=(Action_Param: 'Last_Name')]

 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]

[/Inline]

If the visitor entered John for First_Name and Person for Last_Name then the
following result would be returned.

➜
John Person

1 4 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Operators
LDML includes a set of command tags that allow operators to be used to
create complex database queries. These command tags are summarized in
Table 4: Operator Command Tags.

Table 4: Operator Command Tags

Tag Description

-OperatorLogical Specifies the logical operator for the search.
Abbreviation is -OpLogical. Defaults to and.

-Operator When specified before a name/value parameter,
establishes the search operator for that name/value
parameter. Abbreviation is -Op. Defaults to bw.

-OperatorBegin Specifies the logical operator for all search parameters
until -OperatorEnd is reached. Abbreviation is -OpBegin.

-OperatorEnd Specifies the end of a logical operator grouping started
with -OperatorBegin. Abbreviation is -OpEnd.

The operator command tags are divided into two categories.

 • Field Operators are specified using the -Operator command tag before
a name/value parameter. The field operator changes the way that the
named field is searched for the value. If no field operator is specified
then the default begins with bw operator is used. See Table 5: Field
Operators for a list of the possible values for this tag.

 • Logical Operators are specified using the -OperatorLogical, -OperatorBegin,
and -OperatorEnd tags. These tags specify how the results of different
name/value parameters are combined to form the full results of the
search.

Field Operators
The possible values for the -Operator command tag are listed in Table 5:
Field Operators. The default operator is begins with bw. Each operator
can be used in its short form cn or in its long form Contains. Case is unim-
portant when specifying operators.

Field operators are interpreted differently depending on which database
application is being accessed. For example, FileMaker Pro interprets bw to
mean that any word within a field can begin with the value specified for
that field. MySQL interprets bw to mean that the first word within the field
must begin with the value specified. See the chapters on each data source
or the documentation that came with a third-party data source connector
for more information.

1 4 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Several of the field operators are only supported in Lasso MySQL or
other MySQL databases. These include the ft full text operator and the
rx nrx regular expression operators.

Table 5: Field Operators

Operator Description

bw Begins With. Default if no operator is set.

cn Contains.

ew Ends With.

eq Equals.

ft Full Text. MySQL databases only.

gt Greater Than.

gte Greater Than or Equals.

lt Less Than.

lte Less Than or Equals.

neq Not Equals.

nrx Not RegExp. Opposite of RegExp. MySQL databases
only.

rx RegExp. Regular expression search. MySQL databases
only.

Note: In previous versions of Lasso the field operators could be specified
using either a short form, e.g. bw or a long form, e.g. Begins With. In Lasso
Professional 7 only the short form is preferred. Use of the long form is depre-
cated. It is supported in this version, but may not work in future versions of
Lasso Professional.

To specify a field operator in an [Inline] tag:

Specify the field operator before the name/value parameter which it will
affect. The following [Inline] … [/Inline] tags search for records where the
First_Name begins with J and the Last_Name ends with son.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -Operator='bw', 'First_Name'='J',
 -Operator='ew', 'Last_Name'='son']

1 4 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

The results of the search would include the following records.

➜
John Person

Jane Person

Logical Operators
The logical operator command tag -OperatorLogical can be used with a value
of either AND or OR. The command tags -OperatorBegin, and -OperatorEnd can
be used with values of AND, OR, or NOT. -OperatorLogical applies to all search
parameters specified with an action . -OperatorBegin applies to all search
parameters until the matching -OperatorEnd tag is reached. The case of the
value is unimportant when specifying a logical operator.

 • AND specifies that records which are returned should fulfill all of the
search parameters listed.

 • OR specifies that records which are returned should fulfill one or more
of the search parameters listed.

 • NOT specifies that records which match the search criteria contained
between the -OperatorBegin and -OperatorEnd tags should be omitted from
the found set. NOT cannot be used with the -OperatorLogical tag.

Note: In lieu of a NOT option for -OperatorLogical, many field operators can
be negated individually by substituting the opposite field operator. The
following pairs of field operators are the opposites of each other: eq and
neq, lt and gte, gt and lte.

FileMaker Note: The -OperatorBegin and -OperatorEnd tags do not work with
Lasso Connector for FileMaker Pro.

To perform a search using an AND operator:

Use the -OperatorLogical command tag with an AND value. The following
[Inline] … [/Inline] tags return records for which the First_Name field begins
with John and the Last_Name field begins with Doe. The position of the
-OperatorLogical command tag within the [Inline] tag is unimportant since it
applies to the entire action.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -OperatorLogical='AND',

1 4 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

 'First_Name'='John',
 'Last_Name'='Doe']
 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

To perform a search using an OR operator:

Use the -OperatorLogical command tag with an OR value. The following
[Inline] … [/Inline] tags return records for which the First_Name field begins with
either John or Jane. The position of the -OperatorLogical command tag within
the [Inline] tag is unimportant since it applies to the entire action.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -OperatorLogical='OR',
 'First_Name'='John',
 'First_Name'='Jane']
 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

To perform a search using a NOT operator:

Use the -OperatorBegin and -OperatorEnd command tags with a NOT value. The
following [Inline] … [/Inline] tags return records for which the First_Name field
begins with John and the Last_Name field is not Doe. The operators tags must
surround the parameters of the search which are to be negated.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 'First_Name'='John',
 -OperatorBegin='NOT',
 'Last_Name'='Doe',
 -OperatorEnd='NOT']

1 4 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

To perform a search with a complex query:

Use the -OperatorBegin and -OperatorEnd tags to build up a complex query. As
an example, a query can be constructed to find records in a database whose
First_Name and Last_Name both begin with the same letter J, or M. The
desired query could be written in pseudo-code as follows.

((First_Name begins with J) AND (Last_Name begins with J)) OR
((First_Name begins with M) AND (Last_Name begins with M))

The pseudo code is translated into a URL as follows. Each line of the query
becomes a pair of -OpBegin=AND and -OpEnd=AND tags with a name/value
parameter for First_Name and Last_Name contained inside. The two lines are
then combined using a pair of -OpBegin=OR and -OpEnd=OR tags. The nesting
of the command tags works like the nesting of parentheses in the pseudo
code above to clarify how Lasso should combine the results of different
name/value parameters.

<a href="/response.lasso?-Search&
 -Database=Contacts&
 -Table=People&
 -KeyField=ID&
 -OpBegin=OR&
 -OpBegin=AND&
 First_Name=J&
 Last_Name=J&
 -OpEnd=AND&
 -OpBegin=AND&
 First_Name=M&
 Last_Name=M&
 -OpEnd=AND&
 -OpEnd=OR">
 First Name and Last Name both begin with J or M

The following results might be returned when this link is selected.

➜
Johnny Johnson

Jimmy James

Mark McPerson

1 4 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Results
LDML includes a set of command tags that allow the results of a search
to be customized. These command tags do not change the found set of
records that are returned from the search, but they do change the data that
is returned to Lasso for formatting and display to the visitor. The results
command tags are summarized in Table 6: Results Command Tags.

Table 6: Results Command Tags

Tag Description

-Distinct Specifies that only records with distinct values in all
returned fields should be returned. MySQL databases
only.

-LayoutResponse Specifies what layout should be used to return values
from a database action for FileMaker Server Advanced
data sources only.

-MaxRecords Specifies how many records should be shown from the
found set. Optional, defaults to 50.

-SkipRecords Specifies an offset into the found set at which records
should start being shown. Optional, defaults to 1.

-ReturnField Specifies a field that should be returned in the results
of the search. Multiple -ReturnField tags can be used to
return multiple fields. Optional, defaults to returning all
fields in the searched table.

-SortField Specifies that the results should be searched based on
the data in the named field. Multiple -SortField tags can
be used for complex sorts. Optional, defaults to returning
data in the order it appears in the database.

-SortOrder When specified after a -SortField parameter, specifies
the order of the sort, either ascending, descending
or custom. Optional, defaults to ascending for each -
SortField.

-SortRandom Sorts the returned results randomly. MySQL databases
only.

-UseLimit Specifies that a MySQL LIMIT should be used instead
of Lasso's built-in tools for limiting the found set. MySQL
databases only.

The results command tags are divided into three categories.

 • Sorting is specified using the -SortField and -SortOrder command tags.
These tags change the order of the records which are returned by the
search. The sort is performed by the database application before Lasso
receives the record set.

1 4 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

The -SortRandom tag can be used to perform a random sort on the found
set from MySQL databases. Note that the sort will be random each time
a set of records is returned so -MaxRecords and -SkipRecords cannot be used
to navigate a found set that is sorted randomly.

 • The portion of the Found Set being shown is specified using the
-MaxRecords and -SkipRecords tags. -MaxRecords sets the number of records
which will be shown between the [Records] … [/Records] tags that format
the results for the visitor. The -SkipRecords tag sets the offset into the
found set which is shown. These two tags define the window of records
which are shown and can be used to navigate through a found set.

The -UseLimit tag instructs MySQL data sources to use a SQL LIMIT tag
to restrict the found set based on the values of the -MaxRecords and
-SkipRecords tags. This may increase performance when many records are
being found, but -MaxRecords is set to a low value.

 • The Fields which are available are specified using the -ReturnField tag.
Normally, all fields in the table that was searched are returned. If any
-ReturnField tags are specified then only those fields will be available to
be returned to the visitor using the [Field] tag. Specifying -ReturnField tags
can improve the performance of Lasso by not sending unnecessary data
between the database and the Web server.

Note: In order to use the [KeyField_Value] tag within an inline the keyfield
must be specified as one of the -ReturnField values.

 • The -Distinct tag instructs MySQL data sources to return only records
which contain distinct values across all returned fields. This tag is useful
when combined with a single -ReturnField tag and a -FindAll to return all
distinct values from a single field in the database.

To return sorted results:

Specify -SortField and -SortOrder command tags within the search param-
eters. The following inline includes sort command tags. The records are
first sorted by Last_Name in ascending order, then sorted by First_Name in
ascending order.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 'First_Name'='J',
 -SortField='Last_Name', -SortOrder='Ascending',
 -SortField='First_Name', -SortOrder='Descending']

1 4 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

 [Records]

[Field: 'First_Name']
 [/Records]
[/Inline]

The following results could be returned when this inline is run. The
returned records are sorted in order of Last_Name. If the Last_Name of two
records are equal then those records are sorted in order of First_Name.

➜
Jane Doe

John Doe

Jane Person

John Person

To return a portion of a found set:

A portion of a found set can be returned by manipulating the values
for -MaxRecords and -SkipRecords. In the following example, a search is
performed for records where the First_Name begins with J. This search
returns four records, but only the second two records are shown.
-MaxRecords is set to 2 to show only two records and -SkipRecords is set to
2 to skip the first two records.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 'First_Name'='J',
 -MaxRecords=2,
 -SkipRecords=2]
 [Records]

[Field: 'First_Name']
 [/Records]
[/Inline]

The following results could be returned when this inline is run. Neither
of the Doe records from the previous example are shown since they are
skipped over.

➜
Jane Person

John Person

To limit the fields returned in search results:

Use the -ReturnField command tag. If a single -ReturnField command tag
is used then only the fields that are specified will be returned. If no
-ReturnField command tags are specified then all fields within the current
table will be shown. In the following example, only the First_Name field is
shown since it is the only field specified within a -ReturnField command tag.

1 4 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 'First_Name'='J',
 -ReturnField='First_Name']
 [Records]

[Field: 'First_Name']
 [/Records]
[/Inline]

The following results could be returned when this link is selected. The
Last_Name field cannot be shown for any of these records since it was not
specified in a -ReturnField command tag.

➜
Jane

John

Jane

John

If [Field: 'Last_Name'] were specified inside the [Inline] … [/Inline] tags and not
specified as a -ReturnField then an error would be returned rather than the
indicated results.

Finding All Records
All records can be returned from a database using the -FindAll command tag.
The -FindAll command tag functions exactly like the -Search command tag
except that no name/value parameters or operator tags are required. Sort
tags and tags which sort and limit the found set work the same as they do
for -Search actions. -FindAll actions can be specified in [Inline] … [/Inline] tags.

Note: If Classic Lasso syntax is enabled then the -FindAll command tag can
also be used within HTML forms or URLs. The use of Classic Lasso syntax has
been deprecated so solutions which rely on it should be updated to use the
inline methods described in this chapter.

1 5 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Table 7: -FindAll Action Requirements

Tag Description

-FindAll The action which is to be performed. Required.

-Database The database which should be searched. Required.

-Table The table from the specified database which should be
searched. Required.

-KeyField The name of the field which holds the primary key for
the specified table. Recommended.

To find all records within a database:

The following [Inline] … [/Inline] tags find all records within a database
Contacts and displays them. The results are shown below.

[Inline: -FindAll,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID']
 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

➜
Jane Doe

John Person

Jane Person

John Doe

To return all unique field values:

The unique values from a field in a MySQL database can be returned
using the -Distinct tag. Only records which have distinct values across all
fields will be returned. In the following example, a -FindAll action is used
on the People table of the Contacts database. Only distinct values from the
Last_Name field are returned.

[Inline: -FindAll,
 -Database='Contacts',
 -Table='People',
 -Distinct,
 -SortField='First_Name',
 -ReturnField='First_Name']

1 5 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

 [Records]

[Field: 'First_Name']
 [/Records]
[/Inline]

The following results are returned. Even though there are multiple
instances of John and Jane in the database, only one record for each name
is returned.

➜
Jane

John

Finding Random Records
A random record can be returned from a database using the
-Random command tag. The -Random command tag functions exactly like the
-Search command tag except that no name/value parameters or operator
tags are required. -Random actions can be specified in [Inline] … [/Inline] tags.

Note: If Classic Lasso syntax is enabled then the -Random command tag can
also be used within HTML forms or URLs. The use of Classic Lasso syntax has
been deprecated so solutions which rely on it should be updated to use the
inline methods described in this chapter.

Table 8: -Random Action Requirements

Tag Description

-Random The action which is to be performed. Required.

-Database The database which should be searched. Required.

-Table The table from the specified database which should be
searched. Required.

-KeyField The name of the field which holds the primary key for
the specified table. Recommended.

To find a single random record from a database:

The following inline finds a single random record from a FileMaker Pro
database Contacts.fp3 and displays it. -MaxRecords is set to 1 to ensure that
only a single record is shown. One potential result is shown below. Each
time this inline is run a different record will be returned.

1 5 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

[Inline: -Random,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -MaxRecords=1]
 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

➜
Jane Person

To return multiple records sorted in random order:

The -SortRandom tag can be used with the -Search or -FindAll actions to return
many records from a MySQL database sorted in random order. In the
following example, all records from the People table of the Contacts database
are returned in random order.

[Inline: -FindAll,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -SortRandom]
 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

➜
John Doe

Jane Doe

Jane Person

John Person

Displaying Data
The examples in this chapter have all relied on the
[Records] … [/Records] tags and [Field] tag to display the results of the search
that have been performed. This section describes the use of these tags in
more detail.

1 5 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Table 9: Field Display Tags

Tag Description

[Records] … [/Records] Loops through each record in a found set. Optional
-InlineName parameter specifies that results should
be returned from a named inline. Synonym is [Rows]
… [/Rows].

[Field] Returns the value for a database field. Requires
one parameter, the field name. Optional parameter
-RecordIndex specifies what record in the current found
set a field should be shown from. Synonym is [Column].

The [Field] tag always returns the value for a field from the current record
when it is used within [Records] … [/Records] tags. If the [Field] tag is used
outside of [Records] … [/Records] tags then it returns the value for a field from
the first record in the found set. If the found set is only one record then the
[Records] … [/Records] tags are optional.

FileMaker Note: Lasso Connector for FileMaker Pro includes a collection of
FileMaker Pro specific tags which return database results. See Chapter 10:
FileMaker Pro Data Sources for more information.

To display the results from a search:

Use the [Records] … [/Records] tags and [Field] tag to display the results of
a search. The following [Inline] … [/Inline] tags perform a -FindAll action in
a database Contacts. The results are returned each formatted on a line by
itself. The [Loop_Count] tag is used to indicate the order within the found
set.

[Inline: -FindAll,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID']
 [Records]

[Loop_Count]: [Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

➜
1: Jane Doe

2: John Person

3: Jane Person

4: John Doe

To display the results for a single record:

Use [Field] tags within the contents of the [Inline] … [/Inline] tags. The
[Records] … [/Records] tags are unnecessary if only a single record is returned.

1 5 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

The following [Inline] … [/Inline] tags perform a -Search for a single record
whose primary key ID equals 1. The [KeyField_Value] is shown along with the
[Field] values for the record.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -KeyValue=1]

[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name']
[/Inline]

➜
1: Jane Doe

To display the results from a named inline:

Use the -InlineName parameter in both the opening [Inline] tag and in the
opening [Records] tag. The [Records] … [/Records] tags can be located anywhere
in the page after the [Inline] … [/Inline] tags that define the database action.
The following example shows a -FindAll action at the top of a page in a
LassoScript with the results formatted later.

<?LassoScript
 Inline: -FindAll,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -InlineName='FindAll Results';
 /Inline;
?>

… Page Contents …

[Records: -InlineName='FindAll Results']

[Loop_Count]: [Field: 'First_Name'] [Field: 'Last_Name']
[/Records]

➜
1: Jane Doe

2: John Person

3: Jane Person

4: John Doe

To display the results from a search out of order:

The -RecordIndex parameter of the [Field] tag can be used to show results out
of order. Instead of using [Records] … [/Records] tags to loop through a found
set, the following example uses [Loop] … [/Loop] tags to loop down through
the found set from [MaxRecords_Value] to 1. The [Field] tags all reference the
[Loop_Count] in their -RecordIndex parameter.

1 5 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

[Inline: -FindAll,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID'']
 [Loop: -LoopFrom=(MaxRecords_Value), -LoopTo=1, -LoopIncrement=-1]

[Loop_Count]: [Field: 'First_Name', -RecordIndex=(Loop_Count)]
 [Field: 'Last_Name', -RecordIndex=(Loop_Count)]
 [/Loop]
[/Inline]

➜
4: John Doe

3: Jane Person

2: John Persion

1: Jane Doe

Linking to Data
This section describes how to create links which allow a visitor to manipu-
late the found set. The following types of links can be created.

 • Navigation – Links can be created which allow a visitor to page through
a found set. Only a portion of the found set needs to be shown, but the
entire found set can be accessed.

 • Detail – Links can be created which allow detail about a particular
record to be shown in another format file.

 • Sorting – Links can be provided to re-sort the current found set on a
different field.

Note: If Classic Lasso syntax is enabled then the links tags can be used to
trigger actions using command tags embedded in URLs. The use of Classic
Lasso syntax has been deprecated so solutions which rely on it should be
updated to use the inline methods described in this chapter.

Most of the link techniques implicitly assume that the records within the
database are not going to change while the visitor is navigating through the
found set. The database search is actually performed again for every page
served to a visitor and if the number of results change then the records
being shown to the visitor can be shifted or altered as soon as another link
is selected.

1 5 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Link Tags
LDML 7 includes many tags which make creating detail links and naviga-
tion links easy within Lasso solutions. The general purpose link tags are
specified in Table 10: Link Tags. The common parameters for all link tags
are specified in Table 11: Link Tag Parameters.

The remainder of the chapter lists and demonstrates the link URL,
container, and parameter tags. Tags which generate URLs for links automat-
ically are listed in Table 12: Link URL Tags. Container tags which generate
entire HTML anchor tags <a> automatically are listed in Table 13: Link
Container Tags. Tags which provide parameter arrays for each link option
are listed in Table 14: Link Parameter Tags.

Table 10: Link Tags

Tag Description

[Link] … [/Link] General purpose link tag that provides an anchor tag
with the specified parameters. The -Response parameter
is used as the URL for the link.

[Link_Params] General purpose link tag that processes a set of
parameters using the common rules for all link tags.

[Link_SetFormat] Sets a standard set of options that will be used for all
link tags that follow in the current format file.

[Link_URL] General purpose link tag that provides a URL based on
the specified parameters. The -Response parameter is
used as the URL for the link.

Each of the general purpose link tags implement the basic behavior of all
the link tags, but are not usually used on their own. The section on Link
Tag Parameters below describes the common parameters that all link
tags interpret. The following sections include the link URL, container, and
parameter tags and examples of their use.

Note: The [Link_…] tags do not include values for the -SQL, -Username,
-Password or the -ReturnField tags in the links they generate.

Link Tag Parameters
All of the link tags accept the same parameters which allow the link
that is being formed to be customized. These parameters include all the
command tags which can be passed to the opening [Inline] tag and a series
of parameters detailed in Table 11: Link Tag Parameters which allow
various command tags to be removed from the generated link tags.

1 5 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

The link tags interpret their parameters as follows.

 • The parameters are processed in the order they are specified within the
link tag. Later parameters override earlier parameters.

 • Most link tags process [Action_Params] first, then any parameters specified
in [Link_SetFormat], and finally the parameters specified within the link
tag itself. The general purpose link tags do not include [Action_Params]
autoamtically.

 • Parameters of type array are inserted into the parameters as if each item
of the array was specified in order at the location of the array.

 • Many command tags will only be included once in the resulting link.
These include -Database, -Table, -KeyField, -MaxRecords, and any other
command tags that can only be specified once within an inline. The last
value for the command tag will be included in the resulting link.

 • Only one action such as -Search, -FindAll, or -Nothing will be included in
the resulting link. The last action specified in the link tag will be used.

 • Command tags such as -Required, -Op, -OpBegin, -OpEnd, -SortField,
-SortOrder, and -Token will be included in the order they are specified
within the tag.

 • The resulting link will consist of the action followed by all command
tags specified once in alphabetical order, and finally all name/value
parameters and command tags that are specified multiple times in the
same order they were specified in the parameters.

 • All -No… parameters are interpreted at the location they occur in the
parameters. If a -NoDatabase parameter is specified early in the parameter
list and a -Database command tag is included later then the -Database
command tag will be included in the resulting link.

 • The -NoClassic parameter removes all command tags that are not
essential to specifying the search and location in the found set to an
[Inline] tag. The -Database, -Table, -KeyField, and action are all removed. All
name/value parameters, -Sort… tags, -Op tags, and either -MaxRecords and
-SkipRecords or -KeyValue are included.

 • The value of the -Response command tag will be used as the URL for the
resulting link. The link tags always link to a response file on the same
server they are called. If not specified the -Response will be the same as
[Response_FilePath].

 • The -SQL, -Username, -Password, and -ReturnField tags are never returned by
the link tags.

Note: The [Referrer] and [Referrer_URL] tags are special cases which simply
return the referrer specified in the HTTP request header. They do not accept
any parameters.

1 5 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Table 11: Link Tag Parameters

Tag Description

Command Tag Inserts the specified command tag. Either appends the
command tag or overrides an existing command tag with
the new value.

Name/Value Pair Inserts the specified name/value pair.

Array Parameter An array of pairs is inserted as if each name/value pair
in the array was specified in the tag parameters at the
location of the array.

-NoAction Removes the action command tag.

-NoClassic Removes all parameters required to specify an action in
Classic Lasso leaving only those parameters required to
specify the query and current location in the found set.

-NoDatabase Removes the -Database command tag.

-NoTable Removes the -Table or -Layout command tag. -NoLayout
is a synonym.

-NoKeyField Removes the -KeyField command tag.

-NoKeyValue Removes the -KeyValue command tag.

-NoOperatorLogical Removes the -OperatorLogical command tag.

-NoResponse Removes the -Response command tag.

-NoMaxRecords Removes the -MaxRecords command tag.

-NoSkipRecords Removes the -SkipRecords command tag.

-NoParams Removes name/value pairs, -Operator, -OperatorBegin,
-OperatorEnd, and -Required tags.

-NoSort Removes all -Sort… command tags.

-NoToken, -NoToken.Name Removes the -Token command tag. With a parameter as
-NoToken.Name removes the specified token command
tag.

-NoTokens Removes all -Token… command tags.

-NoSchema Removes the -Schema command tag for JDBC data
sources.

-No.Name Removes a specified nam/value parameter.

-Response Specifies the file that will be used as the URL for the
link tag. The link tags always link to a file on the current
server.

1 5 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Link URL Tags
The tags listed in Table 12: Link URL Tags each return a URL based on the
current database action. Each of these tags accepts the same parameters
as specified in Table 11: Link Tag Parameters above and corresponds
to matching container and parameter tags. Examples of the link tags are
included in the Link Examples section that follows.

Table 12: Link URL Tags

Tag Description

[Link_CurrentActionURL] Returns a link to the current Lasso action.

[Link_FirstGroupURL] Returns a link to the first group of records based on the
current Lasso action. Sets -SkipRecords to 0.

[Link_PrevGroupURL] Returns a link to the next group of records based on the
current Lasso action. Changes -SkipRecords.

[Link_NextGroupURL] Returns a link to the next group of records based on the
current Lasso action. Changes -SkipRecords.

[Link_LastGroupURL] Returns a link to the last group of records based on the
current Lasso action. Changes -SkipRecords.

[Link_CurrentRecordURL] Returns a link to the current record. Sets -MaxRecords
to 1 and changes -SkipRecords.

[Link_FirstRecordURL] Returns a link to the first record based on the current
Lasso action. Sets -MaxRecords to 1 and -SkipRecords
to 0.

[Link_PrevRecordURL] Returns a link to the next record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

[Link_NextRecordURL] Returns a link to the next record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

[Link_LastRecordURL] Returns a link to the last record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

[Link_DetailURL] Returns a link to the current record using the primary
key and key value. Changes -KeyValue.

[Referrer_URL] Returns a link to the previous page which the visitor was
at before the current page. [Referer_URL] is a synonym.

t

Note: The [Referrer_URL] tag is a special case which simply returns the referrer
specified in the HTTP request header. It does not accept any parameters.

1 6 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Link Container Tags
The tags listed in Table 13: Link Container Tags each return an anchor
tag based on the current database action. The anchor tags surround the
contents of the container tag. If the link tag is not valid then no result is
returned. Each of these tags accepts the same parameters as specified in
Table 11: Link Tag Parameters above and corresponds to matching URL
and parameter tags. Examples of the link tags are included in the Link
Examples section that follows.

Table 13: Link Container Tags

Tag Description

[Link_CurrentAction] Returns a link to the current Lasso action.

[Link_FirstGroup] Returns a link to the first group of records based on the
current Lasso action. Sets -SkipRecords to 0.

[Link_PrevGroup] Returns a link to the previous group of records based on
the current Lasso action. Changes -SkipRecords.

[Link_NextGroup] Returns a link to the next group of records based on the
current Lasso action. Changes -SkipRecords.

[Link_LastGroup] Returns a link to the last group of records based on the
current Lasso action. Changes -SkipRecords.

[Link_CurrentRecord] Returns a link to the current record. Sets -MaxRecords
to 1 and changes -SkipRecords.

[Link_FirstRecord] Returns a link to the first record based on the current
Lasso action. Sets -MaxRecords to 1 and -SkipRecords
to 0.

[Link_PrevRecord] Returns a link to the previous record based on the
current Lasso action. Sets -MaxRecords to 1 and
changes -SkipRecords.

[Link_NextRecord] Returns a link to the next record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

[Link_LastRecord] Returns a link to the last record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

[Link_Detail] Returns a link to the current record using the -KeyField
and -KeyValue. Changes -KeyValue.

[Referrer] Returns a link to the previous page which the visitor was
at before the current page. [Referer] is a synonym.

t

Note: The [Referrer] … [/Referrer] tag is a special case which simply returns the
referrer specified in the HTTP request header. It does not accept any param-
eters.

1 6 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Link Parameter Tags
The tags listed in Table 14: Link Parameter Tags each return an array of
parameters based on the current database action. Each of these tags accepts
the same parameters as specified in Table 11: Link Tag Parameters above
and corresponds to matching container and URL tags. Examples of the link
tags are included in the Link Examples section that follows.

Table 14: Link Parameter Tags

Tag Description

[Link_CurrentActionParams] Returns a link to the current Lasso action.

[Link_FirstGroupParams] Returns a link to the first group of records based on the
current Lasso action. Sets -SkipRecords to 0.

[Link_PrevGroupParams] Returns a link to the next group of records based on the
current Lasso action. Changes -SkipRecords.

[Link_NextGroupParams] Returns a link to the next group of records based on the
current Lasso action. Changes -SkipRecords.

[Link_LastGroupParams] Returns a link to the last group of records based on the
current Lasso action. Changes -SkipRecords.

[Link_CurrentRecordParams] Returns a link to the current record. Sets -MaxRecords
to 1 and changes -SkipRecords.

[Link_FirstRecordParams] Returns a link to the first record based on the current
Lasso action. Sets -MaxRecords to 1 and -SkipRecords
to 0.

[Link_PrevRecordParams] Returns a link to the next record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

[Link_NextRecordParams] Returns a link to the next record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

[Link_LastRecordParams] Returns a link to the last record based on the current
Lasso action. Sets -MaxRecords to 1 and changes
-SkipRecords.

[Link_DetailParams] Returns a link to the current record using the primary
key and key value. Changes -KeyValue.

t

Note: There is no link parameter tag equivalent to the referrer tags.

1 6 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

Link Examples
The basic technique for using the link tags is the same as that which was
described to allow site visitors to enter values into HTML forms and then
use those values within an [Inline] … [/Inline] action. The [Inline] tags can have
some command tags and search parameters specified explicitly, with vari-
ables, an array, [Action_Params], or one of the link tags defining the rest.

For example, an [Inline] … [/Inline] could be specified to find all records
within a database as follows. The entire action is specified within the
opening [Inline] tag. Each time a page with the code on it is visited the
action will be performed as written.

[Inline: -FindAll,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -MaxRecords=10]
 …
[/Inline]

The same inline can be modified so that it can accept parameters from
an HTML form or URL which is used to load the page it is on, but
can still act as a standalone action. This is accomplished by adding an
[Action_Params] tag to the opening [Inline] tag.

[Inline: (Action_Params),
 -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -MaxRecords=4]
 …
[/Inline]

Any command tags or name/value pairs in the HTML form or URL that
triggers the page with this inline will be passed into the inline through
the [Action_Params] tag as if they had been typed directly into the [Inline].
However, the command tags specified directly in the [Inline] tag will override
any corresponding tags from the [Action_Params].

Since the action -Search is specified after the [Action_Params] array it
will override any other action from the array. The action of this inline
will always be -Search. Similarly, all of the -Database, -Table, -KeyField, or
-MaxRecords tags will have the values specified in the [Inline] overriding any
values passed in through [Action_Params].

The various link tags can be used to generate URLs which work with the
specified inline in order to change the set of records being shown, the sort
order and sort field, etc. The link tags are able to override any command

1 6 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

tags not specified in the opening [Inline] tag, but the basic action is always
performed exactly as specified.

Navigation Links
Navigation links are created by manipulating the value for -SkipRecords so
that the visitor is shown a different portion of the found set each time they
follow a link or by setting -KeyValue to an appropriate value to show one
record in a database.

To create next and previous links:

The [Link_NextGroup] … [/Link_NextGroup] and [Link_PrevGroup] … [/Link_PrevGroup]
tags can be used with the inline specified above to page through a set of
found records.

The [Link_SetFormat] tag is used to include a -NoClassic parameter in each link
tag that follows. This ensures that the -Database, -Table, and -KeyField are not
included in the links generated by the link tags.

The full inline is shown below. It uses the [Records] … [/Records] tags to show
the people that have been found in the database and includes next and
previous links to page through the found set.

[Inline: (Action_Params),
 -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -MaxRecords=4]

 <p>[Found_Count] records were found, showing [Shown_Count]
 records from [Shown_First] to [Shown_Last].

 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]

 [Link_SetFormat: -NoClassic]
 [Link_PrevGroup]
Previous [MaxRecords_Value] Records [/Link_PrevGroup]
 [Link_NextGroup]
Next [MaxRecords_Value] Records [/Link_NextGroup]
[/Inline]

The first time this page is loaded the first four records from the database
are shown. Since this is the first group of records in the database only the
Next 4 Records link is displayed.

1 6 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

➜ <p>16 records were found, showing 4 records from 1 to 4.

Jane Doe

John Person

Jane Person

John Doe

Next 4 Records

If the Next 4 Records link is selected then the same page is reloaded.
The value for -SkipRecords is taken from the link tag and passed into
the opening [Inline] tag through the [Action_Params] array. The following
results are displayed. This time both the Next 4 Records and the
Previous 4 Records links are displayed.

➜ <p>16 records were found, showing 4 records from 5 to 8.

Jane Surname

John Last_Name

Mark Last_Name

Tom Surname

Previous 4 Records

Next 4 Records

To create first and last links:

Links to the first and last groups of records in the found set
can be added using the [Link_FirstGroup] … [/Link_FirstGroup] and
[Link_LastGroup] … [/Link_LastGroup] tags. The following inline includes both
next/previous links and first/last links.

[Inline: (Action_Params),
 -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -MaxRecords=4]

 <p>[Found_Count] records were found, showing [Shown_Count]
 records from [Shown_First] to [Shown_Last].

 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]

 [Link_SetFormat: -NoClassic]
 [Link_FirstGroup]
First [MaxRecords_Value] Records [/Link_FirstGroup]
 [Link_PrevGroup]
Previous [MaxRecords_Value] Records [/Link_PrevGroup]
 [Link_NextGroup]
Next [MaxRecords_Value] Records [/Link_NextGroup]
 [Link_LastGroup]
Last [MaxRecords_Value] Records [/Link_LastGroup]
[/Inline]

The first time this page is loaded the first four records from the data-
base are shown. Since this is the first group of records in the data-

1 6 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

base only the Next 4 Records and Last 4 Records links are displayed. The
Previous 4 Records and First 4 Records links will automatically appear if either
of these links are selected by the visitor.

➜ <p>16 records were found, showing 4 records from 1 to 4.

Jane Doe

John Person

Jane Person

John Doe

Next 4 Records

Last 4 Records

To create links to page through the found set:

Many Web sites include page links which allow the visitor to jump directly
to any set of records within the found set. The example -FindAll returns
16 records from Contacts so four page links would be created to jump to the
1st, 5th, 9th, and 13th records.

A set of page links can be created using the [Link_CurrentActionURL] tag as a
base and then customizing the -SkipRecords value as needed. The following
loop creates as many page links as are needed for the current found set.

[Inline: (Action_Params),
 -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -MaxRecords=4]

 <p>[Found_Count] records were found, showing [Shown_Count]
 records from [Shown_First] to [Shown_Last].

 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]

 [Link_SetFormat: -NoClassic]
 [Variable: 'Count' = 0]
 [While: $Count < (Found_Count)]

 Page [Loop_Count]

 [Variable: 'Count' = $Count + (MaxRecords_Value)]
 [/While]

[/Inline]

The results of this code for the example -Search would be the following.
There are four page links. The first is equivalent to the First 4 Records link

1 6 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

created above and the last is equivalent to the Last 4 Records link created
above.

➜ <p>16 records were found, showing 4 records from 1 to 4.

Jane Doe

John Person

Jane Person

John Doe

Page 1

Page 2

Page 3

Page 4

Sorting Links
Sorting links are created by adding or manipulating -SortField and
-SortOrder command tags. The same found set is shown, but the order is
determined by which link is selected. Often, the column headers in a table
of results from a database will represent the sort links that allow the table
to be resorted by the values in that specific column.

To create links that sort the found set:

The following code performs a -Search in an inline and formats the results
as a table. The column heading at the top of each table column is a link
which re-sorts the results by the field values in that column. The links for
sorting the found set are created by specifing -NoSort and -SortField param-
eters to the [Link_FirstGroup] … [/Link_FirstGroup] tags.

[Inline: (Action_Params),
 -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -MaxRecords=4]

 [Link_SetFormat: -NoClassic]
 <table>
 <tr>
 <th>
 [Link_FirstGroup: -NoSort, -SortOrder='First_Name']
 First Name
 [/Link_FirstGroup]
 </th>
 <th>
 [Link_FirstGroup: -NoSort, -SortOrder='Last_Name']

1 6 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

 Last Name
 [/Link_FirstGroup]
 </th>
 </tr>

 [Records]
 <tr>
 <td>[Field: 'First_Name']</td>
 <td>[Field: 'Last_Name']</td>
 </tr>
 [/Records]

 </table>
[/Inline]

Detail Links
Detail links are created in order to show data from a particular record in
the database table. Usually, a listing format file will contain only limited
data from each record in the found set and a detail format file will contain
significantly more information about a particular record.

A link to a particular record can be created using the
[Link_Detail] … [/Link_Detail] tags to set the -KeyField and -KeyValue fields. This
method is guaranteed to return the selected record even if the database is
changing while the visitor is navigating. However, it is difficult to create
next and previous links on the detail page. This option is most suitable if
the selected database record will need to be updated or deleted.

Alternately, a link to a particular record can be created using
[Link_CurrentAction] … [/Link_CurrentAction] and setting -MaxRecords to 1. This
method allows the visitor to continue navigating by records on the detail
page.

To create a link to a particular record:

There are two format files involved in most detail links. The listing
format file default.lasso includes the [Inline] … [/Inline] tags that define the
search for the found set. The detail format file response.lasso includes the
[Inline] … [/Inline] tags that find and display the individual record.

 1 The [Inline] tag in default.lasso simply performs a -FindAll action. Each record
in the result set is displayed with a link to response.lasso created using the
[Link_Detail] … [/Link_Detail] tags.

[Inline:-FindAll,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',

1 6 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

 -MaxRecords=4]
 [Link_SetFormat: -NoClassic]
 [Records]

[Link_Detail: -Response='response.lasso']
 [Field: 'First_Name'] [Field: 'Last_Name']
 [/Link_Detail]
 [/Records]
[/Inline]

➜
Jane Doe

John Person

Jane Person

John Doe

 2 The [Inline] tag on response.lasso uses [Action_Params] to pull the values from
the URL generated by the link tags. The results contain more information
about the particular records than is shown in the listing. In this case, the
Phone_Number field is included as well as the First_Name and Last_Name.

[Inline:(Action_Params),
 -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID']

[Field: 'First_Name'] [Field: 'Last_Name']

[Field: 'Phone_Number']
 …
[/Inline]

➜
Jane Doe

555-1212

To create a link to the current record in the found set:

There are two format files involved in most detail links. The listing
format file default.lasso includes the [Inline] … [/Inline] tags that define the
search for the found set. The detail format file response.lasso includes
the [Inline] … [/Inline] tags that find and display the individual record. The
[Link_CurrentAction] … [/Link_CurrentAction] tags are used to create a link from
default.lasso to response.lasso showing a particular record.

 1 The [Inline] tag on default.lasso simply performs a -FindAll action. Each
record in the result set is displayed with a link to response.lasso created
using the [Link_CurrentAction] … [/Link_CurrentAction] tag.

[Inline:-FindAll,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -MaxRecords=4]

1 6 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

 [Link_SetFormat: -NoClassic]
 [Records]

[Link_CurrentAction: -Response='response.lasso', -MaxRecords=1]
 [Field: 'First_Name'] [Field: 'Last_Name']
 [/Link_CurrentAction]
 [/Records]
[/Inline]

➜
Jane Doe

John Person

Jane Person

John Doe

 2 The [Inline] tag in response.lasso uses [Action_Params] to pull the values from
the URL generated by the link tags. The results contain more information
about the particular records than is shown in the listing. In this case, the
Phone_Number field is included as well as the First_Name and Last_Name.

The detail page can also contain links to the previous
and next records in the found set. These are created
using the [Link_PrevRecord] … [/Link_PrevRecord] and
[Link_NextRecord] … [/Link_NextRecord] tags. The visitor can continue
naviging the found set record by record.

[Inline:(Action_Params),
 -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID']

[Field: 'First_Name'] [Field: 'Last_Name']

[Field: 'Phone_Number']
 …
 [Link_SetFormat: -NoClassic]

[Link_PrevRecord] Previous Record [/Link_PrevRecord]

[Link_NextRecord] Next Record [/Link_NextRecord]
[/Inline]

➜
Jane Last_Name

555-1212

Previous Record

Next Record

1 7 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 7 – S E A R C H I N G A N D D I S P L A Y I N G D A T A

8
Chapter 8

Adding and
Updating Records

This chapter documents the LDML command tags which add, update,
delete, and duplicate records within Lasso compatible databases.

 • Overview provides an introduction to the database actions described in
this chapter and presents important security considerations.

 • Adding Records includes requirements and instructions for adding
records to a database.

 • Updating Records includes requirements and instructions for updating
records within a database.

 • Deleting Records includes requirements and instructions for deleting
records within a database.

 • Duplicating Records includes requirements and instructions for dupli-
cating records within a database.

Overview
LDML provides command tags for adding, updating, deleting, and dupli-
cating records within Lasso compatible databases. These command tags
are used in conjunction with additional command tags and name/value
parameters in order to perform the desired database action in a specific
database and table or within a specific record.

The command tags documented in this chapter are listed in Table
1: Command Tags. The sections that follow describe the additional
command tags and name/value parameters required for each database
action.

1 7 1

L A S S O 7 . 1 L A N G U A G E G U I D E

Table 1: Command Tags

Tag Description

-Add Adds a record to a database.

-Update Updates a record within a database.

-Delete Removes a record from a database.

-Duplicate Duplicates a record within a database. Works with
FileMaker Pro databases.

Character Encoding
Lasso stores and retrieves data from data sources based on the preferences
established in the Setup > Data Sources section of Lasso Administration.
The following rules apply for each standard data source.

Lasso MySQL and MySQL – By default all communication is in the
Latin-1 (ISO 8859-1) character set. This is to preserve backwards compat-
ibility with prior versions of Lasso. The character set can be changed to
the Unicode standard UTF-8 character set in the Setup > Data Sources >
Tables section of Lasso Administration.

FileMaker Pro – By default all communication is in the MacRoman char-
acter set when Lasso Professional is hosted on Mac OS X or in the Latin-1
(ISO 8859-1) character set when Lasso Professional is hosted on Windows.
The preference in the Setup > Data Sources > Databases section of Lasso
Administration can be used to change the character set for cross-platform
communications.

JDBC – All communication with JDBC data sources is in the Unicode stan-
dard UTF-8 character set.

See the Lasso Professional 7 Setup Guide for more information about how
to change the character set settings in Lasso Administration.

Error Reporting
After a database action has been performed, Lasso reports any errors which
occurred via the [Error_CurrentError] tag. The value of this tag should be
checked to ensure that the database action was successfully performed.

To display the current error code and message:

The following code can be used to display the current error message. This
code should be placed in a format file which is a response to a database
action or within a pair of [Inline] … [/Inline] tags.

[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

1 7 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

If the database action was performed successfully then the following result
will be returned.

0: No Error

To check for a specific error code and message:

The following example shows how to perform code to correct or report
a specific error if one occurs. The following example uses a conditional
[If] … [/If] tag to check the current error message and see if it is equal to
[Error_AddError].

[If: (Error_CurrentError) == (Error_AddError)]
 An Add Error has occured!
[/If]

Full documentation about error tags and error codes can be found in
Chapter 21: Error Control. A list of all Lasso error codes and messages can
be found in Appendix B: Error Codes.

Classic Lasso
If Classic Lasso support has been disabled within Lasso Administration
then database actions will not be performed automatically if they are speci-
fied within HTML forms or URLs. Although the database action will not
be performed, the -Response tag will function normally. Use the following
code in the response page to the HTML forms or URL to trigger the data-
base action.

[Inline: (Action_Params)]
 [Error_CurrentError: -ErrorCode]: [Error_CurrentError]
[/Inline]

See Chapter 6: Database Interaction Fundamentals and Chapter 6:
Setting Global Preferences of the Lasso Professional 7 Setup Guide for
more information.

Security
Lasso has a robust internal security system that can be used to restrict
access to database actions or to allow only specific users to perform data-
base actions. If a database action is attempted when the current visitor has
insufficient permissions then they will be prompted for a username and
password. An error will be returned if the visitor does not enter a valid
username and password.

An [Inline] … [/Inline] can be specified to execute with the permissions of a
specific user by specifying -Username and -Password command tags within
the [Inline] tag. This allows the database action to be performed even though

1 7 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

the current site visitor does not necessarily have permissions to perform
the database action. In essence, a valid username and password are
embedded into the format file.

Table 2: Security Command Tags

Tag Description

-Username Specifies the username from Lasso Security which
should be used to execute the database action.

-Password Specifies the password which corresponds to the
username.

To specify a username and password in an [Inline]:

The following example shows a -Delete action performed within an [Inline]
tag using the permissions granted for username SiteAdmin with password
Secret.

[Inline: -Delete,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -KeyValue=137,
 -Username='SiteAdmin',
 -Password='Secret']

 [Error_CurrentError: -ErrorCode]: [Error_CurrentError]

[/Inline]

A specified username and password is only valid for the [Inline] … [/Inline] tags
in which it is specified. It is not valid within any nested [Inline] … [/Inline] tags.
See Chapter 8: Setting Up Security of the Lasso Professional 7 Setup
Guide for additional important information regarding embedding
usernames and passwords into [Inline] tags.

Adding Records
Records can be added to any Lasso compatible database using the -Add
command tag. The -Add command tag requires that a number of additional
command tags be defined in order to perform the -Add action. The required
command tags are detailed in Table 4: -Add Action Requirements.

1 7 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

Table 3: -Add Action Requirements

Tag Description

-Add The action which is to be performed. Required.

-Database The database in which the record should be added.
Required.

-Table The table from the specified database in which the
record should be added. Required.

-KeyField The name of the field which holds the primary key for
the specified table. Recommended.

Name/Value Parameters A variable number of name/value parameters specify the
initial field values for the added record. Optional.

Any name/value parameters included in the -Add action will be used to set
the starting values for the record which is added to the database. All name/
value parameters must reference a writable field within the database. Any
fields which are not referenced will be set to their default values according
to the database’s configuration.

Lasso returns a reference to the record which was added to the database.
The reference is different depending on what type of database to which the
record was added.

 • Lasso MySQL and MySQL – The -KeyField tag should be set to the
primary key field or auto-increment field of the table. Lasso will return
the added record as the result of the action by checking the specified key
field for the last insterted record. The [KeyField_Value] tag can be used to
inspect the value of the auto-increment field for the inserted record.

If no -KeyField is specified, the specified -KeyField is not an auto-increment
field, or -MaxRecords is set to 0 then no record will be returned as a result
of the -Add action. This can be useful in situations where a large record
is being added to the database and there is no need to inspect the values
which were added.

 • FileMaker Pro – The [KeyField_Value] tag is set to the value of the internal
Record ID for the new record. The Record ID functions as an auto-incre-
ment field that is automatically maintained by FileMaker Pro for all
records.

FileMaker Pro automatically performs a search for the record which was
added to the database. The found set resulting from an -Add action is
equivalent to a search for the single record using the [KeyField_Value].

The value for -KeyField is ignored when adding records to a FileMaker Pro
database. The value for [KeyField_Value] is always the internal Record ID
value.

1 7 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

Note: Consult the documentation for third-party data sources to see what
behavior they implement when adding records to the database.

To add a record using [Inline] … [/Inline] tags:

The following example shows how to perform an -Add action by speci-
fying the required command tags within an opening [Inline] tag. -Database
is set to Contacts, -Table is set to People, and -KeyField is set to ID. Feedback
that the -Add action was successful is provided to the visitor inside the
[Inline] … [/Inline] tags using the [Error_CurrentError] tag. The added record will
only include default values as defined within the database itself.

[Inline: -Add,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID']

 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

[/Inline]

If the -Add action is successful then the following will be returned.

➜ 0: No Error

To add a record with data using [Inline] … [/Inline] tags:

The following example shows how to perform an -Add action by specifying
the required command tags within an opening [Inline] tag. In addition, the
[Inline] tag includes a series of name/value parameters that define the values
for various fields within the record that is to be added. The First_Name field
is set to John and the Last_Name field is set to Doe. The added record will
include these values as well as any default values defined in the database
itself.

[Inline: -Add,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 'First_Name'='John',
 'Last_Name'='Doe']

 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].

[/Inline]

The results of the -Add action contain the values for the record that was just
added to the database.

➜ 0: No Error
Record 2 was added for John Doe.

1 7 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

To add a record using an HTML form:

The following example shows how to perform an -Add action using an
HTML form to send values into an [Inline] tag through [Action_Params]. The
text inputs provide a way for the site visitor to define the initial values for
various fields in the record which will be added to the database. The site
visitor can set values for the fields First_Name and Last_Name.

<form action="response.lasso" method="POST">

First Name: <input type="text" name="First_Name" value="">

Last Name: <input type="text" name="Last_Name" value="">

<input type="submit" name="-Nothing" value="Add Record">
</form>

The response page for the form, response.lasso, contains the following code
that performs the action using an [Inline] tag and provides feedback that
the record was successfully added to the database. The field values for
the record that was just added to the database are automatically available
within the [Inline] … [/Inline] tags.

[Inline: (Action_Params),
 -Add,
 -Database='Contacts',
 -Table='People',
 -Keyfield='ID']
 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inline]

If the form is submitted with Mary in the First Name input and Person in the
Last Name input then the following will be returned.

➜ 0: No Error
Record 3 was added for Mary Person

To add a record using a URL:

The following example shows how to perform an -Add action using a URL
to send values into an [Inline] tag through [Action_Params]. The name/value
parameters in the URL define the starting values for various fields in the
database: First_Name is set to John and Last_Name is set to Person.

 Add John Person

The response page for the URL, response.lasso, contains the following code
that performs the action using [Inline] tag and provides feedback that the
record was successfully added to the database. The field values for the

1 7 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

record that was just added to the database are automatically available
within the [Inline] … [/Inline] tags.

[Inline: (Action_Params),
 -Add,
 -Database='Contacts',
 -Table='People',
 -Keyfield='ID']
 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inline]

If the link for Add John Person is selected then the following will be returned.

➜ 0: No Error
Record 4 was added for John Person.

Updating Records
Records can be updated within any Lasso compatible database using the
-Update command tag. The -Update command tag requires that a number of
additional command tags be defined in order to perform the -Update action.
The required command tags are detailed in Table 5: -Update Action
Requirements.

Table 4: -Update Action Requirements

Tag Description

-Update The action which is to be performed. Required.

-Database The database in which the record should be added.
Required.

-Table The table from the specified database in which the
record should be added. Required.

-KeyField The name of the field which holds the primary key for
the specified table. Required.

-KeyValue The value of the primary key of the record which is to be
updated. Required.

Name/Value Parameters A variable number of name/value parameters specyifing
the field values which need to be updated. Optional.

Lasso identifies the record which is to be updated using the values for the
command tags -KeyField and -KeyValue. -KeyField must be set to a field in the
table which has a unique value for every record in the table. Usually, this
is the primary key field for the table. -KeyValue must be set to a valid value

1 7 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

for the -KeyField in the table. If no record can be found with the specified
-KeyValue then an error will be returned.

Any name/value parameters included in the update action will be used to
set the field values for the record which is updated. All name/value param-
eters must reference a writable field within the database. Any fields which
are not referenced will maintain the values they had before the update.

Lasso returns a reference to the record which was updated within the
database. The reference is different depending on what type of database is
being used.

 • Lasso MySQL and MySQL – The [KeyField_Value] tag is set to the value
of the key field which was used to identify the record to be updated. The
-KeyField should always be set to the primary key or auto-increment field
of the table. The results when using other fields are undefined.

If the -KeyField is not set to the primary key field or auto-increment field
of the table or if -MaxRecords is set to 0 then no record will be returned
as a result of the -Update action. This is useful is a large record is being
updated and the results of the update do not need to be inspected.

 • FileMaker Pro – The [KeyField_Value] tag is set to the value of the internal
Record ID for the updated record. The Record ID functions as an auto-
increment field that is automatically maintained by FileMaker Pro for all
records.

Lasso automatically performs a search for the record which was updated
within the database. The found set resulting from an -Update action is
equivalent to a search for the single record using the [KeyField_Value].

Note: Consult the documentation for third-party data sources to see what
behavior they implement when updating records within a database.

To update a record with data using [Inline] … [/Inline] tags:

The following example shows how to perform an -Update action by speci-
fying the required command tags within an opening [Inline] tag. The record
with the value 2 in field ID is updated. The [Inline] tag includes a series of
name/value parameters that define the new values for various fields within
the record that is to be updated. The First_Name field is set to Bob and the
Last_Name field is set to Surname. The updated record will include these new
values, but any fields which were not included in the action will be left
with the values they had before the update.

1 7 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

[Inline: -Update,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -KeyValue=2,
 'First_Name'='Bob',
 'Last_Name'='Surname']

 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was added for [Field: 'First_Name'] [Field: 'Last_Name'].

[/Inline]

The updated field values from the -Update action are automatically available
within the [Inline].

➜ 0: No Error
Record 2 was updated to Bob Surname.

To update a record using an HTML form:

The following example shows how to perform an -Update action using an
HTML form to send values into an [Inline] tag. The text inputs provide a way
for the site visitor to define the new values for various fields in the record
which will be updated in the database. The site visitor can see and update
the current values for the fields First_Name and Last_Name.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -KeyValue=3]

<form action="response.lasso" method="POST">
 <input type="hidden" name="-KeyValue" value="[KeyField_Value]">

First Name: <input type="text" name="First_Name"
 value="[Field: 'First_Name']">

Last Name: <input type="text" name="Last_Name"
 value="[Field: 'Last_Name']">

<input type="submit" name="-Update" value="Update Record">
</form>

[/Inline]

The response page for the form, response.lasso, contains the following code
that performs the action using an [Inline] tag and provides feedback that the

1 8 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

record was successfully updated in the database. The field values from the
updated record are available automatically within the [Inline] … [/Inline] tags.

[Inline: (Action_Params),
 -Update,
 -Database='Contacts',
 -Table='People',
 -Keyfield='ID']
 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was updated to [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inline]

The form initially shows Mary for the First Name input and Person for the
Last Name input. If the form is submitted with the Last Name changed
to Peoples then the following will be returned. The First Name field is
unchanged since it was left set to Mary.

➜ 0: No Error
Record 3 was updated to Mary Peoples.

To update a record using a URL:

The following example shows how to perform an -Update action using a
URL to send field values to an [Inline] tag. The name/value parameters in the
URL define the new values for various fields in the database: First_Name is
set to John and Last_Name is set to Person.

<a href="response.lasso?-KeyValue=4&
 First_Name=John&Last_Name=Person"> Update John Person

The response page for the URL, response.lasso, contains the following code
that performs the action using [Inline] … [/Inline] tags and provides feedback
that the record was successfully updated within the database.

[Inline: (Action_Params),
 -Update,
 -Database='Contacts',
 -Table='People',
 -Keyfield='ID']
 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was updated to [Field: 'First_Name'] [Field: 'Last_Name'].
[/Inline]

If the link for Update John Person is submitted then the following will be
returned.

➜ 0: No Error
Record 4 was updated for John Person.

1 8 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

To update several records at once:

The following example shows how to perform an -Update action on several
records at once within a single database table. The goal is to update every
record in the database with the last name of Person to the new last name of
Peoples.

The outer [Inline] … [/Inline] tags perform a search for all records in the data-
base with Last_Name equal to Person. This forms the found set of records
which need to be updated. The [Records] … [/Records] tags repeat once for
each record in the found set. The -MaxRecords='All' command tag ensures
that all records which match the criteria are returned.

The inner [Inline] … [/Inline] tags perform an update on each record in the
found set. Substitution tags are used to retrieve the values for the required
command tags -Database, -Table, -KeyField, and -KeyValue. This ensures that
these values match those from the outer [Inline] … [/Inline] tags exactly. The
name/value pair 'Last_Name'='Peoples' updates the field to the new value.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -MaxRecords='All',
 'Last_Name'='Person']
 [Records]

 [Inline: -Update,
 -Database=(Database_Name),
 -Table=(Table_Name),
 -KeyField=(KeyField_Name),
 -KeyValue=(KeyField_Value),
 'Last_Name'='Peoples']

 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was updated to
 [Field: 'First_Name'] [Field: 'Last_Name'].

 [/Inline]

 [/Records]
[/Inline]

This particular search only finds one record to update. If the update action
is successful then the following will be returned for each updated record.

➜ 0: No Error
Record 4 was updated to John Peoples.

1 8 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

Deleting Records
Records can be deleted from any Lasso compatible database using the
-Delete command tag. The -Delete command tag can be specified within an
[Inline] tag, an HTML form, or a URL. The -Delete command tag requires that
a number of additional command tags be defined in order to perform the
-Delete action. The required command tags are detailed in Table 6: -Delete
Action Requirements.

Table 5: -Delete Action Requirements

Tag Description

-Delete The action which is to be performed. Required.

-Database The database in which the record should be added.
Required.

-Table The table from the specified database in which the
record should be added. Required.

-KeyField The name of the field which holds the primary key for
the specified table. Required.

-KeyValue The value of the primary key of the record which is to be
deleted. Required.

Lasso identifies the record which is to be deleted using the values for the
command tags -KeyField and -KeyValue. -KeyField must be set to a field in the
table which has a unique value for every record in the table. Usually, this
is the primary key field for the table. -KeyValue must be set to a valid value
for the -KeyField in the table. If no record can be found with the specified
-KeyValue then an error will be returned.

Lasso returns an empty found set in response to a -Delete action. Since the
record has been deleted from the database the [Field] tag can no longer be
used to retrieve any values from it. The [Error_CurrentError] tag should be
checked to ensure that it has a value of No Error in order to confirm that the
record has been successfully deleted.

There is no confirmation or undo of a delete action. When a record is
removed from a database it is removed permanently. It is important to set
up Lasso security appropriately so accidental or unauthorized deletes don’t
occur. See Chapter 8: Setting Up Security in the Lasso Professional 7
Setup Guide for more information about setting up database security.

To delete a record with data using [Inline] … [/Inline] tags:

The following example shows how to perform a delete action by specifying
the required command tags within an opening [Inline] tag. The record with
the value 2 in field ID is deleted.

1 8 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

[Inline: -Delete,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -KeyValue=2]

 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

[/Inline]

If the delete action is successful then the following will be returned.

➜ 0: No Error

To delete several records at once:

The following example shows how to perform a -Delete action on several
records at once within a single database table. The goal is to delete every
record in the database with the last name of Peoples.

Warning: This technique can be used to remove all records from a database
table. It should be used with extreme caution and tested thoroughly before
being added to a public Web site.

The outer [Inline] … [/Inline] tags perform a search for all records in the data-
base with Last_Name equal to Peoples. This forms the found set of records
which need to be updated. The [Records] … [/Records] tags repeat once for
each record in the found set. The -MaxRecords='All' command tag ensures
that all records which match the criteria are returned.

The inner [Inline] … [/Inline] tags delete each record in the found set.
Substitution tags are used to retrieve the values for the required command
tags -Database, -Table, -KeyField, and -KeyValue. This ensures that these values
match those from the outer [Inline] … [/Inline] tags exactly.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -MaxRecords='All',
 'Last_Name'='Peoples']
 [Records]

 [Inline: -Delete,
 -Database=(Database_Name),
 -Table=(Table_Name),
 -KeyField=(KeyField_Name),
 -KeyValue=(KeyField_Value)]

 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

 [/Inline]

1 8 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

 [/Records]
[/Inline]

This particular search only finds one record to delete. If the delete action is
successful then the following will be returned for each deleted record.

➜ 0: No Error

Duplicating Records
Records can be duplicated within any Lasso compatible database using
the -Duplicate command tag. The -Duplicate command tag can be specified
within an [Inline] tag, an HTML form, or a URL. The -Duplicate command tag
requires that a number of additional command tags be defined in order to
perform the -Duplicate action. The required command tags are detailed in
Table 7: -Duplicate Action Requirements.

Note: Lasso Connector for Lasso MySQL and Lasso Connector for MySQL do
not support the -Duplicate command tag.

Table 6: -Duplicate Action Requirements

Tag Description

-Duplicate The action which is to be performed. Required.

-Database The database in which the record should be added.
Required.

-Table The table from the specified database in which the
record should be added. Required.

-KeyField The name of the field which holds the primary key for
the specified table. Required.

-KeyValue The value of the primary key of the record which is to be
duplicated. Required.

Name/Value Parameters A variable number of name/value parameters specifying
field values which should be modified in the duplicated
record. Optional.

Lasso identifies the record which is to be duplicated using the values for
the command tags -KeyField and -KeyValue. -KeyField must be set to a field in
the table which has a unique value for every record in the table. Usually,
this is the primary key field for the table. -KeyValue must be set to a valid
value for the -KeyField in the table. If no record can be found with the speci-
fied -KeyValue then an error will be returned.

Any name/value parameters included in the duplicate action will be used
to set the field values for the record which is added to the database. All

1 8 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

name/value parameters must reference a writable field within the database.
Any fields which are not referenced will maintain the values they had from
the record which was duplicated.

Lasso always returns a reference to the new record which was added to the
database as a result of the -Duplicate action. This is equivalent to performing
a -Search action which returns a single record found set containing just the
record which was added to the database.

To duplicate a record with data using [Inline] … [/Inline] tags:

The following example shows how to perform a duplicate action within a
FileMaker Pro database by specifying the required command tags within
an opening [Inline] tag. The record with the value 2 for the keyfield value
is duplicated. The [Inline] tag includes a series of name/value parameters
that define the new values for various fields within the record that is to
be updated. The First_Name field is set to Joe and the Last_Name field is set
to Surname. The new record will include these values, but any fields which
were not specified in the action will be left with the values they had from
the source record.

[Inline: -Duplicate,
 -Database='Contacts.fp3',
 -Table='People',
 -KeyField='ID',
 -KeyValue=2,
 'First_Name'='Joe',
 'Last_Name'='Surname']

 <p>[Error_CurrentError: -ErrorCode]: [Error_CurrentError]

Record [Field: 'ID'] was duplicated for [Field: 'First_Name'] [Field: 'Last_Name'].

[/Inline]

If the duplicate action is successful then the following will be returned.
The values from the [Field] tags are retrieved from the record which was just
added to the database as a result of the duplicate action.

➜ 0: No Error
Record 6 was duplicated for Joe Surname.

1 8 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 8 – A D D I N G A N D U P D A T I N G R E C O R D S

9
Chapter 9

MySQL Data Sources

This chapter documents tags and behaviors which are specific to MySQL
data sources, including the built-in Lasso MySQL data source.

 • Overview introduces MySQL data sources.

 • MySQL Tags describes tags specific to MySQL data sources.

 • Searching Records describes unique search operations that can be
performed using MySQL data sources.

 • Adding and Updating Records describes unique add and update opera-
tions that can be performed using MySQL data sources.

 • Value Lists describes how to retrieve and show lists of allowed field
values for ENUM and SET fields in MySQL data sources.

 • Creating Database Tables describes the [Database_…] tags that can be
used to create, change, or remove tables and fields within MySQL data
sources.

Overview
Lasso Professional 7 includes a built-in Lasso MySQL data source and
allows for a connection to a remote MySQL data source to be established.
This chapter primarily documents tags and features unique to Lasso
MySQL or other MySQL data sources.

Since Lasso MySQL is the Lasso Professional 7 default data source, all of
the documentation and examples in this manual are targeted for Lasso
MySQL except when explicitly stated otherwise. All of the procedures
outlined in Chapter 6: Database Interaction Fundamentals, Chapter 7:
Searching and Displaying Data, and Chapter 8: Adding and Updating
Records can be used with Lasso MySQL.

1 8 7

L A S S O 7 . 1 L A N G U A G E G U I D E

Note: The tags and procedures defined in this chapter are primarily for use
with MySQL data sources including Lasso MySQL. Many of the tags and
procedures will work with any SQL-based data source with minor variations, if
any.

Tips for Using MySQL Data Sources

 • Always specify a primary key field using the -KeyField command tag in
-Search, -Add, and -Findall actions. This will ensure that the [KeyField_Value]
tag will always return a value.

 • Use -KeyField and -KeyValue to reference a particular record for updates,
duplicates, or deletes.

 • MySQL data sources are case-sensitive. For best results, reference MySQL
database and table names in the same letter-case as they appear on disk
in your LDML code.

 • MySQL fields truncate any data beyond the length they are set up to
store. Ensure that all fields in MySQL databases have sufficiently long
fields for the values that need to be stored in them.

 • Use -ReturnField command tags to reduce the number of fields which are
returned from a -Search action. Returning only the fields that need to
be used for further processing or shown to the site visitor reduces the
amount of data that needs to travel between Lasso Service and Lasso
MySQL.

 • When an -Add or -Update action is performed on a MySQL database,
the data from the added or updated record is returned inside the
[Inline] ... [/Inline] tags or alternately to the Classic Lasso response page. If
the -ReturnField parameter is used, then only those fields specified should
be returned from an -Add or -Update action. Setting -MaxRecords=0 can be
used as an indication that no record should be returned.

 • See Chapter 9: Administration Utilities in the Lasso Professional 7
Setup Guide for information about optimizing tables for optimum
performance and checking tables for damage.

Security Tips

 • The -SQL command tag can only be allowed or disallowed at the host
level for users in Lasso Administration. Once the -SQL command tag is
allowed for a user, that user may access any database within the allowed
host inside of a SQL statement. For that reason, only trusted users
should be allowed to issue SQL queries using the -SQL command tag.
For more information, see Chapter 8: Setting Up Security in the Lasso
Professional 7 Setup Guide.

1 8 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

 • SQL statements which are generated using visitor-defined data should be
screened carefully for unwanted commands such as DROP or GRANT. See
Chapter 7: Setting Up Data Sources of the Lasso Professional 7 Setup
Guide for more information.

 • Always quote any inputs from site visitors that are incorporated into SQL
statements. For example, the following SQL SELECT statement includes
quotes around the [Action_Param] value. The quotes are escaped \' so they
will be embedded within the string rather than ending the string literal.
The semi-colon at the end of the statement is optional unless multiple
statements are issued.

[Variable: 'SQL_Statement'='SELECT * FROM Contacts.People WHERE ' +
 'First_Name LIKE \'' + (Action_Param: 'First_Name') + '\';']

If [Action_Param] returns John for First_Name then the SQL statement gener-
ated by this code would appear as follows.

SELECT * FROM Contacts.People WHERE First_Name LIKE 'John';

MySQL Tags
LDML 7 includes tags to identify which type of MySQL data source is being
used. These tags are summarized in Table 1: Enhanced MySQL Tags.

Table 1: Enhanced MySQL Tags

Tag Description

[Lasso_DatasourceIsLassoMySQL] Returns True if a database is hosted by Lasso
MySQL. Requires one string value which is the
name of a database.

[Lasso_DatasourceIsMySQL] Returns True if a database is hosted by MySQL.
Requires one string value which is the name of a
database.

To check whether a database is hosted by Lasso MySQL:

The following example shows how to use [Lasso_DatasourceIsLassoMySQL] to
check whether the database Example is hosted by Lasso MySQL or not.

[If: (Lasso_DatasourceIsLassoMySQL: 'Example')]
 Example is hosted by Lasso MySQL!
[Else]
 Example is not hosted by Lasso MySQL.
[/If]

➜ Example is hosted by Lasso MySQL!

1 8 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

To list all databases hosted by Lasso MySQL:

Use the [Database_Names] … [/Database_Names] tags to list all databases avail-
able to Lasso. The [Lasso_DatasourceIsLassoMySQL] tag can be used to check
each database and only those that are hosted by Lasso MySQL will be
returned. The result shows two databases, Site and Example, which are avail-
able through Lasso MySQL.

[Database_Names]
 [If: (Lasso_DatasourceIsLassoMySQL:(Database_NameItem))]

[Database_NameItem]
 [/If]
[/Database_Names]

➜
Example

Site

Searching Records
In LDML 7, there are unique search operations that can be performed
using MySQL data sources. These search operations take advantage of
special functions in MySQL such as full-text indexing, regular expres-
sions, record limits, and distinct values to allow optimal performance and
power when searching. These search operations can be used on MySQL
data sources in addition to all search operations described in Chapter 7:
Searching and Displaying Data.

Search Field Operators
Additional field operators are available for the -Operator (or -Op) tag when
searching MySQL data sources. These operators are summarized in Table 2:
MySQL Search Field Operators. Basic use of the -Operator tag is described
in Chapter 7: Searching and Displaying Data.

Table 2: MySQL Search Field Operators

Operator Description

ft Full-Text Search. If used, a MySQL full-text search
is performed on the field specified. Will only work on
fields that are full-text indexed in MySQL. Records
are automatically returned in order of high relevance
(contains many instances of that value) to low relevance
(contains few instances of the value). Only one ft
operator may be used per action, and no -SortField
parameter should be specified.

1 9 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

rx Regular Expression. If used, then regular expressions
may be used as part of the search field value. Returns
records matching the regular expression value for that
field.

nrx Not Regular Expression. If used, then regular
expressions may be used as part of the search field
value. Returns records that do not match the regular
expression value for that field.

Note: For more information on full-text searches and regular expressions
supported in MySQL, see the MySQL documentation.

To perform a full-text search on a field:

If a MySQL field is indexed as full-text, then using -Op='ft' before the field
in a search inline performs a MySQL full text search on that field. The
example below performs a full text search on the Jobs field in the Contacts
database, and returns the First_Name field for each record that contain the
word Manager. Records that contain the most instances of the word Manager
are returned first.

[Inline: -Search, -Database='Contacts', -Table='People',
-Op='ft',
'Jobs'='Manager']
 [Records]
 [Field:'First_Name']

 [/Records]
[/Inline]

➜ Mike

Jane

To use regular expressions as part of a search:

Regular expressions can be used as part of a search value for a field by
using -Op='rx' before the field in a search inline. The following example
searches for all records where the Last_Name field contains eight characters
using a regular expression.

[Inline: -Search, -Database='Contacts', -Table='People',
-Op='rx',
'Last_Name'='.{8}',
-MaxRecords='All']
 [Records]
 [Field:'Last_Name'], [Field:'First_Name']

 [/Records]
[/Inline]

1 9 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

➜ Lastname, Mike

Lastname, Mary Beth

The following example searches for all records where the Last_Name field
doesn’t contain eight characters. This is easily accomplished using the same
inline search above using -Op='nrx' instead.

[Inline: -Search, -Database='Contacts', -Table='People',
-Op='nrx',
'Last_Name'='.{8}',
-MaxRecords='All']
 [Records]
 [Field:'Last_Name'], [Field:'First_Name']

 [/Records]
[/Inline]

➜ Doe, John

Doe, Jane

Surname, Bob

Surname, Jane

Surname, Margaret

Unknown, Thomas

Search Command Tags
Additional search command tags are available when searching MySQL
data sources using the [Inline] tag. These tags allow special search functions
specific to MySQL to be performed without writing SQL statements. These
operators are summarized in Table 3: MySQL Search Command Tags.

Table 3: MySQL Search Command Tags

Tag Description

-UseLimit Prematurely ends a -Search or FindAll action
once the specified number of records for the
-MaxRecords tag have been found and returns the
found records. Requires the -MaxRecords tag. This
issues an internal LIMIT statement to MySQL to
cause it to search more efficiently.

-SortRandom Sorts returned records randomly. Is used in place
of the -SortField and -SortOrder parameters. Does
not require a value.

-Distinct Causes a -Search action to only output records
that contain unique field values (comparing only
returned fields). Does not require a value. May be
used with the -ReturnField parameter to limit the
fields checked for distinct values.

1 9 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

To have MySQL immediately return records once a limit is reached:

Use the -UseLimit tag in the search inline. Normally, Lasso will find all
records that match the inline search criteria and then pair down the results
based on -MaxRecords and -SkipRecords values. The -UseLimit tag instructs
MySQL to terminate the specified search process once the number of
records specified for -MaxRecords is found. The following example searches
the Contacts database with a limit of five records.

[Inline: -FindAll,
-Database='Contacts', -Table='People',
-MaxRecords='5',
-UseLimit]
[Found_Count]
[/Inline]

➜ 5

Note: If the -UseLimit tag is used, the value of the [Found_Count] tag will always
be the same as the -MaxRecords value if the limit is reached. Otherwise, the
[Found_Count] tag will return the total number of records in the specified table
that match the search criteria if -UseLimit is not used.

To sort results randomly:

Use the -SortRandom tag in a search inline. The following example finds all
records and sorts first by last name then randomly.

[Inline: -FindAll, -Database='Contacts', -Table='People',
-Keyfield='ID',
-SortRandom]
 [Records]
 [Field:'ID']
 [/Records]
[/Inline]

➜ 5 2 8 1 3 6 4 7

Note: Due to the nature of the -SortRandom tag, the results of this example will
vary upon each execution of the inline.

To return only unique records in a search:

Use the -Distinct parameter in a search inline. The following example only
returns records that contain distinct values for the Last_Name field.

1 9 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

[Inline: -FindAll, -Database='Contacts', -Table='People',
-ReturnField='Last_Name',
-Distinct]
 [Records]
 [Field:'Last_Name']

 [/Records]
[/Inline]

➜ Doe

Surname

Lastname

Unknown

The -Distinct tag is especially useful for generating lists of values that can be
used in a pull-down menu. The following example is a pull-down menu of
all the last names in the Contacts database.

[Inline: -Findall, -Database='Contacts', -Table='People',
-ReturnField='Last_Name',
-Distinct]
 <select name="Last_Name">
 [Records]
 <option value="[Field: 'Last_Name']">
 [Field: 'Last_Name']
 </Option>
 [/Records]
 </Select>
[/Inline]

Searching Null Values
When searching MySQL tables, NULL values may be explicitly searched for
within fields using the [Null] tag. A NULL value in MySQL designates that
there is no other value stored in that particular field. This is similar to
searching a field for an empty string (e.g. 'fieldname'=''), however NULL values
and empty strings are not the same in MySQL. For more information
about NULL values, see the MySQL documentation.

[Inline: -Search,
-Database='Contacts', -Table='People',
-Op='eq',
'Title'=(Null),
-MaxRecords='All']
 [Records]
 Record [Field:'ID'] does not have a title.

 [/Records]
[/Inline]

1 9 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

➜ Record 7 does not have a title.

Record 8 does not have a title.

Adding and Updating Records
In LDML 7, there are special add and update operations that can be
performed using MySQL data sources in addition to all add and update
operations described in Chapter 8: Adding and Updating Data.

Multiple Field Values
When adding or updating data to a field in MySQL, the same field name
can be used several times in an -Add or -Update inline. The result is that all
data added or updated in each instance of the field name will be concat-
enated in a comma-delimited form. This is particularly useful for adding
data to SET field types.

To add or update multiple values to a field:

The following example adds a record with two comma delimited values in
the Jobs field:

[Inline: -Add, -Database='Contacts', -Table='People',
-KeyField='ID',
'Jobs'='Customer Service',
'Jobs'='Sales']
[Field:'Title']
[/Inline]

➜ Customer Service, Sales

The following example updates the Jobs field of a record with three
comma-delimited values:

[Inline: -Update, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue='5',
'Jobs'='Customer Service',
'Jobs'='Sales',
'Jobs'='Support']
[Field:'Title']
[/Inline]

➜ Customer Service, Sales, Support

Note: The individual values being added or updated should not contain
commas.

1 9 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

Adding or Updating Null Values
NULL values can be explicitly added to MySQL fields using the [Null] tag.
A NULL value in MySQL designates that there is no value for a particular
field. This is similar to setting a field to an empty string (e.g. 'fieldname'=''),
however the two are different in MySQL. For more information about NULL
values, see the MySQL documentation.

To add or update a null value to a field:

Use the [Null] tag as the field value. The following example adds a record
with a NULL value in the Last_Name field.

[Inline: -Add, -Database='Contacts', -Table='People',
-KeyField='ID',
'Last_Name'=(Null)]
[/Inline]

The following example updates a record with a NULL value in the Last_Name
field.

[Inline: -Update, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue='5',
'Last_Name'=(Null)]
[/Inline]

Note: If an undefined variable is specified as the value for a field when
adding or updating a record then that field will be added with a value of NULL
or updated to a value of NULL. It is recommended that all varaibles be set to a
default value at the top of the Lasso page in order to avoid this issue.

Value Lists
A value list in Lasso is a set of possible values that can be used for a field.
Value lists in MySQL are lists of pre-defined and stored values for a SET
or ENUM field type. A value list from a SET or ENUM field can be displayed
using the tags defined in Table 4: MySQL Value List Tags.

1 9 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

Table 4: MySQL Value List Tags

Tag Description

[Value_List] … [/Value_List] Container tag repeats each value allowed for ENUM or
SET fields. Requires a single parameter: the name of an
ENUM or SET field from the current table.

[Value_ListItem] Returns the value for the current item in a value list.
Optional -Checked or -Selected parameter returns only
values currently contained in the ENUM or SET field.

[Selected] Displays the word Selected if the current value list item
is contained in the data of the ENUM or SET field.

[Checked] Displays the word Checked if the current value list item
is contained in the data of the ENUM or SET field.

[Option] Generates a series of <option> tags for the value list.
Requires a single parameter: the name of an ENUM or
SET field from the current table.

Note: See Chapter 7: Searching and Displaying Data for information about
the -Show command tag which is used throughout this section.

To display values for an ENUM or SET field:

 • Perform a -Show action to return the schema of a MySQL database and
use the [Value_List] tag to display the allowed values for an ENUM or
SET field. The following example shows how to display all values from
the ENUM field Title in the Contacts database. SET field value lists function
in the same manner as ENUM value lists, and all examples in this section
may be used with either ENUM or SET field types.

[Inline: -Show, -Database='Contacts', -Table='People']
 [Value_List: 'Title']

[Value_ListItem]
 [/Value_List]
[/Inline]

➜
Mr.

Mrs.

Ms.

Dr.

 • The following example shows how to display all values from a value list
using a named inline. The same name Values is referenced by -InlineName
in both the [Inline] tag and [Value_List] tag.

1 9 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

[Inline: -InlineName='Values', -Show, -Database='Contacts', -Table='People']
[/Inline]
…
[Value_List: 'Title', -InlineName='Values']

[Value_ListItem]
[/Value_List]

➜
Mr.

Mrs.

Ms.

Dr.

To display an HTML pop-up menu in an -Add form with all values from
a value list:

 • The following example shows how to format an HTML
<select> … </select> pop-up menu to show all the values from a value list.
A select list can be created with the same code by including size and/or
multiple parameters within the <select> tag. This code is usually used
within an HTML form that performs an -Add action so the visitor can
select a value from the value list for the record they create.

The example shows a single <select> … </select> within [Inline] … [/Inline]
tags with a -Show command. If many value lists from the same database
are being formatted, they can all be contained within a single set of
[Inline] … [/Inline] tags.

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Add" value="">
 <input type="hidden" name="-Database" value="Contacts">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-KeyField" value="ID">

[Inline: -Show, -Database='Contacts', -Table='People']
 <select name="Title">
 [Value_List: 'Title']
 <option value="[Value_ListItem]">[Value_ListItem]</option>
 [/Value_List]
 </select>
[/Inline]

 <p><input type="submit" name="-Add" value="Add Record">
</form>

 • The [Option] tag can be used to easily format a value list as an HTML
<select> … </select> pop-up menu. The [Option] tag generates all of the
<option> … </option> tags for the pop-up menu based on the value list for
the specified field. The example below generates exactly the same HTML
as the example above.

1 9 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Add" value="">
 <input type="hidden" name="-Database" value="Contacts">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-KeyField" value="ID">

[Inline: -Show, -Database='Contacts', -Table='People']
 <select name="Title">
 [Option: 'Title']
 </select>
[/Inline]

 <p><input type="submit" name="-Add" value="Add Record">
</form>

To display HTML radio buttons with all values from a value list:

The following example shows how to format a set of HTML <input> tags to
show all the values from a value list as radio buttons. The visitor will be
able to select one value from the value list. Check boxes can be created
with the same code by changing the type from radio to checkbox.

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Add" value="">
 <input type="hidden" name="-Database" value="Contacts">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-KeyField" value="ID">

[Inline: -Show, -Database='Contacts', -Table='People']
 [Value_List: 'Title']
 <input type="radio" name="Title" value="[Value_ListItem]"> [Value_ListItem]
 [/Value_List]
[/Inline]

 <p><input type="submit" name="-Add" value="Add Record">
</form>

To display only selected values from a value list:

The following examples show how to display the selected values from a
value list for the current record. The record for John Doe is found within the
database and the selected value for the Title field, Mr. is displayed.

 • The -Selected keyword in the [Value_ListItem] tag ensures that only selected
value list items are shown. The following example uses a conditional to
check whether [Value_ListItem: -Selected] is empty.

[Inline: -Search, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue=126]
 [Value_List: 'Title']

1 9 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

 [If: (Value_ListItem: -Selected) != ' ']

[Value_ListItem: -Selected]
 [/If]
 [/Value_List]
[/Inline]

➜
Mr.

 • The [Selected] tag ensures that only selected value list items are shown.
The following example uses a conditional to check whether [Selected] is
empty and only shows the [Value_ListItem] if it is not.

[Inline: -Search, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue=126]
 [Value_List: 'Title']
 [If: (Selected) != ' ']

[Value_ListItem]
 [/If]
 [/Value_List]
[/Inline]

➜
Mr.

 • The [Field] tag can also be used simply to display the current value for a
field without reference to the value list.

[Field: 'Title']

➜
Mr.

To display an HTML pop-up menu in an -Update form with selected
value list values:

 • The following example shows how to format an HTML
<select> … </select> select list to show all the values from a value list with
the selected values highlighted. The [Selected] tag returns Selected if the
current value list item is selected in the database or nothing otherwise.
This code will usually be used in an HTML form that performs an -Update
action to allow the visitor to see what values are selected in the database
currently and make different choices for the updated record.

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Update" value="">
 <input type="hidden" name="-Database" value="Contacts">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-KeyField" value="ID">
 <input type="hidden" name="-KeyValue" value="127">

2 0 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

[Inline: -Search, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue=126]
 <select name="Title" multiple size="4">
 [Value_List: 'Title']
 <option value="[Value_ListItem]" [Selected]>[Value_ListItem]</option>
 [/Value_List]
 </select>
[/Inline]

 <p><input type="submit" name="-Update" value="Update Record">
</form>

 • The [Option] tag automatically inserts Selected parameters as needed to
ensure that the proper options are selected in the HTML select list. The
example below generates exactly the same HTML as the example above.

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Update" value="">
 <input type="hidden" name="-Database" value="Contacts">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-KeyField" value="ID">
 <input type="hidden" name="-KeyValue" value="127">

[Inline: -Search, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue=126]
 <select name="Title" multiple size="4">
 [Option: 'Title']
 </select>
[/Inline]

 <p><input type="submit" name="-Update" value="Update Record">
</form>

To display HTML check boxes with selected value list values:

The following example shows how to format a set of HTML <input> tags to
show all the values from a value list as check boxes with the selected check
boxes checked. The [Checked] tag returns Checked if the current value list
item is selected in the database or nothing otherwise. Radio buttons can be
created with the same code by changing the type from checkbox to radio.

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Update" value="">
 <input type="hidden" name="-Database" value="Contacts">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-KeyField" value="ID">
 <input type="hidden" name="-KeyValue" value="127">

2 0 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

[Inline: -Search, -Database='Contacts', -Table='People',
-KeyField='ID',
-KeyValue=126]
 [Value_List: 'Title']
 <input type="checkbox" name="Title" value="[Value_ListItem]" [Checked]>
 [Value_ListItem]
 [/Value_List]
[/Inline]

 <p><input type="submit" name="-Update" value="Update Record">
</form>

Note: Storing multiple values is only supported using SET field types.

Creating Database Tables
LDML 7 includes a set of tags which allow tables and fields to be created,
altered, or deleted within MySQL data sources including Lasso Professional
7’s internal Lasso MySQL data source.

 • A solution can create its required tables automatically the first time it is
accessed.

 • Temporary tables can be created which store data that is eliminated the
next time Lasso MySQL is restarted.

 • Interactive tools can be built which allow clients to create their own
tables and populate them with data.

For a visual interface that allows Lasso MySQL databases (in addi-
tion to tables and fields) to be created and altered, see the
Database Builder LassoApp. This interactive tool allows databases, tables,
and fields to be created, altered, or deleted. See Chapter 10: Building and
Browsing Databases in the Lasso Professional 7 Setup Guide for details.

Lasso stores security information about all tables and fields in an internal
cache. This table must be updated whenever a new table is created, new
fields within a table are added, or fields are modified. The security cache
can be updated manually using the Refresh button in the Setup > Data
Sources sections of Lasso Administration, or programatically using
the [DataSource_Reload] tag. Lasso will automatically refresh the security
cache whenever an unknown table or field name is used. Perform an
[Inline] ... [/Inline] database action that references any new or changed tables
and fields to force Lasso to update its security cache.

Warning: These tags can be used to delete entire data tables from MySQL
data sources. These tags should be used with care to ensure that essential

2 0 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

data is not lost. If a table or field is removed there is no way to access the
data that was stored in the table or field without resorting to a backup.

Table 5: Database Creation Tags

Tag Description

[Database_CreateTable] Creates a table. Requires a -Database parameter which
specifies a MySQL database and a -Table parameter
which specifies the name of the table to be created.

[Database_CreateField] Creates a field in a table. Requires -Database and
-Table parameters which specify where the field should
be created and -Field and -Type parameters which
give the name of the field to be created and its type.
[Database_CreateColumn] is a synonym.

[Database_ChangeField] Changes a field definition. Requires the same
parameters as [Database_CreateField] in addition to an
-Original parameter that specifies the field to be altered.
[Database_ChangeColumn] is a synonym.

[Database_RemoveTable] Removes a table from a database. All data in the table
will be lost. Requires -Database and -Table parameters.

[Database_RemoveField] Removes a field from a table. All data in the field will be
lost. Requires -Database, -Table, and -Field parameters.
[Database_RemoveColumn] is a synonym.

Tables
Tables can be created or removed from Lasso MySQL or other MySQL data
sources. The following important points should be kept in mind when
creating or deleting new tables.

 • Table names are case sensitive in MySQL, but case insensitive in Lasso.
For best results use a consistent naming convention and never rely on
case to differentiate between two tables.

 • Table names should start with a letter and contain only letters, numbers,
and the underscore character _. They should not contain any spaces,
periods, or other punctuation.

 • New tables must be enabled within Lasso Administration before they
can be accessed through Lasso.

 • All tables are created with a single field automatically named ID that is
set to be the primary key field and to auto-increment from 0. Usually,
this field should be used as the primary key field for a table unless
another structure is required.

2 0 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

 • In terms of data storage, tables are equivalent to FileMaker Pro database
files, not to FileMaker Pro layouts. The equivalent of many FileMaker Pro
databases can be stored in a single MySQL database.

However, within Lasso security and Lasso database actions, FileMaker
Pro databases and MySQL databases are treated as equivalent. FileMaker
Pro layouts are treated as equivalent to MySQL tables. This makes the
security model cleaner and allows for easier transition between data
sources.

 • When a table is removed its data is lost forever. There is no undo. See
Chapter 9: Administration Utilities in the Lasso Professional 7 Setup
Guide for information about backing up tables and data recovery.

Table 6: [Database_CreateTable] Parameters:

Parameter Description

-Database The name of the database in which to create the table.

-Table The name of the table to be created. Must be unique
within the database. Should start with a letter and
contain only letters, numbers, or underscores.

-Temporary Creates a temporary table that will be deleted when
MySQL restarts.

To create a table:

Use the [Database_CreateTable] tag to create a new table in the specified data-
base. The [Database_CreateTable] tag will not overwrite an existing table. The
name of the new table must be unique. The following example creates a
new table named Phone_Book in the database Example.

[Database_CreateTable: -Database='Example', -Table='Phone_Book']

The table initially contains one field named ID that is set to be the primary
key field and to auto increment. Use the tags described in the Fields
section below to add more fields to the new table.

Note: New tables are initially disabled in Lasso Administration. Use the
Setup > Data Sources tab in Lasso Administration to enable new tables. In
addition, the Extending Lasso Guide includes the complete source code for
Admin.LassoApp which demonstrates how to enable new tables automatically.

To create a temporary table:

Use the [Database_CreateTable] tag with the -Temporary keyword to create a
temporary table in the specified database. The temporary table will be
deleted when MySQL restarts. The following example creates a new table
named Cache in the database Example. This tag could be used in a format

2 0 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

file within LassoStartup to create a table that started empty each time the
server hosting Lasso was restarted.

[Database_CreateTable: -Database='Example', -Table='Cache', -Temporary]

The table initially contains one field named ID that is set to be the primary
key field and to auto increment. Use the tags described in the Fields
section below to add more fields to the new table.

To remove a table:

Use the [Database_RemoveTable] tag to drop the specified table from its data-
base. This will eliminate all data stored in the table. The following example
will remove the table named Cache from the Example database.

[Database_RemoveTable: -Database='Example', -Table='Cache']

Fields
Each table created by the [Database_CreateTable] command starts with only
a single ID field which Lasso creates automatically. Additional fields can be
created, changed, or removed from any table in a MySQL or Lasso MySQL
database. The following important points should be kept in mind when
creating, changing, or removing fields.

 • Field names should start with a letter and contain only letters, numbers,
and the underscore character (_). They should not contain any spaces,
periods, or other punctuation. See the MySQL documentation for a list
of reserved names that cannot be used as field names.

 • Tables can only contain a single primary key field and a single auto-
increment field. Since the ID field is automatically created with both of
these attributes it must be removed if a different field needs to be created
as the primary key field.

 • Fields should be created with the smallest data type which can hold all
possible values. See the MySQL documentation at http://www.mysql.com for
information on MySQL data types.

 • When a field is removed its data is lost forever. There is no undo. See
Chapter 9: Administration Utilities in the Lasso Professional 7 Setup
Guide for information about backing up tables and data recovery.

 • After many fields have been added, changed, or removed from a table it
is good practice to optimize the table following the instructions in the
Optimizing Tables section below.

2 0 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

Table 7: [Database_CreateField] and [Database_ChangeField]
Parameters:

Parameter Description

-Database The name of the database in which to create the table.

-Table The name of the table in which to create the field.

-Original Used only with [Database_ChangeField]. The name of
the original field which should be changed.

-Field The name of the field to be created. Must be unique
within the table. Should start with a letter and contain
only letters, numbers, or underscores.

-Type The type of the field. See Table 5: MySQL Field Types
for a summary of possible types.

-Default Optional default value for the field. The field will be set
to this value when a new record is created that does not
set this field explicitly.

-AutoIncrement Sets a field to auto increment. Only one field in each
table can be set to auto increment. The field will be set
to 1 greater than the maximum value of the field each
time a new record is created that does not set this field
explicitly. Optional

-Key Sets a field as the primary key field. Only one field
in each table can be set to be the primary key field.
Optional.

-Null Specifies that a field can contain Null values. The
default.

-NotNull Specifies that a field cannot contain Null values. Should
be set for primary key or auto-increment fields. Optional.

-AfterField Specifies where in the table the field should be created.
The new field will be inserted after the named field.
Optional.

-BeforeField Specifies that a field should be created before all other
fields in a table. Optional.

The -Type parameter for [Database_CreateField] and [Database_ChangeField] can
accept any of the values in Table 5: MySQL Field Types.

2 0 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

Table 8: MySQL Field Types

Data Type Description

TINYINT Integer less than about one hundred. 8-bit.

SMALLINT Integer less than about 30 thousand. 16-bit.

MEDIUMINT Integer less than 8 million. 24-bit.

INT Integer less than 2 billion. 32-bit. Recommended.

BIGINT Very large integer. Same range as Lasso integer data
type. 64-bit.

FLOAT Short decimal value. 32-bit.

DOUBLE Long decimal value. Same range as Lasso decimal data
type. 64-bit. Recommended.

DECIMAL(length, precision) Fixed precision decimal value. Ranges vary depending
on parameters.

CHAR(length) Fixed length string of the specified length. Length can be
from 0 to 255.

VARCHAR(length) Variable length string of the specified length. Length can
be from 1 to 255.

TEXT, BLOB Text or binary data up to about 64 KB in length.

TINYTEXT, TINYBLOB Text or binary data up to 255 bytes. Rarely used.

MEDIUMTEXT, MEDIUMBLOB Text or binary data up to about 16 MB. Rarely used.

LONGTEXT, LONGBLOB Text or binary data up to about 4 GB. Practical limit of
about 24 MB. Rarely used.

ENUM ('Value1', 'Value2', ...) A field that can contain one of a number of predefined
string values that are indexed numerically. ENUM data
can be text refering to a value, or an integer refering
to the index number of a value. A maximum of 65,535
ENUM values may be predefined.

SET ('Value1', 'Value2', ...) A field that can contain up to 64 predefined string values.
SET data can be comma-delimited text refering to many
values, or as an integer that is the bit representation of
the values.

DATETIME Stores a MySQL date and time in YYYY-MM-DD HH:
MM:SS format. Roughly equivalent to a Lasso date
string, but with a different format.

TIMESTAMP MySQL time stamp for modification date.

DATE Stores a MySQL date string in YYYY-MM-DD format.

TIME Stores a MySQL time string in HH:MM:SS format.

YEAR Efficient storage for four digit years. Rarely used.

2 0 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

To create a field:

Use the [Database_CreateField] tag to create a new field. The field will be
inserted as the last field in the specified table.

 • The following example shows two fields First_Name and Last_Name added
to the People table of the Contacts database. Both fields are set to the data
type VARCHAR with a maximum length of 64 characters.

[Database_CreateField: -Database='Contacts', -Table='People',
 -Field='First_Name', -Type='VARCHAR(64)']
[Database_CreateField: -Database='Contacts', -Table='People',
 -Field='Last_Name', -Type='VARCHAR(64)']

 • The following example shows a field Amount_Due being added to the
People table. The field will store DECIMAL values with up to 14 digits and
a precision of 2. This is a good data type for dollar amounts (up to
$999,999,999,999.99).

[Database_CreateField: -Database='Contacts', -Table='People',
 -Field='Amount_Due', -Type='DECIMAL(14,2)']

 • The following example shows a field Notes being added to the
People table. The field can store TEXT values up to 64k worth of text.

[Database_CreateField: -Database='Contacts', -Table='People',
 -Field='Notes', -Type='TEXT']

 • The following example shows a field Job being added to the People table.
The field can store one ENUM value selected from a list of four allowed
values (Sales, Support, Management, or Engineering).

[Database_CreateField: -Database='Contacts', -Table='People',
 -Field='Job', -Type='ENUM('Sales', 'Support', 'Management', 'Engineering')']

To create a field in an existing table:

A field can be created in an existing table by using the -AfterField or
-BeforeFirst parameters to the [Database_CreateField] tag. The order of fields in
a database is not generally important, but it can be easier to use command
line tools if the fields print out in a specific order.

 • The following example shows a field Phone_Number being added to
the Phone_Book table immediately after the Last_Name field. The field is
defined as a fixed length CHAR data type which can store up to 16 digits.

[Database_CreateField: -Database='Example', -Table='Phone_Book',
 -Field='Phone_Number', -Type='CHAR(16)', -AfterField='Last_Name']

 • The following example shows a field Title being added to the
Phone_Book table before all other fields in the table. The field is defined
as a fixed length CHAR data type which can store up to 8 characters.

2 0 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

[Database_CreateField: -Database='Example', -Table='Phone_Book',
 -Field='Title', -Type='CHAR(8)', -BeforeFirst]

Note: Perform an [Inline] ... [/Inline] database action after creating a new field in
order to force Lasso Administration to refresh and update its stored database
information.

To change a field:

A field can be changed using the [Database_ChangeField] tag. This tag
accepts all the same parameters as [Database_CreateField] with the addition
of an -Original parameter that specifies the field to be changed. All of the
parameters of the new field should be specified including the required
name and type, any parameters left unspecified will be returned to their
default values.

When a field is changed all the data in the field is translated to the new
field type. Be sure to only change fields to compatible data types, otherwise
there is a potential for data loss. If a field is changed to a smaller data type
then any excess data beyond the size of the new data type will be lost.

The following example shows the Notes field from the
Phone_Book table being changed so that it will only store about 255 charac-
ters in a TINYTEXT data type. Any characters beyond 255 in the records of
Phone_Book will be truncated to 255 characters.

[Database_ChangeField: -Database='Example', -Table='Phone_Book',
 -Original='Notes', -Field='Notes', -Type='TINYTEXT']

To remove a field:

Use the [Database_RemoveField] tag to drop the specified field from its table.
This will eliminate all data stored in the field. The following example will
remove a field named Title from the Phone_Book table.

[Database_RemoveField: -Database='Example', -Table='Phone_Book',
 -Field='Title']

Optimizing Tables
After adding, changing, or removing many fields within a table it is good
practice to optimize the table. This will ensure that the indices are up to
date and that MySQL or Lasso MySQL has updated all of its internal infor-
mation about the table.

Please see Chapter 9: Administration Utilities of the Lasso Professional
7 Setup Guide for more information about optimizing tables and auto-
mating database maintenance.

2 0 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

To optimize a table:

Use [Inline] … [/Inline] tags with a -SQL command that specifies the
OPTIMIZE TABLE and ANALYZE TABLE SQL statements. The following example
optimizes the Phone_Book table of the Example database.

[Inline: -Database='Example', -SQL='OPTIMIZE TABLE Example.Phone_Book'][/Inline]
[Inline: -Database='Example', -SQL='ANALYZE TABLE Example.Phone_Book'][/Inline]

2 1 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 9 – M Y S Q L D A T A S O U R C E S

10
Chapter 10

FileMaker
Data Sources

This chapter documents tags and behaviors which are specific to FileMaker
Pro and FileMaker Server Advanced data sources accessed using Lasso
Connector for FileMaker Pro and Lasso Connector for FileMaker SA.

 • Overview introduces FileMaker data sources.

 • Performance Tips includes recommendations which will help ensure
that FileMaker is used to its full potential.

 • Compatibility Tips includes recommendations which help ensure that
FileMaker databases can be transferred to a different back-end data
source.

 • FileMaker Tags describes tags specific to FileMaker data sources.

 • Primary Key Field and Record ID describes how the built-in record IDs
in FileMaker can be used as primary key fields.

 • Sorting Records describes how custom sorts can be performed in
FileMaker databases.

 • Displaying Data describes methods of returning field values from
FileMaker databases including repeating field values and values from
portals.

 • Value Lists describes how to retrieve and format value list data from
FileMaker databases.

 • Container Fields describes how to retrieve images and other data stored
in container fields.

 • FileMaker Scripts describes how to activate FileMaker scripts in concert
with a Lasso database action.

2 1 1

L A S S O 7 . 1 L A N G U A G E G U I D E

Overview
Lasso Professional 7 allows access to FileMaker Pro data sources through
Lasso Connector for FileMaker Pro and to FileMaker Server Advanced
data sources through Lasso Connector for FileMaker SA. Connections can
be made to any version of FileMaker Pro that includes Web Companion
including FileMaker Pro 4.x and FileMaker Pro 5.x and 6.x Unlimited or to
FIleMaker Server Advanced

Please see Chapter 7: Setting Up Data Sources in the Lasso Professional
7 Setup Guide for information about how to configure FileMaker for access
through Lasso Professional 7.

Lasso Connector for FileMaker Pro cannot access databases hosted by
FileMaker Server directly. All databases must be opened and shared by a
copy of the FileMaker Pro client. FileMaker Pro 3 is not supported since
it does not include the Web Companion. Solutions built using FileMaker
Developer which rely on a runtime engine are not supported.

Lasso Connector for FileMaker SA can only access databases hosted by
FileMaker Server Advanced. All databases must have the appropriate fmxml
extended privileges set. Lasso cannot access databases hosted by FileMaker
Server 7 or by FileMaker Pro 7.

LDML is a predominantly data source-independent language. It does
include many FileMaker Pro specific tags which are documented in this
chapter. However, all of the common procedures outlined in Chapter
6: Data Source Fundamentals, Chapter 7: Searching and Displaying
Data, and Chapter 8: Adding and Updating Records can be used with
FileMaker data sources.

Note: The tags and procedures defined in this chapter can only be used with
FileMaker data sources. Any solution which relies on these tags cannot be
easily retargeted to work with a different back-end database.

Terminology
Since Lasso works with many different data sources this documentation
uses data source agnostic terms to refer to databases, tables, and fields.
The following terms which are used in the FileMaker documentation are
equivalent to their Lasso counterparts.

 • Database – Database is used to refer to a single FileMaker database file.
Prior to version 7, FileMaker databases contains only a single data file
and one or more layouts. In version 7, FileMaker databases can contain
multiple data files, but data within them is still accessed through the
defined layouts.

2 1 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

 • Layout – Within Lasso a FileMaker layout is treated as equivalent to
a Table. The two terms can be used interchangeably. This equivalence
simplifies Lasso security and makes transitioning between back-end
data sources easier. All FileMaker layouts can be thought of as views of a
single data table. Lasso can only access fields which are contained in the
layout named within the current database action. Note that in FileMaker
7 Lasso can only access tables in a FileMaker databases which are acces-
sible through a layout.

Note: FileMaker Server Advanced data sources can return field values
for a different layout than that used to specify the database action using
-LayoutResponse.

 • Record – FileMaker records are referenced using a single -KeyValue rather
than a -KeyField and -KeyValue pair. The -KeyField in FileMaker is always the
record ID which is set internally.

 • Fields – The value for any field in the current layout in FileMaker can
be returned including the values for related fields, repeating fields, and
fields in portals.

Although the equivalence of FileMaker databases to Lasso MySQL data-
bases and FileMaker layouts to Lasso MySQL tables is imperfect, it is an
essential compromise in order to map both database models onto Lasso
Professional’s two-tier (e.g. database and table) security model.

Performance Tips
This section contains a number of tips which will help get the best perfor-
mance from a FileMaker database. Since queries must be performed
sequentially within FileMaker, even small optimizations can yield signifi-
cant increases in the speed of Web serving under heavy load.

 • Dedicated FileMaker Machine – For best performance, place the
FileMaker Pro client or FileMaker Server Advanced on a different
machine from Lasso Service and the Web server application.

 • FileMaker Server – If a FileMaker Pro database must be accessed by a
mix of FileMaker Pro clients and Web visitors through Lasso, it should
be hosted on FileMaker Pro Server. Lasso will access the database
through a single FileMaker Pro client which is connected as a guest to
FileMaker Server or through FileMaker Server Advanced.

 • Web Companion – For FileMaker version 4, 5, and 6 always ensure that
the latest version of FileMaker Pro Web Companion for the appropriate
version of FileMaker Pro is installed.

2 1 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

 • Index Fields – Any fields which will be searched through Lasso should
have indexing turned on. Avoid searching on unstored calculation fields,
related fields, and summary fields.

 • Custom Layouts – Layouts should be created with the minimal number
of fields required for Lasso. All the data for the fields in the layout will
be sent to Lasso with the query results. Limiting the number of fields can
dramatically cut down the amount of data which needs to be sent from
FileMaker to Lasso.

 • Return Fields – Use the -ReturnField tag to limit the number of fields
which are returned to Lasso. If no -ReturnField tag is specified then all of
the data for the fields in the current layout will be sent to Lasso with the
query results.

Return fields are not supported for FileMaker Server Advanced data
sources. Use the -LayoutResponse to specify an alternate layout to use for
the return value of the database action instead.

 • Sorting – Sorting can have a serious impact on performance if large
numbers of records must be sorted. Avoid sorting large record sets and
avoid sorting on calculation fields, related fields, unindexed fields, or
summary fields.

 • Contains Searching – FileMaker is optimized for the default
Begins With searches (and for numerical searches). Use of the contains
operator cn can dramatically slow down performance since FileMaker
will not be able to use its indices to optimize searches.

 • Max Records – Using -MaxRecords to limit the number of records
returned in the result set from FileMaker can speed up performance.
Use -MaxRecords and -SkipRecords or the [Link_…] tags to navigate a visitor
through the found set.

 • Calculation Fields – Calculation fields should be avoided if possible.
Searching or sorting on unindexed, unstored calculation fields can have
a negative effect on FileMaker performance.

 • FileMaker Scripts – The use of FileMaker scripts should be avoided if
possible. When FileMaker executes a script, no other database actions
can be performed at the same time. FileMaker scripts can usually be
rewritten as LDML to achieve the same effect as the script, often with
greater performance.

In addition to these tips, Lasso MySQL can be used to shift some of the
burden off of FileMaker. Lasso MySQL can usually perform database
searches much faster than FileMaker. Lasso Professional 7 also includes
sessions and compound data types that can be used to perform some of
the tasks of a database, but with higher performance for small amounts of
data.

2 1 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

Compatibility Tips
Following these tips will help to ensure that it easy to transfer data from
a FileMaker database to another data source, such as the built-in Lasso
MySQL database, at a future date.

 • Database Names – Database, layout, and field names should contain
only a mix of letters, numbers, and the underscore character. they should
not contain any punctuation other than spaces..

 • Calculation Fields – Avoid the use of calculation fields. Instead, perform
calculations within Lasso and store the results back into regular fields if
they will be needed later.

 • Summary Fields – Avoid the use of summary fields. Instead, summarize
data using [Inline] searches within Lasso.

 • Scripts – Avoid the use of FileMaker scripts. Most actions which can
be performed with scripts can be performed using the database actions
available within Lasso.

 • Record ID – Create a calculation field named ID and assign it to the
following calculation. Always use the -KeyField='ID' within [Inline] database
actions, HTML forms, and URLs. This ensures that when moving to a
database that relies on storing the key field value explicitly, a unique key
field value is available.

Status(CurrentRecordID)

FileMaker Tags
LDML 7 includes tags that allow the type of a database to be inspected.

Table 1: FileMaker Data Source Tags

Tag Description

[Lasso_DataSourceIsFileMaker] Returns True if the specified database is hosted by
FileMaker Pro.

[Lasso_DataSourceIsFileMakerSA]
Returns True if the specified database is hosted by
FileMaker Server Advanced.

To check whether a database is hosted by FileMaker Pro:

The following example shows how to use [Lasso_DataSourceIsFileMaker] to
check whether or note the database Example is hosted by FileMaker Pro.

2 1 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

[If: (Lasso_DataSourceIsFileMaker: 'Example.fp5')]
 Example is hosted by FileMaker Pro!
[Else: (Lasso_DataSourceIsFileMakerSA: 'Example.fp5')]
 Example is hosted by FileMaker Server Advanced!
[Else]
 Example is not hosted by FileMaker.
[/If]

➜ Example is hosted by FileMaker Pro!

To list all databases hosted by FileMaker Server Advanced:

Use the [Database_Names] … [/Database_Names] tags to list all databases
available to Lasso. The [Lasso_DataSourceIsFileMakerSA] tag can be used to
check each database and only those that are hosted by FileMaker Server
Advanced will be returned. The result shows two databases, Contacts.fp7 and
Example.fp7, which are available through FileMaker Server Advanced.

[Database_Names]
 [If: (Lasso_DataSourceIsFileMakerSA: (Database_NameItem))]

[Database_NameItem]
 [/If]
[/Dabase_Names]

➜
Example.fp7

Contacts.fp7

Primary Key Field and Record ID
FileMaker databases include a built-in primary key value called the
Record ID. This value is guaranteed to be unique for any record in a
FileMaker database. It is predominantly sequential, but should not be
relied upon to be sequential. The values of the record IDs within a data-
base may change after an import or after a database is compressed using
Save a Copy As…. Record IDs can be used within a solution to refer to a
record on multiple pages, but should not be stored as permanent refer-
ences to FileMaker records.

Note: The tag [RecordID_Value] can also be used to retrieve the record ID from
FileMaker records. However, for best results, it is recommended that the
[KeyField_Value] tag be used.

To return the current record ID:

The record ID for the current record can be returned using [KeyField_Value].
The following example shows [Inline] … [/Inline] tags that perform a -FindAll

2 1 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

action and return the record ID for each returned record using the
[KeyFIeld_Value] tag.

[Inline: -Database='Contacts.fp5', -Layout='People', -FindAll]
 [Records]

[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

➜
126: John Doe

127: Jane Doe

4096: Jane Person

To reference a record by record ID:

For -Update and -Delete command tags the record ID for the record
which should be operated upon can be referenced using -KeyValue. The
-KeyField does not need to be defined or should be set to an empty string if
it is, -KeyField=''.

 • The following example shows a record in Contacts.fp5 being updated
with -KeyValue=126. The name of the person referenced by the record is
changed to John Surname.

[Inline: -Database='Contacts.fp5',
 -Layout='People',
 -KeyValue=126,
 'First_Name'='John',
 'Last_Name'='Surname',
 -Update]

[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name']
[/Inline]

➜
126: John Surname

 • The following example shows a record in Contacts.fp5 being deleted with
-KeyValue=127. The -KeyField command tag is included, but its value is set
to the empty string.

[Inline: -Database='Contacts.fp5',
 -Layout='People',
 -KeyField='',
 -KeyValue=126,
 -Delete]
[/Inline]

To access the record ID within FileMaker:

The record ID for the current record in FileMaker can be accessed using the
calculation value Status(CurrentRecordID) within FileMaker.

2 1 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

Sorting Records
In addition to the Ascending and Descending values for the -SortOrder tag,
FileMaker data sources can also accept a Custom value. The Custom value
can be used for any field which is formatted with a value list in the current
layout. The field will be sorted according to the order of values within the
value list.

Note: FileMaker Server Advanced only supports the specification of a
maximum of 9 sort fields in a single database search.

To return custom sorted results:

Specify -SortField and -SortOrder command tags within the search parameters.
The following [Inline] … [/Inline] tags include sort command tags specified in
hidden inputs. The records are first sorted by title in custom order, then by
Last_Name and First_Name in ascending order. The Title field will be sorted in
the order of the elements within the value list associated with the field in
the database. In this case, it will be sorted as Mr., Mrs., Ms.

[Inline: -FindAll,
 -Database='Contacts.fp5',
 -Table='People',
 -KeyField='ID',
 -SortField='Title', -SortOrder='Custom',
 -SortField='Last_Name', -SortOrder='Ascending',
 -SortField='First_Name', -SortOrder='Ascending']
 [Records]

[Field: 'Title'] [Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

The following results could be returned when this page is loaded. Each
of the records with a title of Mr. appear before each of the records with a
title of Mrs. Within each title, the names are sorted in ascending alpha-
betical order.

➜
Mr. John Doe

Mr. John Person

Mrs. Jane Doe

Mrs. Jane Person

2 1 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

Displaying Data
FileMaker includes a number of container tags and substitution tags that
allow the different types of FileMaker fields to be displayed. These tags are
summarized in Table 2: FileMaker Data Display Tags and then examples
are included in the sections that follow.

See also the sections on Value Lists and Images for more information
about returning values from FileMaker fields.

Table 2: FileMaker Data Display Tags

Tag Description

[Field] Can be used to reference FileMaker fields including
related fields and repeating fields.

[Repeating] … [/Repeating] Container tag repeats for each defined repetition of a
repeating field. Requires a single parameter, the name of
the repeating field from the current layout.

[Repeating_ValueItem] Returns the value for each repetition of a repeating field.

[Portal] … [/Portal] Container tag repeats for each record in a portal.
Requires a single parameter, the name of the portal
relationship from the current layout.

Note: All fields which are referenced by Lasso must be contained in the
current layout in FileMaker. For portals and repeating fields only the number
of repetitions shown in the current layout will be available to Lasso.

Related Fields
Related fields are named using the relationship name followed by two
colons :: and the field name. For example, a related field Call_Duration from
a Calls.fp5 database might be referenced as Calls.fp5::Call_Duration. Any related
fields which are included in the layout specified for the current Lasso
action can be referenced using this syntax. Data can be retrieved from
related fields or it can be set in related fields when records are added or
updated.

To return data from a related field:

Specify the name of the related field within a [Field] tag. The related field
must be contained in the current layout either individually or within a
portal. In a one-to-one relationship, the value from the single related
record will be returned. In a one-to-many relationship, the value from the
first related record as defined by the relationship options will be returned.

2 1 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

See the section on Portals below for more control over one-to-many rela-
tionships.

The following example shows a -FindAll action being performed in a data-
base Contacts.fp5. The related field Last_Call_Time from the Calls.fp5 databases
is returned for each record through a relationship named Calls.fp5.

[Inline: -Database='Contacts.fp5', -Layout='People', -FindAll]
 [Records]

[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name]
 (Last call at: [Field: 'Calls::Last_Call_Time']).
 [/Records]
[/Inline]

➜
126: John Doe (Last call at 12:00 pm).

127: Jane Doe (Last call at 9:25 am).

4096: Jane Person (Last call at 4:46 pm).

To set the value for a related field:

Specify the name of the related field within the action which adds or
updates a record within the database. The related field must be contained
in the current layout either individually or within a portal. In a one-to-
one relationship, the value for the field in a single related record will be
modified. In a one-to-many relationship, the value for the field in the first
related record as defined by the relationship options will be modified. See
the section on Portals below for more control over one-to-many relation-
ships.

The following example shows an -Update action being performed in a data-
base Contacts.fp5. The related field Last_Call_Time from the Calls.fp5 database
is updated for Jane Person. The new value is returned.

[Inline: -Database='Contacts.fp5',
 -Layout='People',
 -KeyValue=4096,
 'Calls.fp5::Last_Call_Time'='1:45 am',
 -Update]

[KeyField_Value]: [Field: 'First_Name'] [Field: 'Last_Name]
 (Last call at: [Field: 'Calls.fp5::Last_Call_Time']).
[/Inline]

➜
4096: Jane Person (Last call at 1:45 pm).

Portals
Portals allow one-to-many relationships to be displayed within FileMaker
databases. Portals allow data from many related records to be retrieved and

2 2 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

displayed in a single format file. A portal must be present in the current
FileMaker layout in order for its values to be retrieved using Lasso.

Only the number of repetitions formatted to display within FileMaker will
be displayed using Lasso. A portal must contain a scroll bar in order for all
records from the portal to be displayed using Lasso.

Fields in portals are named using the same convention as related fields.
The relationship name is followed by two colons :: and the field name. For
example, a related field Call_Duration from a Calls.fp5 database might be refer-
enced as Calls.fp5::Call_Duration.

Note: Everything that is possible to do with portals can also be performed
using nested [Inline] … [/Inline] tags to perform actions in the related database.
Portals are unique to FileMaker databases.

To return values from a portal:

Use the [Portal] … [/Portal] tags with the name of the portal referenced in the
opening [Portal] tag. [Field] tags within the [Portal] … [/Portal] tags should refer-
ence the fields from the current portal row using related field syntax.

The following example shows a portal Calls.fp5 that is contained in the
People layout of the Contacts.fp5 database. The Time, Duration, and Number of
each call is displayed.

[Inline: -Database='Contacts.fp5', -Layout='People', -FindAll]
 [Records]
 <p>Calls for [Field: 'First_Name'] [Field: 'Last_Name]:
 [Portal: 'Calls.fp5']

[Field: 'Calls.fp5::Number'] at [Field: 'Calls.fp5::Time']
 for [Field: 'Calls.fp5::Duration'] minutes.
 [/Portal]
 [/Records]
[/Inline]

➜ <p>Calls for John Doe:

555-1212 at 12:00 pm for 15 minutes.

<p>Calls for Jane Doe:

555-1212 at 9:25 am for 60 minutes.

<p>Calls for Jane Person:

555-1212 at 2:23 pm for 55 minutes.

555-1212 at 4:46 pm for 5 minutes.

To add a record to a portal:

A record can be added to a portal by adding the record directly to the
related database. In the following example the Calls.fp5 database is related
to the Contacts.fp5 database by virtue of a field Contact_ID that stores the

2 2 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

ID for the contact which the calls were made to. New records added to
Calls.fp5 with the appropriate Contact_ID will be shown through the portal to
the next site visitor.

In the following example a new call is added to the Calls.fp5 database for
John Doe. John Doe has an ID of 123 in the Contacts.fp5 database. This is the
value used for the Contact_ID field in Calls.fp5.

[Inline: -Add,
 -Database='Calls.fp5',
 -Layout='People',
 'Contact_ID'=123,
 'Number'='555-1212',
 'Time'='12:00 am',
 'Duration'=55]
[/Inline]

To update a record within a portal:

In order to update records shown within a portal it is recommended that
you use a field to return the record ID of each record in the portal, then
use that value in nested [Inline] … [/Inline] tags to update the related record.

Create a calculation field named RecordID within the related database (e.g.
Calls.fp5) that contains the following FileMaker calculation.

Status(CurrentRecordID)

Place that field within the portal shown within the main database (e.g.
Contacts.fp5). To perform an update of a portal row, use [Inline] … [/Inline] tags
which reference the related database and the RecordID from the portal.

The following example shows how to update every record contained within
a portal. The field Approved is set to Yes for each call from the Calls.fp5 data-
base for all contacts from the Contacts.fp5 database.

[Inline: -Database='Contacts.fp5', -Layout='People', -FindAll]
 [Records]
 [Portal: 'Calls.fp5']
 [Inline: -Database='Calls.fp5',
 -Layout='People',
 -KeyField=(Field: 'Calls.fp5::RecordID'),
 'Approved'='Yes',
 -Update']
 [/Inline]
 [/Portal]
 [/Records]
[/Inline]

The results of the action will be shown the next time the portal is viewed
by a site visitor.

2 2 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

To delete a record from a portal:

The same method as described above for updating records within a portal
can be used to delete records from a portal. In the following example,
all records from Contacts.fp5 are returned and every record from the
Calls.fp5 portal is deleted.

[Inline: -Database='Contacts.fp5', -Layout='People', -FindAll]
 [Records]
 [Portal: 'Calls.fp5']
 [Inline: -Database='Calls.fp5',
 -Layout='People',
 -KeyField=(Field: 'Calls.fp5::RecordID'),
 -Delete]
 [/Inline]
 [/Portal]
 [/Records]
[/Inline]

No records will be contained in the portal the next time the site is viewed
by a site visitor. However, not all records in Calls.fp5 have necessarily
been deleted. Any records which were not associated with a contact in
Contacts.fp5 will still remain in the database.

Repeating Fields
Repeating fields in FileMaker allow many values to be stored in a single
field. Each repeating field is defined to hold a certain number of values.
These values can be retrieved using the tags defined in this section. See the
documentation for FileMaker for more information about how to create
and use repeating fields within FileMaker.

In order to display or set values in a repeating field, the layout referenced
in the current database action must contain the repeating field formatted
to show the desired number of repetitions. If a field is set to store eight
repetitions, but only to show two, then it will appear to be a two-repetition
field to Lasso.

Note: The use of repeating fields is not recommended. Usually a simple text
field which contains multiple values separated by returns can be used for the
same effect through Lasso. For more complex solutions a related database
and [Portal] … [/Portal] tags or nested [Inline] … [/Inline] tags can often be easier to
use and maintain than a solution with repeating fields.

To return values from a repeating field:

Use the [Repeating] … [/Repeating] and [Repeating_ValueItem] tags to return each
of the values from a repeating field. The opening [Repeating] tag takes a

2 2 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

single parameter which names a field from the current FileMaker layout
that repeats. The contents of the [Repeating] … [/Repeating] tags is repeated for
each repetition and the [Repeating_ValueItem] tag is used to return the value
for the current repetition.

The following example shows a repeating field Customer_ID that has four
repetitions. Normally, only the first repetition has a defined value, but for
a contact that has multiple accounts, multiple values are defined. Since
Jane Person has two customer accounts, two repetitions of Customer_ID are
returned.

[Inline: -Database='Contacts', -Layout='People', 'Last_Name'='Person', -Search]
 [Records]
 <p>[Field: 'First_Name'] [FIeld: 'Last_Name']
 [Repeating: 'Customer_ID']

Customer ID [Loop_Count]: [Repeating_ValueItem].
 [/Repeating]
 [/Records]
[/Inline]

➜ <p>Jane Person

Customer ID 1: 100123.

Customer ID 2: 123654.

To add a record with a repeating field:

The syntax for adding a record with a repeating field is different depending
on whether a FIleMaker Pro or FileMaker Server Advanced data source is
being used.

 • FileMaker Pro – A record can be added with values in a repeating
field by referencing the field multiple times within the -Add action. The
following example shows a new contact being added to Contacts.fp5. The
contact Jimmy Last_Name is given three customer ID numbers referenced
by the field Customer_ID multiple times. The added record is returned
showing all three customer IDs are stored.

[Inline: -Database='Contacts',
 -Layout='People',
 'First_Name'='Jimmy',
 'Last_Name'='Last_Name',
 'Customer_ID'='2001',
 'Customer_ID'='2010',
 'Customer_ID'='2061',
 -Add]
 <p>[Field: 'First_Name'] [Field: 'Last_Name']
 [Repeating: 'Customer_ID']

Customer ID [Loop_Count]: [Repeating_ValueItem].
 [/Repeating]
[/Inline]

2 2 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

➜ <p>Jimmy Last_Name

Customer ID 1: 2001.

Customer ID 2: 2010.

Customer ID 3: 2061.

 • FileMaker Server Advanced – The syntax is the same except that each
repetition of Customer_ID needs to be labeled with the repetition to
update in parentheses.

…
 'Customer_ID(1)'='2001',
 'Customer_ID(2)'='2010',
 'Customer_ID(3)'='2061',
…

To update a record with a repeating field:

The syntax for updating a record with a repeating field is different
depending on whether a FIleMaker Pro or FileMaker Server Advanced data
source is being used.

 • FileMaker Pro – A repeating field can be updated by referencing
it multiple times within the -Update action. The following example
shows an HTML form which displays four repetitions of the field
Customer_ID and allows each of them to be modified. Notice that the
four repetitions are created using the looping [Repeating] … [/Repeating]
container tags.

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Database" value="Contacts.fp5">
 <input type="hidden" name="-Layout" value="People">
 <input type="hidden" name="-KeyValue" value="[KeyField_Value]">

 <p>First Name:
 <input type="text" name="First_Name" value="[Field: 'First_Name']">

Last Name:
 <input type="text" name="Last_Name" value="[Field: 'Last_Name']">

 [Repeating: 'Customer ID'

Customer ID:
 <input type="text" name="Customer_ID" value="[Repeating_ValueItem]">
 [/Repeating]

 <p><input type="submit" name="-Update" value="Update this Record">
</form>

2 2 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

 • FileMaker Server Advanced – The syntax is the same except that each
repetition of Customer_ID needs to be labeled with the repetition to
update in parentheses. This can be done using [Loop_Count] in each input.

 [Repeating: 'Customer ID'

Customer ID:
 <input type="text" name="Customer_ID([Loop_Count])"
 value="[Repeating_ValueItem]">
 [/Repeating]

To delete values from a repeating field:

 • Records which contain repeating fields can be deleted using the same
technique for deleting any FileMaker records. All repetitions of the
repeating field will be deleted along with the record. The following
[Inline] … [/Inline] tags will delete the record with a record ID of 127.

[Inline: -Database='Contacts.fp5', -Table='People', -KeyValue=127, -Delete]
 <p>The record was deleted.
[/Inline]

 • A single repetition of a repeating field can be deleted by setting its value
to an empty string. The other values in the repeating field will not slide
down to fill in the missing repetition. The following [Inline] … [/Inline] will
set the first repetition of a repeating field Customer_ID to the empty string,
but leave the second and third repetitions unchanged.

The values for the repeating field are first placed in an array so that they
can be referenced by number within the opening [Inline] tag.

[Variable: 'Customer_ID' = (Array: '', '', '')]
[Repeating: 'Customer_ID']
 [(Variable: 'Customer_ID')->(Get: Loop_Count) = (Repeating_ValueItem)]
[/Repeating]

[Inline: -Update,
 -Database='Contacts.fp5',
 -Table='People',
 -KeyValue=127,
 'Customer_ID'='',
 'Customer_ID'=(Variable: 'Customer_ID)->(Get: 2),
 'Customer_ID'=(Variable: 'Customer_ID')->(Get: 3),
 <p>[Field: 'First_Name'] [FIeld: 'Last_Name']
 [Repeating: 'Customer_ID']

Customer ID [Loop_Count]: [Repeating_ValueItem].
 [/Repeating]
[/Inline]

In a FileMaker Server Advanced data source each repetition of Customer_
ID must be followed by a number in parentheses specifying the desired
repetition to modify.

2 2 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

…
 'Customer_ID(1)'='',
 'Customer_ID(2)'=(Variable: 'Customer_ID)->(Get: 2),
 'Customer_ID(3)'=(Variable: 'Customer_ID')->(Get: 3),
…

The results show that the value for the first repetition of the repeating field
has been deleted, but the second and third repetitions remain intact.

➜ <p>Jimmy Last_Name

Customer ID 1: .

Customer ID 2: 2010.

Customer ID 3: 2061.

Value Lists
Value lists in FileMaker allow a set of possible values to be defined for
a field. The items in the value list associated with a field on the current
layout for a Lasso action can be retrieved using the tags defined in Table 3:
FileMaker Value List Tags. See the documentation for FileMaker for more
information about how to create and use value lists within FileMaker.

In order to display values from a value list, the layout referenced in the
current database action must contain a field formatted to show the desired
value list as a pop-up menu, select list, check boxes, or radio buttons. Lasso
cannot reference a value list directly. Lasso can only reference a value list
through a formatted field in the current layout.

Table 3: FileMaker Value List Tags

Tag Description

[Value_List] … [/Value_List] Container tag repeats for each value in the named value
list. Requires a single parameter, the name of a field
from the current layout which has a value list assigned to
it.

[Value_ListItem] Returns the value for the current item in a value list.
Optional -Checked or -Selected parameter returns only
currently selected values from the value list.

[Selected] Displays the word Selected if the current value list item
is selected in the field associated with the value list.

[Checked] Displays the word Checked if the current value list item
is selected in the field associated with the value list.

[Option] Generates a series of <option> tags for the value list.
Requires a single parameter, the name of a field from
the current layout which has a value list assigned to it.

2 2 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

Note: See Chapter 7: Searching and Displaying Data for information about
the -Show command tag which is used throughout this section.

To display all values from a value list:

 • The following example shows how to display all values from a value
list using a -Show action within [Inline] … [/Inline] tags. The field Title in
the Contacts.fp5 database contains five values Mr., Mrs., Ms., and Dr.
The -Show action allows the values for value lists to be retrieved without
performing a database action.

[Inline: -Database='Contacts.fp5', -Layout='People', -Show]
 [Value_List: 'Title']

[Value_ListItem]
 [/Value_List]
[/Inline]

➜
Mr.

Mrs.

Ms.

Dr.

 • The following example shows how to display all values from a value list
using a named inline. The same name Values is referenced by -InlineName
in both the [Inline] tag and [Value_List] tag.

[Inline: -InlineName='Values', -Database='Contacts.fp5', -Layout='People', -Show]
[/Inline]
…
[Value_List: 'Title', -InlineName='Values']

[Value_ListItem]
[/Value_List]

➜
Mr.

Mrs.

Ms.

Dr.

To display an HTML pop-up menu in an -Add form with all values from
a value list:

 • The following example shows how to format an HTML
<select> … </select> pop-up menu to show all the values from a value list.
A select list can be created with the same code by including size and/or
multiple parameters within the <select> tag. This code is usually used
within an HTML form that performs an -Add action so the visitor can
select a value from the value list for the record they create.

The example shows a single <select> … </select> within [Inline] … [/Inline]
tags with a -Show command. If many value lists from the same database

2 2 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

are being formatted, they can all be contained within a single set of
[Inline] … [/Inline] tags.

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Add" value="">
 <input type="hidden" name="-Database" value="Contacts.fp5">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-KeyField" value="ID">

[Inline: -Database='Contacts.fp5', -Layout='People', -Show]
 <select name="Title">
 [Value_List: 'Title']
 <option value="[Value_ListItem]">[Value_ListItem]</option>
 [/Value_List]
 </select>
[/Inline]

 <p><input type="submit" name="-Add" value="Add Record">
</form>

 • The [Option] tag can be used to easily format a value list as an HTML
<select> … </select> pop-up menu. The [Option] tag generates all of the
<option> … </option> tags for the pop-up menu based on the value list for
the specified field. The example below generates exactly the same HTML
as the example above.

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Add" value="">
 <input type="hidden" name="-Database" value="Contacts.fp5">
 <input type="hidden" name="-Table" value="People"?
 <input type="hidden" name="-KeyField" value="ID">

[Inline: -Database='Contacts.fp5', -Layout='People', -Show]
 <select name="Title">
 [Option: 'Title']
 </select>
[/Inline]

 <p><input type="submit" name="-Add" value="Add Record">
</form>

To display HTML radio buttons with all values from a value list:

The following example shows how to format a set of HTML <input> tags to
show all the values from a value list as radio buttons. The visitor will be
able to select one value from the value list. Check boxes can be created
with the same code by changing the type from radio to checkbox.

2 2 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Add" value="">
 <input type="hidden" name="-Database" value="Contacts.fp5">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-KeyField" value="ID">

[Inline: -Database='Contacts.fp5', -Layout='People', -Show]
 [Value_List: 'Title']
 <input type="radio" name="Title" value="[Value_ListItem]"> [Value_ListItem]
 [/Value_List]
[/Inline]

 <p><input type="submit" name="-Add" value="Add Record">
</form>

To display only selected values from a value list:

The following examples show how to display the selected values from a
value list for the current record. The record for John Doe is found within the
database and the selected value for the Title field, Mr. is displayed.

 • The -Selected keyword in the [Value_ListItem] tag ensures that only selected
value list items are shown. The following example uses a conditional to
check whether [Value_ListItem: -Selected] is empty.

[Inline: -Database='Contacts.fp5', -Layout='People', -KeyValue=126, -Search]
 [Value_List: 'Title']
 [If: (Value_ListItem: -Selected) != '']

[Value_ListItem: -Selected]
 [/If]
 [/Value_List]
[/Inline]

➜
Mr.

 • The [Selected] tag ensures that only selected value list items are shown.
The following example uses a conditional to check whether [Selected] is
empty and only shows the [Value_ListItem] if it is not.

[Inline: -Database='Contacts.fp5', -Layout='People', -KeyValue=126, -Search]
 [Value_List: 'Title']
 [If: (Selected) != '']

[Value_ListItem]
 [/If]
 [/Value_List]
[/Inline]

➜
Mr.

 • The [Field] tag can also be used simply to display the current value for a
field without reference to the value list.

[Field: 'Title']

2 3 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

➜
Mr.

To display an HTML popup menu in an -Update form with selected
value list values:

 • The following example shows how to format an HTML
<select> … </select> select list to show all the values from a value list with
the selected values highlighted. The [Selected] tag returns Selected if the
current value list item is selected in the database or nothing otherwise.
This code will usually be used in an HTML form that performs an -Update
action to allow the visitor to see what values are selected in the database
currently and make different choices for the updated record.

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Update" value="">
 <input type="hidden" name="-Database" value="Contacts.fp5">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-KeyField" value="ID">
 <input type="hidden" name="-KeyValue" value="127">

[Inline: -Database='Contacts.fp5', -Layout='People', -KeyValue=126, -Search]
 <select name="Title" multiple size="4">
 [Value_List: 'Title']
 <option value="[Value_ListItem]" [Selected]>[Value_ListItem]</option>
 [/Value_List]
 </select>
[/Inline]

 <p><input type="submit" name="-Update" value="Update Record">
</form>

 • The [Option] tag automatically inserts Selected parameters as needed to
ensure that the proper options are selected in the HTML select list. The
example below generates exactly the same HTML as the example above.

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Update" value="">
 <input type="hidden" name="-Database" value="Contacts.fp5">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-KeyField" value="ID">
 <input type="hidden" name="-KeyValue" value="127">

[Inline: -Database='Contacts.fp5', -Layout='People', -KeyValue=126, -Search]
 <select name="Title" multiple size="4">
 [Option: 'Title']
 </select>
[/Inline]

 <p><input type="submit" name="-Update" value="Update Record">
</form>

2 3 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

To display HTML check boxes with selected value list values:

The following example shows how to format a set of HTML <input> tags to
show all the values from a value list as check boxes with the selected check
boxes checked. The [Checked] tag returns Checked if the current value list
item is selected in the database or nothing otherwise. Radio buttons can be
created with the same code by changing the type from checkbox to radio.

<form action="response.lasso" method="POST">
 <input type="hidden" name="-Update" value="">
 <input type="hidden" name="-Database" value="Contacts.fp5">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-KeyField" value="ID">
 <input type="hidden" name="-KeyValue" value="127">

[Inline: -Database='Contacts.fp5', -Layout='People', -KeyValue=126, -Search]
 [Value_List: 'Title']
 <input type="checkbox" name="Title" value="[Value_ListItem]" [Checked]>
 [Value_ListItem]
 [/Value_List]
[/Inline]

 <p><input type="submit" name="-Update" value="Update Record">
</form>

Container Fields
Lasso Professional 7.1 includes a new tag [Database_FMContainer] that allows
the raw contents of a FileMaker container field to be returned. This tag
works with either FileMaker Pro data sources of FileMaker Server Advanced
data sources.

Note: The [Database_FMContainer] tag does not rely on Classic Lasso being
enabled. This functionality offers a replacement for the deprecated
[Image_URL] and [IMG] tags when Classic Lasso is disabled.

Table 4: Container Field Tags

Tag Description

[Database_FMContainer] Returns the raw data contained in a FileMaker container
field. Requires one parameter which is the name of the
field.

The [Database_FMContainer] tag functions differently depending on whether
FileMaker Pro or FileMaker Server Advanced data sources are being
accessed.

2 3 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

 • FileMaker Pro – Only image data can be fetched from container fields.
An optional -Type parameter can specify GIF or JPEG along with addi-
tional quality arguments the Web Companion supports.

 • FileMaker Server Advanced – Any type of data can be fetched from a
container field. The tag automatically handles any data type that can be
stored in FileMaker.

The [Database_FMContainer] tag always returns a byte stream. The results
of this tag will be most typically sent to the current site visitor using
[File_Serve].

To retrieve data from a FileMaker container field:

Use the [Database_FMContainer] tag. In the following example the data in the
Image container field is retrieved and stored in a variable ContainerData. See
the following example for a demonstration of how to serve this data as an
image to the site visitor.

[Inline: -Database='Contacts',
 -Layout='People',
 'First_Name'='John',
 'Last_Name'='Doe',
 -Search]
 [Records]
 [Variable: 'ContainerData' = (Database_FMContainer: 'Image')]
 …
 [/Records]
[/Inline]

To serve an image from a FileMaker container field:

Pass the value of the [Database_FMContainer] field to the [File_Serve] tag. In
the following example a single image is fetched from a database based on
the value of the action parameter ID. The contents of the Image field is inter-
preted as a JPEG and passed to [File_Serve]. To the site visitor this file will
serve a file named FileMakerImage.jpg.

[Inline: -Database='Contacts.fp5',
 -Layout='People',
 -KeyValue=(Action_Param: 'ID')
 -Search]
 [File_Serve: (Database_FMContainer: 'Image'),
 -Type='image/jpeg', -File='FileMakerImage.jpg']
[/Inline]

Note: The [File_Serve] tag replaces the current output of the page with the
image and performs an [Abort]. The code above represents the complete
content of a Lasso page.

2 3 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

The code above could be saved into a Lasso page called Image.Lasso. This
page would then be referenced within an HTML tag as follows.

For example, an image from each record in a database could be displayed
as follows:

[Inline: -Database='Contacts',
 -Layout='People',
 'First_Name'='John',
 'Last_Name'='Doe',
 -Search]
 [Records]
 <p>[Field: 'First_Name'] [Field: 'Last_Name']

</p>
 [/Records]
[/Inline]

The result will be the first and last name of each person in the Contacts
database followed by the stored picture on the next line.

FileMaker Scripts
LDML includes command tags which allow scripts in FileMaker databases
to be executed. Scripts are usually executed in concert with a database
action. They can be performed before the database action, after the data-
base action but before the results are sorted, or just before the results are
returned to Lasso. The command tags for executing FileMaker scripts are
described in Table 7: FileMaker Scripts Tags.

FileMaker Tip: It is best to limit the use of FileMaker scripts. Most function-
ality of FileMaker scripts can be achieved in LDML with better performance
especially on a busy Web server.

2 3 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

Table 7: FileMaker Scripts Tags

Tag Description

-FMScript Specifies a script to be processed after the current
database action has been performed. Requires a single
parameter which names a FileMaker script. Synonym is
-FMScriptPost.

-FMScriptPre Specifies a script to be processed before the current
database action has been performed. Requires a single
parameter which names a FileMaker script.

-FMScriptPreSort Specifies a script to be processed after the current
database action, but before the results are sorted.
Requires a single parameter which names a FileMaker
script.

Conditions for executing a FileMaker script:

 1 The script must be defined in the database referenced by the action in
which the -FMScript… tag is called.

 2 The current user must have permission to execute scripts. See the
Group section in Chapter 8: Setting Up Security of the Lasso
Professional 7 Setup Guide for more information.

 3 The found set should not be empty after performing a FileMaker script.
Scripts should always ensure that they return a non-empty found set
after they execute.

 4 All database action on the FileMaker machine must wait until the script
finishes. Scripts should be as fast and efficient as possible.

To execute a FileMaker script within [Inline] … [/Inline] tags:

The following example shows a FileMaker script named Filter_People being
called after a -FindAll action is performed within a FileMaker database
Contacts.fp5. The script removes certain records from the found set and
returns the results.

[Inline: -Database='Contacts.fp5',
 -Layout='People',
 -FMScript='Filter_People',
 -FindAll]
 …
[/Inline]

The results of the [Inline] … [/Inline] tags will be the result of the script
Filter_People. The record set and its order can be completely determined by
the script.

2 3 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

To execute a FileMaker script within an HTML form:

The following example shows a FileMaker script named Clean_Up being
performed before a -FindAll action is performed within Contacts.fp5. The
script deletes invalid records so that the found set will only contain valid
records after the -FindAll is performed. The script is performed before the
database action since it is called with -FMScriptPre.

<form action="response.lasso" method="POST">
 <input type="hidden" name="-FindAll">
 <input type="hidden" name="-Database" value="Contacts.fp5">
 <input type="hidden" name="-Layout" value="People">
 <input type="hidden" name="-FMScriptPre" value="Clean_Up">

<input type="submit" name="-FindAll" value="Find All">
</form>

The results of the script include all valid records that were not deleted by
the Clean_Up script.

To execute a FileMaker script within a URL:

The following example shows a script named Update_Priority which is
performed after the -FindAll database action, but before the results are
sorted. The Update_Priority script could update a field Priority, based on the
records from the current found set, which the sort depends on. The script
is called using the -FMScriptPreSort tag.

<a href="response.lasso?-Database=Contacts.fp5&
 -Layout=People&
 -FMScriptPreSort=Update_Prioirty&
 -SortOrder=Descending&
 -SortField=Priority&
 -FindAll">
 Find All and Sort by Priority

The results of this URL, when it is selected, will be all records from
the databases, sorted in descending order according to the value of the
Priority field after it has been updated by the Update_Priority script.

➜

Note: Additional parameters can be specified within the HTML tag in
order to specify the width and height of the returned image. The image will
be scaled to the desired size. See the next section for details.

2 3 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 0 – F I L E M A K E R D A T A S O U R C E S

11
Chapter 11

JDBC Data Sources

This chapter documents the usage of LDML 7 with JDBC data sources.

 • Overview introduces JDBC data source support in Lasso Professional 7.

 • Using JDBC Data Sources describes using JDBC data sources with Lasso
Professional 7.

 • JDBC Schema Tags describes using LDML tags to return schema values
from JDBC data sources that support schema ownership.

Overview
Native support for JDBC data sources is included in Lasso Professional 7
in addition to native support for FileMaker Pro and MySQL data sources.
If a JDBC driver is available for a data source, it can be installed to Lasso
Professional 7, allowing Lasso to instantly communicate with that data
source. This feature allows Lasso Professional 7 to communicate with
over 150 JDBC-compliant data sources, including Sybase, DB2, Frontbase,
Openbase, Interbase, and Microsoft SQL Server 2000. For more informa-
tion on JDBC connectivity and availability for a particular data source, see
the data source documentation or contact the data source manufacturer.

Lasso Professional 7 functions as its own JDBC driver manager, and all
JDBC drivers must be installed directly to Lasso Professional 7. Instructions
on how to set up a JDBC data source for use with Lasso Professional
are documented in Chapter 7: Setting Up Data Sources in the Lasso
Professional 7 Setup Guide.

2 3 7

L A S S O 7 . 1 L A N G U A G E G U I D E

Using JDBC Data Sources
Data source operations outlined in Chapter 6: Database Interaction
Fundamentals, Chapter 7: Searching and Displaying Data, and Chapter
8: Adding and Updating Records are supported with JDBC data sources.
Because JDBC is a standardized API for connecting to tabular data sources,
there are few unique tags in LDML 7 that are specific to JDBC data sources
or invoke special functions specific to any JDBC data source. The only
JDBC-specific LDML tags are for JDBC data sources that support schema
ownership (e.g. Frontbase, Sybase), and are described in the JDBC Schema
Tags section of this chapter.

All LDML tags documented as unique to MySQL data sources in Chapter
9: MySQL Data Sources or FileMaker Pro data sources in Chapter 10:
FileMaker Pro Data Sources are not supported for use with JDBC data
sources.

Certification Note: OmniPilot Software has tested and certified Microsoft
SQL Server 2000 with Microsoft SQL Server 2000 Driver for JDBC for use
with Lasso Professional 7 via JDBC. Other JDBC-compliant data sources may
be used with Lasso Professional 7, but all features cannot be guaranteed to
work by OmniPilot Software. See http://support.blueworld.com for Support Central
articles on connectivity with selected data sources.

Tips for Using JDBC Data Sources
The following is a list of tips to following when writing LDML for use with
JDBC data sources. These tips illustrate specific concepts and behaviors to
keep in mind when coding, and these tips are most similar to those for
MySQL data sources (as opposed to FileMaker Pro data sources).

 • Always specify a primary key field using the -KeyField command tag in
-Search, -Add, and -FindAll actions. This will ensure that the [KeyField_Value]
tag will always return a value.

 • Use -KeyField and -KeyValue to reference a particular record for updates,
duplicates, or deletes.

 • Fields may truncate any data beyond the length they are set up to store.
Ensure that all fields in JDBC databases have sufficiently long fields for
the values that need to be stored in them.

 • Use -ReturnField command tags to reduce the number of fields which are
returned from a -Search action. Returning only the fields that need to
be used for further processing or shown to the site visitor reduces the
amount of data that needs to travel between Lasso Service and the JDBC
data source.

2 3 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 1 – J D B C D A T A S O U R C E S

 • When an -Add or -Update action is performed on a JDBC database,
the data from the added or updated record is returned inside the
[Inline] ... [/Inline] tags or alternately to the Classic Lasso response page. If
the -ReturnField parameter is used, then only those fields specified should
be returned from an -Add or -Update action. Setting -MaxRecords=0 can be
used as an indication that no record should be returned.

 • The -SQL command tag can be allowed or disallowed at the host level for
users in Lasso Administration. Once the -SQL command tag is allowed
for a user, that user may access any database within the allowed host
inside of a SQL statement. For that reason, only trusted users should
be allowed to issue SQL queries using the -SQL command tag. For
more information, see Chapter 8: Setting Up Security in the Lasso
Professional 7 Setup Guide.

 • SQL statements which are generated using visitor-defined data should be
screened carefully for unwanted commands such as DROP or GRANT. See
Chapter 7: Setting Up Data Sources of the Lasso Professional 7 Setup
Guide for more information.

 • Always quote any inputs from site visitors that are incorporated into SQL
statements. For example, the following SQL SELECT statement includes
quotes around the [Action_Param] value. The quotes are escaped \' so they
will be embedded within the string rather than ending the string literal.
The semi-colon at the end of the statement is optional unless multiple
statements are issued.

[Variable: 'SQL_Statement'='SELECT * FROM Contacts.People WHERE ' +
 'First_Name LIKE \'' + (Action_Param: 'First_Name') + '\';']

If [Action_Param] returns John for First_Name then the SQL statement gener-
ated by this code would appear as follows.

SELECT * FROM Contacts.People WHERE First_Name LIKE 'John';

 • Lasso Professional 7 uses connection pooling when connecting to data
sources via JDBC, and the JDBC connections will remain open during
the time that Lasso Professional 7 is running.

 • Check for OmniPilot Support Central articles at http://support.blueworld.com
for documented issues with using specific JDBC data sources.

JDBC Schema Tags
LDML 7 includes tags that return the user schemas available in a JDBC data
source host for the current Lasso Service connection. These tags can only be
used with data sources that use named schema ownership (e.g. Frontbase,

2 3 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 1 – J D B C D A T A S O U R C E S

Sybase), and complement the other LDML schema and database tags
described in Chapter 6: Database Interaction Fundamentals.

Note: For information on whether or not your JDBC data source supports
named schema ownership, refer to the data source documentation.

Table 1: JDBC Schema Tags

Tag Description

-Schema Allows a schema name to be passed as part of an
[Inline] ... [/Inline] data source action. The schema name
passed here overrides the default schema set for the
JDBC data source host in Lasso Administration.

[Schema_Name] Returns the name of the current schema in use in an
[Inline] ... [/Inline] data source action.

[Database_SchemaNames] Repeats for every schema name in a JDBC data
source host available to Lasso. Requires the name of a
database in the JDBC data source host as a parameter.

[Database_SchemaNameItem] Returns the name of the current schema name when
used inside [Database_SchemaNames] … [/Database_
SchemaNames] tags.

To reference a schema name in an inline database action:

Use the -Schema command tag to pass the name of the data source schema
that should be used for the database action.

[Inline: -Show, -Schema='SchemaName', -Database='DBName', -Table='TBName']
 [Schema_Name]
[/Inline]

➜ SchemaName

To list all schema names in a JDBC data source:

Use the [Database_SchemaNames] … [/Database_SchemaNames] tags
to list all databases available in a JDBC data source host. The
[Database_SchemaNameItem] tag returns the value of each schema name.

[Database_SchemaNames:'DBName']
 [Database_SchemaNameItem]
[/Database_SchemaNames]

➜ SchemaName
SchemaName2

2 4 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 1 – J D B C D A T A S O U R C E S

III
Section III

Programming

This section documents the symbols, tags, expressions, and data types
which allow programming logic to be specified within LDML format files.
This section contains the following chapters.

 • Chapter 12: Programming Fundamentals introduces basic concepts of
LDML programming such as how to output results, how to store and
retrieve variables, and how to interact with HTML forms and URLs.

 • Chapter 13: Conditional Logic introduces the [If], [Loop], and [While] tags
and demonstrates how they can be used for flow control.

 • Chapter 14: String Operations introduces the string data type and the
symbols and tags that can be used to manipulate strings.

 • Chapter 15: Math Operations introduces the integer and decimal data
types and the symbols and tags that can be used to perform mathemat-
ical operations.

 • Chapter 16 Date and Time Operations introduces the Lasso date
format and the tags that can be used to manipulate dates and times.

 • Chapter 17: Arrays and Maps introduces the array, map, and pair data
types and the tags that can be used to store and manipulate complex
data types.

 • Chapter 18: Encoding explains how strings are encoded in Lasso for
output to many different languages and the tags and keywords that can
be used to control that output.

 • Chapter 19: Sessions explains how to create server-side variables that
maintain their value from page to page while a visitor traverses a Web
site.

 • Chapter 20: Files and Logging explains how to log information to files
and how to use the file tags to create, read, and write text files.

2 4 1

L A S S O 7 . 1 L A N G U A G E G U I D E

 • Chapter 21: Error Control introduces Lasso’s error reporting mechanism
and explains how custom error tags can be created and what tags can be
used to handle errors which occur while processing a format file.

 • Chapter 22: Control Tags introduces scheduling, the [Process] tag, page
variables, and Lasso administration and security tags.

 • Chapter 23: Miscellaneous Tags includes documentation of tags that do
not fit in any other chapter.

 • Chapter 24: LassoScript fully documents the alternate script-based
syntax for Lasso.

2 4 2

L A S S O 7 . 1 L A N G U A G E G U I D E

S E C T I O N I I I – P R O G R A M M I N G

12
Chapter 12

Programming
Fundamentals

This chapter introduces the basic concepts of programming using LDML. It
is important to understand these concepts before reading the chapters that
follow.

 • Overview explains how to use pages written in LDML and how to deal
with errors.

 • Logic vs. Presentation describes strategies for coding blocks of program-
ming logic code.

 • Data Output describes strategies for outputting calculation results in
HTML or XML.

 • Variables explains the theory behind variables and how to store and
retrieve values.

 • Data Types explains how to recognize different data types, how to cast
between data types, and casting rules.

 • Symbols is an introduction to symbols and expressions including rules
for grouping, precedence, and auto casting.

 • Member Tags explains how to call member tags and how they differ
from process and substitution tags.

 • Forms and URLs explains how to pass data between pages using HTML
forms and URLs and introduces form parameters and tokens.

2 4 3

L A S S O 7 . 1 L A N G U A G E G U I D E

Overview
LDML is a tag-based scripting language that has all the features of an
advanced programming language. LDML has support for data types, object-
oriented member tags, mathematical symbols, string symbols, complex
nested expressions, logical flow control, threads, and custom tags which
can extend Lasso’s built-in functions and procedures.

Using Format Files
Format files which contain LDML must be processed by Lasso in order
for the embedded tags to be interpreted. The Open… command in a Web
browser should not be used to view Lasso format files. Instead, format files
should be uploaded to a Web server and loaded with an appropriate URL.
For example, a file named default.lasso in the root of the Web serving folder
might be loaded using the following URL.

http://www.example.com/default.lasso

Simple sequences of tags and LassoScripts can be placed in a text file and
then called through the Web browser in order to test LDML programming
concepts without the overhead of HTML formatting tags.

Reporting Errors
If there are any LDML syntax errors in a format file which is processed by
Lasso, then all processing will stop and an error message will be displayed.
Depending on the current error reporting level, the error message will
provide the location of the error and a description of what syntax caused
the error. All errors must be corrected before the page can be fully
processed.

It is recommended that the error reporting level for the server be set
to Minimal or None and adjusted to High on a per-page basis using the
[Lasso_ErrorReporting] tag when a site is being actively developed. See
Chapter 21: Error Controls for details about setting the error reporting
level and customizing the built-in error page.

Figure 1: Error Page

��

����� �����������

�������������� �����������������������������������

����������� �����

2 4 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

Note: All valid LDML code above the syntax error will be processed each
time the page is loaded. If database actions are being performed, they may
be performed each time a page is loaded as long as they are above the point
in the page where the error occurs.

Logic vs. Presentation
LDML code can be structured in many ways in order to adapt itself to
different coding styles. Some methods involve the tight integration of
programming logic (LDML) with page presentation (HTML, XML, and
graphics). Other methods involve abstracting the programming logic from
the page presentation. LDML offers maximum flexibility for you to deter-
mine how you want to structure your pages.

It is often desirable to separate programming logic from page presenta-
tion so that different people can work on different aspects of a Web site.
For example, an LDML developer can concentrate on creating LassoScripts
and blocks of LDML code which define the programming logic of a site.
Meanwhile, a Web designer can concentrate on the visual aspects of the
Web site with only minimal knowledge of how to integrate LDML into the
page presentation so that data is inserted and formatted correctly.

It is also at times desirable for all of your programming to fit tightly within
the page presentation. Because LDML is an HTML-like tag language, it is
easy to embed LDML within HTML, in effect enhancing static HTML to
become dynamic HTML.

The following examples show how to use LDML within HTML as well as
how to use LDML abstracted from HTML.

Examples of LDML embedded in HTML:

 • LDML tags can be used within HTML markup to insert data from data-
bases, the results of calculations, or LDML commands into otherwise
static HTML. The following example inserts the LDML [Image_URL] tag
into an HTML tag in order to auto-generate a URL to an image
stored in a database.

 • Container tags can be used to hide or show portions of a page. The
following example hides an HTML <h2> header unless the variable
ShowTitle equals True.

[If: (Variable: 'ShowTitle') == True]
 <h2>Page Title</h2>
[/If]

2 4 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

 • Container tags can be used to repeat a portion of a page to present data
from many database records or to construct complex HTML tables.
The following example shows the fields First_Name and Last_Name from
a database search each in their own row of a constructed table. See
Chapter 6: Database Interaction Fundamentals for more information
about [Inline] … [/Inline] tags.

[Inline: -Database='Contacts', -Table='People', -KeyField='ID', -FindAll]
 <table>
 [Records]
 <tr>
 <td>[Field: 'First_Name'] [Field:'Last_Name']</td>
 </tr>
 [/Records]
 </table>
[/Inline]

Examples of LDML abstracted from HTML:

 • LassoScripts can be used to collect programming logic into a block at
the top of a format file. Code in the LassoScript can be formatted and
commented separate from the HTML in a format file. Separating the
programming logic from the page presentation tags allows for easier
debugging and customization of format files. The following example
shows an [Inline] specified in a LassoScript with an -InlineName keyword set
so the results can be retrieved in the presentation portion of the format
file. See Chapter 24: LassoScript for more information.

<?LassoScript
 // This inline finds all records in Contacts.
 // The results are fetched using [Records: -InlineName='Results'] … [/Records]
 Inline: -InlineName='Results', -Database='Contacts',-Table='People',-FindAll;
 /Inline;
?>

 • The [Include] tag can be used to include format files that contain portions
of the final output. In the following example, the format file shown
consists of the standard HTML tags with a pair of [Include] tags that insert
all of the programming logic from a file named library.lasso and the data
presentation code from a file named presentation.lasso. See Chapter 20:
Files and Logging for more information about using [Include] tags.

<html>
 <head>
 <title>Lasso FormatFile</title>
 [Include: 'library.lasso']
 </head>

2 4 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

 <body>
 [Include: 'presentation.lasso']
 </body>
</html>

Data Output
The final output of most Lasso format files is an HTML page, XML page, or
WML page which will be viewed by a Web site visitor in a client browser.
This section describes how the results of expressions can be output and
how the output of substitution tags can be controlled.

See also Chapter 18: Encoding for more information about using
encoding keywords.

Table 1: Output Tags

Tag Description

[Output] Outputs the result of a calculation or sub-tag.

[Output_None] Hides a portion of page from being output, but
processes the LDML tags within.

[HTML_Comment] Surrounds a portion of a page with HTML comment
markers, but processes the LDML tags within.

Outputting Values
Substitution tags output values to the format file which is currently being
processed in place. Their values are output whether they are contained
within LassoScripts or appear intermixed with HTML tags.

The [Output] tag is a general purpose substitution tag which can be used to
output the value of any LDML expression, member tag, or sub-tag.

Examples of using the [Output] tag:

 • The following LassoScript shows the use of the [Output] tag to return
the result of a mathematical expression. The same expression could
be placed in the LassoScript without the [Output] tag, but use of the tag
makes the result of the LassoScript clearer.

<?LassoScript
 Output: 1 + 2 * 3;
?>

➜ 7

2 4 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

 • The [Output] tag allows encoding keywords to be used on the results of
string expressions. The following LassoScript shows the use of the [Output]
tag to return the result of a string expression with the encoding keyword
-EncodeNone applied so the HTML tags are displayed properly on the
page.

<?LassoScript
 Output: '' + 'Bold Text' + '', -EncodeNone;
?>

➜ Bold Text

 • The results of member tags can be returned using the [Output] tag. This
can make the syntax clearer and help to distinguish between member
tags that will return a result and those that won’t. The following example
demonstrates returning the length of a string literal.

[Output: 'String Literal'->Length]

➜ 14

 • The [Output] tag is recommended, but not technically required when
outputting the values of expressions or member tags. Lasso will interpret
any expressions contained in square brackets or the <?LassoScript … ?>
tags. The following expression is equivalent to the [Output] tag shown
above.

['String Literal'->Length]

➜ 14

Values which are output without using the [Output] tag do not have any
encoding applied by default. The following expression is equivalent to
the LassoScript above, but does not require the -EncodeNone encoding
keyword be explicitly specified.

<?LassoScript
 '' + 'Bold Text' + '';
?>

➜ Bold Text

Suppressing Output
Sometimes it is desirable to have LDML tags processed in a format file,
but not to show the results in the page which is returned to the Web site
visitor. The [Output_None] … [/Output_None] tag can be used to accomplish
this purpose. Any LDML tags contained within the container tag will be
processed, but the results will not be returned to the Web site visitor.

2 4 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

The following examples use page specific variables in a block of code that
will not be output to the user.

[Output_None]
 This text will not be returned to the site visitor.
 However, the following tags will be processed.
 [Variable: 'Page Title'='Lasso Format File']
 [Variable: 'Page Error'='None']
[/Output_None]

This same example could be written as a LassoScript as follows. The
LassoScript will return no value to the page on which it is placed, but any
tags within the LassoScript will be processed.

<?LassoScript
 Output_None;
 // This LassoScript will return no value.
 // However, the following tags will be processed.
 Variable: 'Page Title'='Lasso Format File';
 Variable: 'Page Error'='None';
 /Output_None;
?>

Another way to suppress output is to surround a portion of a page in
[HTML_Comment] … [/HTML_Comment] tags. These tags will become an HTML
comment container <?-- … --> when the page is processed. Any results of
the tags inside the container tags will not be shown to the Web site visitor,
but will be available if they view the source of the page. This can be useful
for providing debugging information which won’t affect the overall layout
of a Web page. In the following example, the values of several variables are
shown in an HTML comment.

[HTML_Comment]
 This text will be available in the source of the completed Web page.
 Page Title: [Variable: 'Page Title']
 Page Error: [Variable: 'Page Error']
[/HTML_Comment]

 <?--
 This text will be available in the source of the completed Web page.
 Page Title: Lasso Format File
 Page Error: None
?>

Variables
Variables are named locations where values can be stored and later
retrieved. The concepts of setting and retrieving variables and performing

2 4 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

calculations on variables are essential to understanding how to work with
LDML’s data types and tags.

Table 2: Variable Tags

Tag Description

[Variable] Creates or sets named variables or returns their values.

[Variable_Defined] Returns True if a variable is defined.

[Var] Abbreviation of [Variable].

[Var_Defined] Abbreviation of [Variable_Defined].

[Var_Remove] Deletes the named variable.

Table 3: Variable Symbols

Symbol Description

$ Returns the value of a variable.

Returns the value of a local variable.

= Assigns a value to a variable: $Variable='NewValue'.

:= Assigns a value to a variable and returns the value.

A variable is created and set using the [Variable] tag. The following tag sets a
variable named VariableName to the literal string value VariableValue.

[Variable: 'VariableName'='VariableValue']

A variable is also retrieved using the [Variable] tag. This time, the tag is
simply passed the name of the variable to be retrieved. The following tag
retrieves the variable named VariableName returning the literal string value
VariableValue.

[Variable: 'VariableName'] ➜ VariableValue

The following LassoScript sets a variable and then retrieves the value. The
result of the LassoScript is the value VariableValue.

<?LassoScript
 Variable: 'VariableName'='VariableValue';
 Variable: 'VariableName';
?>

➜ VariableValue

Creating Variables
There is only one way to create a variable, using the [Variable] tag with a
name/value parameter. All variables should be created and set to a default
value before they are used.

2 5 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

Examples of creating variables:

 • An empty variable can be created by setting the variable to ''.

[Variable: 'VariableName'='']

 • A variable can be created and set to the value of a string literal.

[Variable: 'VariableName'='String Literal']

 • A variable can be created and set to the value of an integer or decimal
literal.

[Variable: 'VariableName'=123.456]

 • A variable can be created and set to the value of any substitution tag
such as a field value.

[Variable: 'VariableName'=(Field: 'Field_Name')]

Multiple variables can be created in a single [Variable] tag by listing the
name/value parameters defining the variables separated by commas. The
following tag defines three variables named x, y, and z.

[Variable: 'x'=100, 'y'=324, 'z'=1098]

Variable names can be any string literal and case is unimportant. For best
results, variables names should start with an alphabetic character, should
not contain any punctuation except for underscores and should not
contain any white space except for spaces (no returns or tabs). Variable
names should be descriptive of what value the variable is expected to
contain.

Note: Variables cannot have their value retrieved in the same [Variable] tag
they are defined. [Variable: 'x'=10, 'y'=(variable:'x')] is not valid.

Returning Variable Values
The most recent value of a variable can be returned using the [Variable]
tag. For example, the following LassoScript creates a variable named
VariableName, then retrieves the value of the variable using the [Variable] tag.
The result is Variable Value.

<?LassoScript
 Variable: 'VariableName'='Variable Value';
 Variable: 'VariableName';
?>

➜ Variable Value

2 5 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

Variable values can also be retrieved using the $ symbol. The following
LassoScript creates a variable named VariableName, then retrieves the value
of the variable using the $ symbol. The result is Variable Value.

<?LassoScript
 Variable: 'VariableName'='Variable Value';
 Output: $VariableName;
?>

➜ Variable Value

Setting Variables
Once a variable has been created, it can be set to different values as many
times as is needed. The easiest way to set a variable is to use the [Variable]
tag again just as it was used when the variable was created.

[Variable: 'VariableName'='New Value']

Variables can also be set using the expression $VariableName=’NewValue’.
This expression should only be used within LassoScripts so that it is not
confused with a name/value parameter. This expression can be used to set
a variable, but cannot be used to create a variable.

The following LassoScript creates a variable named VariableName, sets it to a
value New Value using an expression, then retrieves the value of the variable.
The result is New Value.

<?LassoScript
 Variable: 'VariableName'='';
 $VariableName='New Value';
 $VariableName;
?>

➜ New Value

Checking to See if a Variable has been Created
The [Variable_Defined] tag can be used to check if a variable has been created
and used in the current format file. The following example will return
false the first time [Variable_Defined] is called, then set the variable using
[Variable] and return True the second time [Variable_Defined] is called.

<?LassoScript
 Variable_Defined: 'VariableName';
 Variable: 'VariableName'='VariableValue';
 Variable_Defined: 'VariableName';
?>

➜ False True

2 5 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

The [Variable_Defined] tag will return True even if a variable is set to the empty
string " (two single quotes with no space) or to Null. There is no way to
delete a variable once it has been created.

Data Types
Every value in Lasso is defined as belonging to a specific data type. Every
value stored in a variable belongs to a specific data type. The data type
determines what symbols and member tags are available for use with the
value.

Table 4: Data Type Tags

Tag Description

[Null->Type] Returns the data type of a value.

[String] Casts a value to data type string.

[Integer] Casts a value to data type integer.

[Decimal] Casts a value to data type decimal.

[Boolean] Casts a value to data type boolean.

[Date] Casts a value to data type date.

[Duration] Casts a value to data type duration.

[Array] Creates an array data type.

[Map] Creates a map data type.

[Pair] Creates a pair data type.

[Bytes] Creates a bytes data type.

Several data types have already been introduced:

 • Strings are sequences of alphanumeric characters. String literals are
delimited by single quotes as in 'String Literal'.

 • Integers are whole numbers. Integer literals are specified without quotes
as in 123 or -987.

 • Decimals are numbers which contain a decimal point. Decimal literals
are specified without quotes as in 3.1415926 or 24.99.

 • Dates are alphanumeric strings that represent a date and/or time. A date
must always be cast using the [Date] tag in a recognized format to be used
as a date data type (e.g. [Date:'9/29/2002']).

 • Durations are alphanumeric strings that represent a length time (not a
24-hour clock time). A duration must always be cast using the [Duration]
tag in a recognized format to be used as a duration data type (e.g.
[Duration:'168:00:00']).

2 5 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

Variables which are set to literal values of a specific data type are them-
selves said to be of that data type. Variables containing strings are string
variables. Any symbols which operate on literal strings will also operate on
string variables.

It is important to keep track of what type of value is stored in each variable
so that the values of expressions and member tags can be safely predicted.

Returning the Type of a Variable
The [Null->Type] member tag can be used to return the type of a variable
or other value. [Null->Type] is a member tag of the data type null which is
a precursor to all other data types. The [Null->…] member tags can be used
with values of any data type.

The following example shows the value of [Null->Type] for literals of different
data types.

'String Value'->Type ➜ string
123->Type ➜ integer
9.999->Type ➜ decimal

The following example shows the value of [Null->Type] when it is used on a
variable which has been set to a string literal.

<?LassoScript
 Variable: 'Value' = 'String Value';
 Output: $Value->Type;
?>

➜ string

The [Null->Type] member tag also works on the compound data types: array,
map, and pair. The following example shows the value of [Null->Type] when
it is used on a variable which has been set to an array literal.

<?LassoScript
 Variable: 'Value' = (Array: 'One', 'Two', 'Three', 'Four');
 Output: $Value->Type;
?>

➜ array

Casting a Value to a Data Type
Values can be cast from one data type to another in order to ensure
that the proper member tags will be available and symbols will work as
expected. Each data type defines a tag which has the same name as the data
type that can be used to cast a value to that data type.

2 5 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

To cast a value to the string data type:

 • Integer and decimal values can be cast to type string using the [String] tag.
The value of the string is the same as the value of the integer or decimal
value when it is output using the [Variable] tag.

[String: 999.999] ➜ '999.999'

 • Boolean values can be cast to type string using the [String] tag. The value
will always either be True or False.

[String: True] ➜ 'True'

 • Arrays, maps, and pairs should not be cast to type string. The value
which results is intended for debugging purposes. More information can
be found in Chapter 17: Arrays and Maps.

To cast a value to the integer data type:

 • Decimal values can be cast to type integer using the [Integer] tag. The
value of the decimal number will be truncated at the decimal point. For
example, casting 999.999 to type integer results in 999 not 1000.

[Integer: 999.999] ➜ 999

 • String values can be cast to type integer using the [Integer] tag. The string
must start with a numeric value. For example casting 2String1 to an
integer results in 2.

[Integer: '2001: A Space Oddysey'] ➜ 2001
[Integer: '2String1'] ➜ 2

 • Boolean values can be cast to type integer using the [Integer] tag. The
value of the result will be 1 if the boolean was True or 0 if the boolean
was False.

[Integer: True] ➜ 1
[Integer: False] ➜ 0

 • Arrays, maps, and pairs should not be cast to type integer. The value
which results will always be 0.

To cast a value to the decimal data type:

 • Integer values can be cast to type decimal using the [Decimal] tag. The
value of the integer number will simply have a decimal point added. For
example, casting 123 to type integer results in 123.000000.

[Decimal: 123] ➜ 123.000000

2 5 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

 • String values can be cast to type decimal using the [Decimal] tag. The
string must start with a numeric value. For example casting 2.5String1 to a
decimal results in 2.500000. The 1 at the end of the string is ignored.

[Decimal: '2001: A Space Oddysey'] ➜ 2001.000000
[Decimal: '2.5String1'] ➜ 2.500000

 • Boolean values can be cast to type decimal using the [Decimal] tag. The
value of the result will be 1.000000 if the boolean was True or 0.000000 if
the boolean was False.

[Decimal: True] ➜ 1.000000
[Decimal: False] ➜ 0.000000

 • Arrays, maps, and pairs should not be cast to type integer. The value
which results will always be 0.000000.

To cast a value to the boolean data type:

 • Integer and decimal values can be cast to type boolean using the [Boolean]
tag. The value of the boolean will be False if the number is zero or True if
the number is non-zero.

[Boolean: 123] ➜ True
[Boolean: 0.0] ➜ False

 • String values can be cast to type boolean using the [Boolean] tag. The
value of the boolean will be False if the string contains just the word
false or is empty and True otherwise.

[Boolean: 'false'] ➜ False
[Boolean: ''] ➜ False
[Boolean: 'true'] ➜ True
[Boolean: 'value'] ➜ True

 • Arrays, maps, and pairs should not be cast to type boolean. The value
which results will always be False.

To cast a value to the date data type:

 • Specially formatted strings may be cast as date data types using the [Date]
tag. For a list of date string formats that are automatically recognized as
dates, see Chapter 16: Date and Time Operations.

[Date: '9/29/2002'] ➜ 9/29/2002 00:00:00
[Date: '9/29/2002 12:30:00'] ➜ 9/29/2002 12:30:00
[Date: '2002-09-29 12:30:00'] ➜ 2002-09-29 12:30:00

 • Unrecognized date strings can be cast as date data types using the [Date]
tag with the -Format parameter. All eligible date strings must contain
numbers, punctuation, and/or allowed words (e.g. February, GMT) in a

2 5 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

format that represents a valid date. For a description of how to format a
date string, see Chapter 16: Date and Time Operations.

[Date: '9.29.2002', -Format='%m.%d.%Y'] ➜ 9.29.2002
[Date: '20020929', -Format='%Y%m%d'] ➜ 20020929
[Date: 'September 29, 2002', -Format='%B %d, %Y'] ➜ September 29, 2002

To cast a value to the duration data type:

 • Specially formatted strings as either hours:minutes:seconds or just seconds
may be cast as duration data types using the [Duration] tag. The [Duration]
tag always returns values in hours:minutes:seconds format. For more infor-
mation, see Chapter 16: Date and Time Operations.

[Duration: '169:00:00'] ➜ 169:00:00
[Duration: '00:30:00'] ➜ 00:30:00
[Duration: '300'] ➜ 00:05:00

To cast a value to type array, map, or pair:

Values cannot be cast to type array, map, or pair. However, an array, map,
or pair can be constructed with the simple data type as its initial value.
See Chapter 17: Arrays and Maps for more information about how to
construct these complex data types.

To cast a value to the bytes data type:

For discussion on the bytes data type, see Chapter 5: Advanced
Programming Topics in the Extending Lasso 7 Guide.

Automatic Casting
Lasso will cast values to a specific data type automatically when they are
used in expressions or as parameters for tags which require a particular
type of value. Values will be automatically cast in the following situations:

 • Values of every data type are cast to string values when they are output to
the Web browser.

 • Integer values are cast to decimal values when they are used as param-
eters in expressions with one integer parameter and one decimal param-
eter.

 • Integer and decimal values are cast to string values when they are used
as parameters in expressions with one integer or decimal parameter and
one string parameter.

 • Values of every data type are cast to boolean values when they are used
in logical expressions.

2 5 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

 • The [Math_…] tags will automatically cast all parameters to integer or
decimal values.

 • The [String_…] tags will automatically cast all parameters to string values.

Symbols
Symbols allow for powerful calculations to be performed within LDML
tags. The symbols which can be used in expressions are discussed in full
detail in the chapter devoted to each data type. String expressions and
symbols are discussed in Chapter 14: String Operations and decimal
and integer expressions and symbols are discussed in Chapter 15: Math
Operations.

Using Symbols
Since symbols only function on values of a specific data type, values need
to be cast to that data type explicitly or they will be automatically cast. For
best results, explicit casting should be performed so the meaning of the
symbols will be clear. Note that spaces should always be specified between
a symbol and its parameters.

As explained in the Automatic Casting section above, values used as a
parameter in an expression will be automatically cast to a string value if
any parameter in the expression is a string value. Integer values will be
automatically cast to decimal values. Any value used in a logical expression
will be automatically cast to a boolean value.

 • The following expression returns 1212 since the integer 12 is automati-
cally cast to a string because one parameter is a string.

[Output: '12' + 12] ➜ 1212

 • Similarly, the following expression returns 1212 since the integer 12 is
automatically cast to a string because one parameter is a string.

[Output: 12 + '12'] ➜ 1212

 • The following expression returns 24 since the string 12 is explicitly cast to
an integer.

[Output: (Integer: '12') + 12] ➜ 24

 • The following expression returns 24.000000 since the integer 12 is auto-
matically cast to a decimal value because one parameter is a decimal
value.

[Output: 12 + 12.0] ➜ 24.000000

2 5 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

 • The following expression returns True since the integer 12 is automatically
cast to a boolean value True because it is used in a logical expression.

[Output: 12 && 12] ➜ True

When in doubt, the [String], [Integer], and [Decimal] tags should be used to
explicitly cast values so that the proper symbols are used.

Note: Always place spaces between a symbol and its parameters. The
- symbol can be mistaken for the start of a command tag, keyword, or
keyword/value parameter if it is placed adjacent to the parameter that
follows.

Assignment Symbols
Variables can be set to the result of an expression, storing that result for
later use. For example, the following variable is set to the result of a simple
math expression.

[Variable: 'MathResult'=(1 + 2)]

Variables can also be set using assignment symbols within LassoScripts.
The equal sign = is the simplest assignment symbol. Other assignment
symbols can be formed by combining a decimal, integer, or string symbol
with the equal sign. For example, += is the additive assignment symbol.

The following LassoScript creates a variable named MathResult, performs
a mathematical operation (adding 4) on it using the additive assignment
symbol, and returns the final value.

<?LassoScript
 Variable: 'MathResult'=0;
 $MathResult += 4;
 Output: $MathResult;
?>

➜ 4

The assignment symbol replaces the value of the variable and does not
return any output. The assignment expression $MathResult += 4; is equivalent
to the expression $MathResult = $MathResult + 4;. Since assignment expres-
sions do not return a value they should only be used within LassoScripts to
modify variables.

LassoScripts can use variable results to build very complex operations. For
example, the following LassoScript uses several variables to perform a math
expression.

2 5 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

<?LassoScript
 Variable: 'x'=100, 'y'=4;
 $x = $x / $y;
 $y = $x + $y;
 Output: 'x=' + $x + ' y=' + $y;
?>

➜ x=25 y=29

Note: If a negative number is used as the right-hand parameter of an assign-
ment symbol it should be surrounded by parentheses.

Member Tags
Member tags are associated with a particular data type and can be used on
any value of that data type. The data type of a member tag is represented
in the documentation in the member tag name before the member tag
symbol ->. For example, the tag [String->Length] can be used with values of
data type string, and the tag [Decimal->SetFormat] can be used with values of
data type decimal.

Member tags are available for string, decimal, integer, date, array, map,
and pair data types, and are discussed in detail in Chapter 14: String
Operations, Chapter 15: Math Operations, Chapter 16: Date and Time
Operations, and Chapter 17: Arrays and Maps.

Using Member Tags
Since member tags only function on values of a specific data type, values
need to be cast to that data type explicitly. Member tags will not automati-
cally cast values.

For example, the member tag [String->Length] can be used to return the
length of a string value. If [String->Length] is used on a number as in
[Output: 123->Length] then an error will result:

"Length" was not a member of type "integer"

Instead, the integer must be cast to a string value explicitly before the
member tag can be used. The following example returns the length of the
string representing the integer correctly.

[Output: (String: 123)->Length] ➜ 3

When in doubt, the [String], [Integer], [Decimal], and [Date] tags should be used
to explicitly cast values so that the proper member tags are available.

2 6 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

Member Tag Types
Member tags can function like either substitution tags which return a value
or like process tags which modify the value which the member tag is called
on, but do not return a value.

For example, the member tag [String->Length] functions like a substitution
tag and returns the length of the string on which it is called. The following
LassoScript stores a string in a variable StringVariable then retrieves its length.
The string stored in the variable is left unchanged.

<?LassoScript
 Variable: 'StringVariable' = 'A string value';
 Output: $StringVariable->Length;
?>

➜ 14

In contrast, the member tag [Decimal->SetFormat] functions like a process tag,
altering the way that a decimal variable will be output when it is cast to a
string. The following LassoScript shows the normal decimal value output
of a variable.

<?LassoScript
 Variable: 'DecimalVariable' = 123.456;
 Output: $DecimalVariable;
?>

➜ 123.456000

The following LassoScript shows how the output of the decimal
value changes when a [Decimal->SetFormat] tag is used on the variable
DecimalVariable to truncate its output to two significant digits.

<?LassoScript
 Variable: 'DecimalVariable' = 123.456;
 $DecimalVariable->(SetFormat: -Precision=2);
 Output: $DecimalVariable;
?>

➜ 123.45

The value stored in the variable DecimalVariable is not changed, but the value
which is output is formatted according to the rules set in the
[Decimal->SetFormat] tag.

Forms and URLs
This section discusses how to pass information from format file to format
file through HTML forms and URLs. Data can also be passed from format

2 6 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

file to format file using database actions or sessions. Please see Chapter 6:
Database Interaction Fundamentals and Chapter 19: Sessions for more
information.

Form Parameters
HTML forms can be used to pass values to an LDML format file. The
values are retrieved in the format file using the [Action_Param] tag. Any
<input>, <select>, or <textarea> values can be retrieved by name using the
[Action_Param] tag except for those which contain LDML command tags.

For example, the following form has two inputs for First_Name and
Last_Name and a button that submits the form.

<form action="response.lasso" method="POST">
 <p>First Name: <input type="test" name="First_Name" value="">
 <p>Last Name: <input type="test" name="Last_Name" value="">
 <p><input type="submit" name="Submit" value="Submit Value">
</form>

In the format file response.lasso—which is loaded when this form is
submitted—the following LDML tags will retrieve the values submitted by
the site visitor in the form.

First Name: [Action_Param: 'First_Name']
Last Name: [Action_Param: 'Last_Name']

Even the value of the submit button can be fetched. This can help distin-
guish between multiple buttons that each have the same name displayed in
the Web browser.

Button Value: [Action_Param: 'Submit']

URL Parameters
URLs can be used to pass values to an LDML format file. The values are
retrieved in the format file using the [Action_Param] tag. Any values which are
passed as URL parameters can be retrieved by name using the [Action_Param]
tag except for those which contain LDML command tags.

For example, the URL in the following anchor tag has two parameters for
First_Name and Last_Name.

John Doe

In the format file response.lasso—which is loaded when this form is
submitted—the following LDML tags will retrieve the values submitted by
the site visitor on the form.

First Name: [Action_Param: 'First_Name']
Last Name: [Action_Param: 'Last_Name']

2 6 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 2 – P R O G R A M M I N G F U N D A M E N T A L S

13
Chapter 13

Conditional Logic

Conditional tags allow programming logic to be embedded into format
files. Portions of a page can be hidden or repeated multiple times. Code
can be executed in every repetition of a loop or every several repetitions.
Complex decision trees can be created which execute code only under very
specific conditions.

 • If Else Conditionals explains how to use the [If] … [/If] tags and [Else] tag
to conditionally determine the results of a page or to execute LDML
code.

 • Select Statements explains how to use [Select] … [Case] … [/Select] tags to
choose what code to execute based on the value of a variable.

 • Loops explains how to use the [Loop] … [/Loop] tags to repeat a portion of
the page and documents the [Loop_Abort] and [Loop_Count] tags used in any
repeating container tag.

 • Iterations explains how to use the [Iterate] … [/Iterate] tags to perform an
action using the value of each element of a compound data type in turn.

 • While Loops explains how to use the [While] … [/While] tags to repeat a
portion of a page while a condition is True.

 • Abort Tag explains how to use the [Abort] tag to halt execution of a
format file.

 • Boolean Data Type describes the [Boolean] tag and boolean symbols
which can be used to create complex conditional expressions.

2 6 3

L A S S O 7 . 1 L A N G U A G E G U I D E

If Else Conditionals
Code can be conditionally executed and page elements can be condition-
ally shown by placing them within [If] … [/If] container tags. The code or
other page elements will only be processed if the expression in the opening
[If] tag evaluates to True.

[If: (Variable: 'Test') == True]
 This text will be shown if the variable Test equals True.
[/If]

The [Else] tag allows for either/or logic to be programmed. If the condition
in the [If] tag is True then the code between the [If] tag and the [Else] tag is
processed, otherwise the code between the [Else] tag and the closing [/If] tag
is processed.

[If: (Variable: 'Test') == True]
 This text will be shown if the variable Test equals True.
[Else]
 This text will be shown if the variable Test does not equal True.
[/If]

A series of tests can be made and code associated with the first test that
returns True can be shown by specifying expressions within the [Else]
tags. The code between the [Else] tag with a conditional expression and
the next [Else] tag will only be shown if the expression returns True.
As many [Else] tags as needed can be specified within a single set of
[If] … [/If] container tags.

Note: The [Select] … [Case] … [/Select] tags can be used to perform a similar
operation. These tags are discussed in the next section.

[If: (Variable: 'Test') == (-1)]
 This text will be shown if the variable Test equals -1.
[Else: (Variable: 'Test') == 2]
 This text will be shown if the variable Test equals 2.
[Else: (Variable: 'Test') == 3]
 This text will be shown if the variable Test equals 3.
[/If]

A final [Else] tag without a conditional expression can be included. The
code between the [Else] tag and the closing [/If] tag will only be processed if
the expression in the opening [If] tag returns False and the expressions in all
subsequent [Else] tags return False as well.

[If: (Variable: 'Test') == 1]
 This text will be shown if the variable Test equals 1.
[Else: (Variable: 'Test') == 2]
 This text will be shown if the variable Test equals 2.
[Else: (Variable: 'Test') == 3]

2 6 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

 This text will be shown if the variable Test equals 3.
[Else]
 This text will be shown if the variable Test is not equal to 1, 2, or 3.
[/If]

Table 1: If Else Tags

Tag Description

[If] … [/If] Executes the contents of the container only if the
expression in the [If] tag returns True.

[Else] Valid only within [If] … [/If] container tags. Executes the
remainder of the container tag only if the expression in
the [Else] tag returns True or no expression is specified.

The rules for specifying expressions in the [If] and [Else] tags are presented in
full in the following section entitled Boolean Data Type.

Note: The [If] and [Else] tags will simply output the result of the specified
conditional expression parameter if they are called individually on a page, i.e.
not as part of a valid [If] … [Else] … [/If] container tag.

To conditionally execute code within a LassoScript:

Use the [If] tag with an appropriate conditional expression. In the following
example, an [Output] tag will only be processed if the current username
returned by the [Client_Username] tag is Anonymous.

<?LassoScript
 If: ((Client_Username) == 'Anonymous');
 Output: 'You are an anonymous user';
 /If;
?>

To show a different portion of a page if an error occurs:

Errors are reported in Lasso using the [Error_CurrentError] tag. This tag can be
compared with many specific error type tags to check to see if a particular
error occurred. In the following example, the current error is compared to
[Error_SecurityError] in order to display an appropriate message.

[If: (Error_CurrentError) == (Error_SecurityError)]
 You don't have permission to access that resource.
[/If]

Note: See Chapter 21: Error Control for more information about the [Error_…]
tags.

2 6 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

Complex Conditionals
There are two methods for creating complex conditionals. Each of these
methods can be used interchangeably depending on what conditions need
to be checked and the preference of the Lasso developer.

Examples of complex conditionals

 • The conditional expression within the opening [If] tag can be used to
check several different conditions. The conditions are appended using
the and && symbol which returns True if both parameters return True or
the or || symbol which returns True if either parameter returns True.

In the following example, two fields from a database are checked to
determine what title to put on a salutation. The Sex field is checked to
see if the visitor is Male or Female and the Married field is checked to see
if the visitor is Married or Single. Compound conditional expressions are
created to check for the combination of gender and marriage status for
each title.

[If: ((Field: 'Sex') == 'Male')]
 Dear Mr. [Field: 'First_Name'] [Field: 'Last_Name'],
[Else: ((Field: 'Sex') == 'Female') && ((Field: 'Marriage') == 'Married')]
 Dear Mrs. [Field: 'First_Name'] [Field: 'Last_Name'],
[Else: ((Field: 'Sex') == 'Female') && ((Field: 'Marriage') == 'Single')]
 Dear Ms. [Field: 'First_Name'] [Field: 'Last_Name'],
[Else]
 To whom it may concern,
[/If]

 • Nested [If] … [/If] tags can be used to check several conditions in turn. The
conditional expression in each [If] tag is simple, but the nesting estab-
lishes that the innermost [If] … [/If] tags are only executed if the outer-
most [If] … [/If] tags evaluate their conditional expression to True.

In the following example the [If] … [/If] tags cause the Marriage field to be
evaluated if the conditional expression in the outermost [Else] tag finds
that the Sex field contains Female.

[If: ((Field: 'Sex') == 'Male')]
 Dear Mr. [Field: 'First_Name'] [Field: 'Last_Name'],
[Else: ((Field: 'Sex') == 'Female')]
 [If: ((Field: 'Marriage') == 'Married')]
 Dear Mrs. [Field: 'First_Name'] [Field: 'Last_Name'],
 [Else: ((Field: 'Marriage') == 'Single')]
 Dear Ms. [Field: 'First_Name'] [Field: 'Last_Name'],
 [/If]
[/If]

2 6 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

Select Statements
Select statements can be used when a variable can take multiple values
and a different block of code should be executed depending on the current
value. The variable to be checked is specified in the opening [Select] tag. A
series of [Case] tags follow, each specified with a possible value of the vari-
able. If one of the [Case] tags matches the value of the variable then the
code until the next [Case] tag or the closing [/Select] tag will be executed.

For example, to return different text depending on value a variable named
Test current has the following [Select] … [/Select] statement could be used.

[Select: (Variable: 'Test')]
 [Case (-1)]
 This text will be shown if the variable Test equals -1.
 [Case: 2]
 This text will be shown if the variable Test equals 2.
 [Case: 3]
 This text will be shown if the variable Test equals 3.
[/Select]

A [Case] tag without any value is used as the default value for the
[Select] … [/Select] statement in the event that no [Case] statement matches
the value of the parameter of the opening [Select] tag. The first [Case] tag
without any value is returned as the default value.

[Select: (Variable: 'Test')]
 [Case (-1)]
 This text will be shown if the variable Test equals -1.
 [Case: 2]
 This text will be shown if the variable Test equals 2.
 [Case: 3]
 This text will be shown if the variable Test equals 3.
 [Case]
 This text is shown if the variable does not equal any of the values.
[/Select]

Table 2: Select Tags

Tag Description

[Select] … [/Select] Takes a single parameter which is used to decide which
enclosed [Case] tag to select. Requires one or more
[Case] tags to be specified. Returns the value of the
code between the selected [Case] statement and the
next [Case] statement or the closing [/Select] tag.

[Case] Accepts a single parameter which is checked against the
parameter of the enclosing [Select] tag. If no parameter
is specified then the tag defines the default case.

2 6 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

To return a different value based on the type of a variable:

Use the [Select] … [Case] … [/Select] tags to return a different value depending
on the type of a variable. The following code outputs the value of a vari-
able named MyVariable that could be of any type. If the variable is not of any
built-in type then the default output is to cast it to string.

[Select: (Variable: 'MyVariable')->Type]
 [Case: 'Integer']

Integer value [Variable: 'MyVariable'].
 [Case: 'Decimal']

Decimal value [Variable: 'MyVariable'].
 [Case: 'String']

String value [Variable: 'MyVariable'].
 [Case: 'Boolean']

Boolean value [Variable: 'MyVariable'].
 [Case: 'Array']

Array value [Variable: 'MyVariable'].
 [Case: 'Map']

Map value [Variable: 'MyVariable'].
 [Case: 'Pair']

Pair value [Variable: 'MyVariable'].
 [Case]

Unknown type value [String: (Variable: 'MyVariable')].
[/Select]

Loops
A portion of a page can be repeated a number of times using the
[Loop] … [/Loop] tags. The parameters to the opening [Loop] tag define how
many times the portion of the page should be repeated. For example, a
message in a Web page could be repeated five times using the following
[Loop] tag.

[Loop: 5]

This is repeated five times.
[/Loop]

➜
This is repeated five times.

This is repeated five times.

This is repeated five times.

This is repeated five times.

This is repeated five times.

The basic form of the [Loop] … [/Loop] tags simply repeats the contents of
the tags as many times as is specified by the parameter. The opening [Loop]
tag can also accept a number of keyword/value parameters to create more
complex repetitions.

2 6 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

Table 3: [Loop] Tag Parameters

Keyword Description

-From Specifies the starting repetition for the [Loop] tag. Can
also be specified as -LoopFrom.

-To Specifies the ending repetition for the [Loop] tag. Can
also be specified as -LoopTo.

-By Specifies how many repetitions should be skipped on
each actual repetition of the contents of the
[Loop] … [/Loop] tag. Can also be specified as
-LoopIncrement.

The following example shows a loop that runs backward for five repeti-
tions by setting -From to 5, -To to 1 and -By to -1. The [Loop_Count] tag shows
the number of the current repetition.

[Loop: -From=5, -To=1, -By=-1]

This is repetition number [Loop_Count].
[/Loop]

➜
This is repetition number 5.

This is repetition number 4.

This is repetition number 3.

This is repetition number 2.

This is repetition number 1.

Note: The [Loop_Count] tag can be used in any looping container tag within
LDML to return the number of the current repetition. This includes the
[Records] … [/Records] tags.

The [Loop_Abort] tag can be used to halt a [Loop] before it reaches the speci-
fied number of repetitions. In the following example, the [Loop] tag is
stopped after the third repetition by checking to see if [Loop_Count] is equal
to 3.

[Loop: 5]

This is repeated five times.
 [If: (Loop_Count) == 3]
 [Loop_Abort]
 [/If]
[/Loop]

➜
This is repeated five times.

This is repeated five times.

This is repeated five times.

Note: The [Loop_Abort] tag can be used in any looping container tag within
LDML to abort the loop. This includes the [Records] … [/Records] tags.

2 6 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

The modulus symbol % can be used in an [If] … [/If] conditional to perform
a task on every other repetition (or every nth repetition). The conditional
expression (Loop_Count % 2)==0 returns True for every other repetition of the
loop.

[Loop: 5]
 [If: (Loop_Count % 2) == 0]

This is an Even loop.
 [Else]

This is an Odd loop.
 [/If]
[/Loop]

➜
This is an odd loop.

This is an even loop.

This is an odd loop.

This is an even loop.

This is an odd loop.

The modulus symbol can be used in any looping container tag within
LDML to show elements in alternate rows. This includes the [Records] …
[/Records] tags.

Note: The [Repetition] tag from earlier versions of Lasso has been deprecated.
It’s use is not recommended. Any code using the [Repetition] tag should be
changed to the modulus operator for dramatically better speed and future
compatibility.

Table 4: Loop Tags

Tag Description

[Loop] … [/Loop] Repeats the contents of the container tag a specified
number of times.

[Loop_Count] Returns the number of the current repetition.

[Loop_Abort] Aborts the [Loop] … [/Loop] tag, jumping immediately to
the closing tag.

To list all the field names for a table:

An [Inline] … [/Inline] with a -Show command tag can be used to get a list of all
the field names in a table. The [Field_Name] tag accepts a -Count parameter
that returns how many fields are in the current table or an integer param-
eter that returns the name of one of the fields. The following example uses
the [Loop] … [/Loop] tags to display a list of all the field names in a table.

2 7 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

[Inline: -Database='Contacts', -Table='People', -Show]
 [Loop: (Field_Name: -Count)]

[Field_Name: (Loop_Count)]
 [/Loop]
[/Inline]

➜ ID
First_Name
Last_Name

To loop through the elements of an array:

The elements of an array can be displayed to a site visitor or otherwise
manipulated by looping through the array using the [Loop] … [/Loop] tags.
The [Array->Size] tag returns the number of elements in an array and the
[Array->Get] tag returns a specific element by index. The following example
shows how to store the names of the days of the week in an array and then
list those elements using [Loop] … [/Loop] tags.

<?LassoScript
 Encode_Set: -EncodeNone;

 Variable: 'DaysOfWeek' = (Array: 'Sunday', 'Monday', 'Tuesday',
 'Wednesday', 'Thursday', 'Friday', 'Saturday');

 Loop: ($DaysOfWeek->Size);
 Output: '
' + $DaysOfWeek->(Get: (Loop_Count));
 /Loop;

 /Encode_Set;
?>

➜
Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Note: See Chapter 17: Arrays and Maps for more information about the
array member tags.

To format a found set in two columns:

The modulus symbol % can be used to format a found set in two columns.
In the following example, an HTML <table> is constructed with one cell for
each person found by an [Inline] … [/Inline] based -FindAll action. The modulus
symbol % is used to insert the row tags every other record.

2 7 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

[Inline: -Database='Contacts', -Table='People', -FindAll]
 <table>
 <tr>
 [Records]
 <td>[Field: 'First_Name'] [Field: 'Last_Name']</td>
 [If: (Loop_Count % 2) == 0]
 </tr><tr>
 [/If]
 [/Records]
 </tr>
 </table>
[/Inline]

➜ <table>
 <tr>
 <td>Jane Person</td>
 <td>John Person</td>
 </tr><tr>
 <td>Joe Surname</td>
 </tr>
</table>

Iterations
The [Iterate] … [/Iterate] tags loop through each element of a complex data
type such as an array or a map. A variable is set to the value of each
element of the complex data type in turn. This allows the same operation
to be performed on each element.

Note: The [Iterate] … [/Iterate] tags can be used with built-in array, map, pair, and
string data types. It can also be used with any custom data type that supports
the [Type->Size] and [Type->Get] member tags.

For example, to print out each element of an array stored in a variable
myArray the following tags could be used. The opening [Iterate] tag contains
the name of the variable storing the array and a definition for the variable
that should be set to each element of the array in turn. In this case a new
variable myItem will be created. The value for myItem is then output within
the [Iterate] … [/Iterate] tags.

[Variable: 'myArray' = (Array: 'Winter', 'Spring', 'Summer', 'Autumn')]
[Iterate: (Variable: 'myArray'), (Variable: 'myItem')]

The season is: [Variable: 'myItem'].
[/Iterate]

2 7 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

➜
The season is: Winter.

The season is: Spring.

The season is: Summer.

The seasons is: Fall.

The [Iterate] … [/Iterate] tags are equivalent to using [Loop] … [/Loop] tags to
cylce through each element of a complex data type, but are significantly
easier to use and provide faster operation.

Table 5: Iteration Tags

Tag Description

[Iterate] … [/Iterate] Cycles through each element of a compound data type
in turn. The opening tag accepts two parameters. The
first is the compound data type to be iterated through.
The second is a reference to a variable which should be
set to the value of each element of the first parameter in
turn.

Note: The second parameter to the opening [Iterate] tag should either be of
the form (Variable: ‘NewVariableName’) or should reference an existing variable
using $ExistingVariable. The $ symbol cannot be used to create a new variable.

To print out each character of a string:

Use the [Iterate] … [/Iterate] tags to cycle through each character of the string
in turn. The following code prints out each character of a string on a sepa-
rate line.

[Variable: 'myString'='blue']
[Iterate: $myString, (Variable: 'myCharacter')]

[Variable: 'myCharacter']
[/Iterate]

➜
b

l

u

e

While Loops
[While] … [/While] tags allow a portion of a page to repeat while a specified
conditional expression returns True. The expression specified in the opening
[While] tag is checked on each pass through the loop and if the expression
returns True then the contents are displayed again.

2 7 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

In the following example, a variable ConditionVariable is set to True. Once
the [Loop_Count] is greater than 3 the variable is set to False, ending the
[While] … [/While] loop.

[Variable: 'ConditionVariable' = True]
[While: ($ConditionVariable == True)]

This is repetition [Loop_Count]
 [If: (Loop_Count) >= 3]
 [Variable: 'ConditionVariable' = False]
 [/If]
[/Loop]

➜
This is repetition 1.

This is repetition 2.

This is repetition 3.

Table 6: While Tags

Tag Description

[While] … [/While] Repeats the contents of the container tag until the
condition specified in the opening tag returns False.

[Loop_Count] Returns the number of the current repetition.

[Loop_Abort] Aborts the [While] … [/While] tag, jumping immediately
to the closing tag.

Abort Tag
The [Abort] tag can be used to abort the execution of the current format
file. This can be useful in a situation where an error has occurred that
prevents the rest of the file from executing. An [Abort] can be used after a
[Redirect_URL] so Lasso does not need to process the rest of the page before
sending the redirect to the client. Finally, an [Abort] can be used in a custom
error page in order to prevent the standard error message from being
shown at the bottom of the page.

Table 7: Abort Tag

Tag Description

[Abort] Aborts the current format file, returning all of the content
which has been created so far to the client.

2 7 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

To speed up a [Redirect_URL]:

Use the [Abort] tag immediately after the [Redirect_URL] tag. All LDML code
after the [Abort] tag will be ignored so the [Redirect_URL] tag’s modifications
to the HTTP response will be sent to the client immediately.

[Redirect_URL: 'http://www.example.com/']
[Abort]

Boolean Type
The boolean data type simply represents True or False. All comparison
symbols and boolean symbols in LDML return a value of the boolean data
type.

The following values are equivalent to each of the boolean values both
when automatically cast and when explicitly cast using the [Boolean] tag.
However, it is recommended that you use True and False whenever possible
to avoid confusion.

 • True is equivalent to any positive integer or decimal such as 1, 45, or
100.15, any non-empty string such as 'String', or any non-null data type
such as an array, map, or pair.

 • False is equivalent to integer 0 or decimal 0.0, the empty string '', or Null.

Note: The string 'True' happens to be equivalent to True, but the string 'False' is
not equivalent to False. Always type the boolean values True and False without
quotation marks.

Table 8: Boolean Tag

Tag Description

[Boolean] Casts a value to a boolean value.

The boolean data type is most commonly associated with conditional
expressions such as those specified in the opening [If] or [While] tags. Any
conditional expression which uses a conditional symbol such as ==, !=, <,
<=, >, >=, or >> will return a boolean value. Multiple conditional expres-
sions can be combined using any of the boolean symbols detailed in Table
9: Boolean Symbols.

Table 9: Boolean Symbols

Symbol Description

&& And. Returns True if both parameters are True.

|| Or. Returns True if either parameter is True.

2 7 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

! Not. Returns False if the parameter following is True.

== Equality. Returns True if both parameters are equal.

!= Inequality. Returns True if both parameters are different.

Note: Single parameter expressions must be surrounded by parentheses if
they are used on the right hand side of a boolean symbol.

To check for two conditions in an [If] tag:

 • In order to return True if both conditions are True use the && symbol.

[If: ($Condition1 == True) && ($Condition2 == True)]
 Both conditions are True.
[/If]

 • In order to return True if either of the conditions is True use the || symbol.

[If: ($Condition1 == True) || ($Condition2 == True)]
 One of the conditions is True.
[/If]

 • In order to return True if a condition is False use the ! symbol.

[If: !($Condition1 == True)]
 The condition is False.
[/If]

 • In order to return True if the two conditions are equal (both True or both
False) use the == symbol.

[If: ($Condition1 == True) == ($Condition2 == True)]
 Both conditions are True or both conditions are False.
[/If]

 • In order to return True if the two conditions are not equal (one is
True and the other is False) use the != symbol.

[If: ($Condition1 == True) != ($Condition2 == True)]
 One condition is True and the other is False.
[/If]

To use single parameter symbols in a comparison:

If expressions using the single-parameter symbols !, -, and + are going to
be used as the second parameter to a comparison symbol, they should be
surrounded by parentheses.

 • To compare a variable to -1 use parentheses around -1 on the right-hand
side of the comparison operator.

2 7 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

[If: ($Variable == (-1))]
 The variable is equal to -1.
[Else: ($Variable > (-1))]
 The variable is greater than -1.
[Else: ($Variable < (-1))]
 The variable is less than -1.
[/If]

 • To compare a variable to the negation of an expression, use parentheses
around the entire right-hand side of the comparison operator.

[If: ($Variable == (!True))]
 The variable is not equal to False.
[/If]

Note: These expressions can usually be rewritten with the opposite
comparison symbol or by using the negation symbol around the entire
conditional expression.

2 7 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

2 7 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 3 – C O N D I T I O N A L L O G I C

14
Chapter 14

String Operations

Text in Lasso is stored and manipulated using the string data type or the
[String] tags. This chapter details the symbols and tags that can be used to
manipulate string values.

 • Overview provides an introduction to the string data type and how to
cast values to and from other data types.

 • String Symbols details the symbols that can be used to create string
expressions.

 • String Manipulation Tags describe the member and substitution tags
that can be used to modify string values.

 • String Conversion Tags describes the member and substitution tags that
can be used to convert the case of string values.

 • String Validation Tags describes the member and substitution tags that
can be used to compare strings.

 • String Information Tags describes the member and substitution tags that
can be used to get information about strings and characters.

 • String Casting Tags describes the [String->Split] tag which can be used to
cast a string to an array value.

 • Regular Expressions describes the string tags that allow for regular
expression substitutions.

2 7 9

L A S S O 7 . 1 L A N G U A G E G U I D E

Overview
Many LDML tags are dedicated to outputting and manipulating text. LDML
is used to format text-based HTML pages or XML data for output. LDML
is also used to process and manipulate text-based HTML form inputs and
URLs. Text processing is a central function of LDML.

As a result of this focus on text processing, the string data type is the
primary data type in LDML. When necessary, all values are cast to string
before subsequent tag or symbol processing occurs. All values are cast to
string before they are output into the HTML page or XML data which will
be served to the site visitor.

There are three types of operations that can be performed directly on
strings.

 • Symbols can be used to perform string calculations within LDML tags or
to perform assignment operations within LassoScripts.

[Output: 'The' + ' ' + 'String'] ➜ The String

 • Member tags can be used to manipulate string values or to output
portions of a string.

[Output: 'The String'->(Substring: 4, 6)] ➜ String

 • Substitution tags can be used to test the attributes of strings or to modify
string values.

[String_LowerCase: 'The String'] ➜ the string

Each of these methods is described in detail in the sections that follow.
This guide contains a description of every symbol and tag and many exam-
ples of their use. The LDML Reference is the primary documentation source
for LDML symbols and tags. It contains a full description of each symbol
and tag including details about each parameter.

Unicode Characters
Lasso Professional 7 supports the processing of Unicode characters in all
string tags. The escape sequence \u… can be used with 4, or 8 hexadecimal
characters to embed a Unicode character in a string. For example \u002F
reprsents a / character, \u0020 represents a space, and \u0042 represents a
capital letter B. The same type of escape sequence can be used to embed
any Unicode character \u4E26 represents the Traditional Chinese character

.

Lasso also supports common escape sequences including \r for a return
character, \n for a new-line character, \r\n for a Windows return/new-line, \f
for a form-feed character, \t for a tab, and \v for a vertical-tab.

2 8 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

Casting Values to Strings
Values can be cast to the string data type automatically in many situations
or they can be cast explicitly using the [String] tag.

Table 1: String Tag

Tag Description

[String] Casts a value to type string.

Examples of automatic string casting:

 • Integer and decimal values are cast to strings automatically if they are
used as a parameter to a string symbol. If either of the parameters to the
symbol is a string then the other parameter is cast to a string automati-
cally. The following example shows how the integer 123 is automatically
cast to a string because the other parameter of the + symbol is the string
String.

[Output: 'String ' + 123] ➜ String 123

The following example shows how a variable that contains the integer
123 is automatically cast to a string.

[Variable: 'Number' = 123]
[Output: 'String ' + (Variable: 'Number')] ➜ String 123

 • Array, map, and pair values are cast to strings automatically when they
are output to a Web page. The value they return is intended for the
developer to be able to see the contents of the complex data type and is
not intended to be displayed to site visitors.

[Output: (Array: 'One', 'Two', 'Three')]

➜ (Array: (One), (Two), (Three))

[Output: (Map: 'Key1'='Value1', 'Key2'='Value2')]

➜ (Map: (Key1)=(Value1), (Key2)=(Value2))

[Output: (Pair: 'Name'='Value')]

➜ (Pair: (Name)=(Value))

More information can be found in Chapter 17: Arrays and Maps.

 • The parameters for string substitution tags are automatically cast to
strings. The following example shows how to use the [String_Length]
substitution tag on a numeric value from a field.

[Field: 'Age'] ➜ 21
[String_Length: (Field: 'Age')] ➜ 2

2 8 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

To explicitly cast a value to the string data type:

 • Integer and decimal values can be cast to type string using the [String] tag.
The value of the string is the same as the value of the integer or decimal
value when it is output using the [Variable] tag.

The following example shows a math calculation and the integer opera-
tion result 579. The next line shows the same calculation with string
parameters and the string symbol result 123456.

[Output: 123 + 456] ➜ 579
[Output: (String: 123) + (String: 456)] ➜ 123456

 • Boolean values can be cast to type string using the [String] tag. The value
will always either be True or False. The following example shows a condi-
tional result cast to type string.

[Output: (String: ('dog' == 'cat'))] ➜ false

 • String member tags can be used on any value by first casting that value
to a string using the [String] tag. The following example shows how to
use the [String->Size] member tag on a numeric value from a field by first
casting the field value to type string.

[Field: 'Age'] ➜ 21
[Output: (String: (Field: 'Age'))->Size] ➜ 2

String Symbols
The easiest way to manipulate values of the string data type is to use the
string symbols. Table 2: String Symbols details all the symbols that can be
used with string values.

Table 2: String Symbols

Symbol Description

+ Concatenates two strings. This symbol should always be
separated from its parameters by a space.

- Deletes a substring. The first occurrence of the right
parameter is deleted from the left parameter. This
symbol should always be separated from its parameters
by a space.

* Repeats a string. The right parameter should be a
number.

= Assigns the right parameter to the variable designated
by the left parameter.

2 8 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

+= Concatenates the right parameter to the value of the
left parameter and assigns the result to the variable
designated by the left parameter.

-= Deletes the right parameter from the value of the
left parameter and assigns the result to the variable
designated by the left parameter.

*= Repeats the value of the left parameter and assigns the
result to the variable designated by the left parameter.

>> Returns True if the left parameter contains the right
parameter as a substring.

!>> Returns True if the left parameter does not contain the
right parameter as a substring.

== Returns True if the parameters are equal.

!= Returns True if the parameters are not equal.

< Returns True if the left parameter comes before the right
parameter alphabetically.

<= Returns True if the left parameter comes before the right
parameter alphabetically or if the parameters are equal.

> Returns True if the left parameter comes after the right
parameter alphabetically.

>= Returns True if the left parameter comes after the right
parameter alphabetically or if the parameters are equal.

=== Returns True if the parameters are equal and both are
of type string. No casting is performed.

Each of the string symbols takes two parameters. One of the parameters
must be a string value in order for the symbol to perform the designated
string operation. Many of the symbols can also be used to perform integer
or decimal operations. If both parameters are integer or decimal values
then the mathematical operation defined by the symbol will be performed
rather than the string operation.

As long as one of the parameters of the symbol is a string the other param-
eter will be auto-cast to a string value before the operation defined by the
symbol is performed. The two exceptions to this are the * and *= symbols
which must have an integer as the right parameter.

Note: Full documentation and examples for each of the string symbols can
be found in the LDML Reference.

Examples of using the string symbols:

 • Two strings can be concatenated using the + symbol. Note that the
symbol is separated from its parameters using spaces.

2 8 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

[Output: 'Alpha ' + 'Beta'] ➜ Alpha Beta

 • A string and an integer can be concatenated using the + symbol. The
integer will be automatically cast to a string. Note that the symbol is
separated from its parameters using spaces.

[Output: 'Alpha ' + 1000] ➜ Alpha 1000

 • A substring can be deleted from a string using the - symbol. The
following example shows how to remove the substrings and
from a string of HTML text. Note that the symbol is separated from its
parameters using spaces.

[Output: 'Bold Text' - '' - ''] ➜ Bold Text

 • A string can be repeated using the * symbol. The following example
shows how to repeat the word Lasso three times.

[Output: 'Lasso ' * 3] ➜ Lasso Lasso Lasso

 • Strings will be automatically concatenated even if the + symbol is
omitted. This makes concatenating long sets of strings easier.

[Output: 'Alpha ' 'Beta'] ➜ Alpha Beta

Note: It is recommended that the + symbol be used explicitly when concat-
enating tag values or that parentheses be used around each tag call in the
expression.

Examples of using the string assignment symbols:

 • A string variable can be assigned a new value using the = symbol. The
following example shows how to define a string symbol and then set it
to a new value. The new value is output using the [Output] tag.

<?LassoScript
 Variable: 'StringVariable' = 'The String Value';
 $StringVariable = 'New String Value';
 Output: $StringVariable;
?>

➜ New String Variable

 • A string variable can be used as a collector by concatenating new values
to it in place using the += symbol. The following example shows how to
define a string symbol and then concatenate several values to it. The final
value is output using the [Output] tag.

2 8 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

<?LassoScript
 Variable: 'StringVariable' = 'The ';
 $StringVariable += 'String ';
 $StringVariable += 'Variable';
 Output: $StringVariable;
?>

➜ The String Variable

Examples of using the string comparison symbols:

 • Two strings can be compared for equality using the == symbol and !=
symbol. The result is a boolean True or False.

[Output: 'Alpha ' == 'Beta'] ➜ False
[Output: 'Alpha ' != 'Beta'] ➜ True

 • Strings can be ordered alphabetically using the <, <=, >, and <= symbols.
The result is a boolean True or False.

[Output: 'Alpha ' > 'Beta'] ➜ False
[Output: 'Alpha ' < 'Beta'] ➜ True

 • A string can be checked to see if it contains a particular substring using
the >> symbol. The result is a boolean True or False.

[Output: ''Bold Text' >> ''] ➜ True

String Manipulation Tags
The string data type includes many tags that can be used to manipulate
string values. The available member tags are listed in Table 3: String
Manipulation Member Tags and the available substitution tags are listed
in Table 4: String Manipulation Tags.

In addition to the tags in this section, the tags in the following section on
String Conversion Tags can be used to modify the case of a string and
the tags in the section on Regular Expression Tags can be used for more
powerful string manipulations using regular expressions.

The member tags in this section all modify the base string in place and
do not return a value. For example, the [String->Append] tag works like the
+= symbol. In order to see the values that were appended to the string, the
variable containing the string must be output using the [Output] tag.

[Variable: 'myString' = 'Test']
[$myString->(Append: ' string.')]
[Output: $myString] ➜ Test string.

In contrast, the substitution tags return the modified string directly.

2 8 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

[String_Concatenate: 'Test', ' string.'] ➜ Test string.

The member tags should be used when multiple modifications need to be
made to a string that is stored in a variable. The substitution tags, or string
symbols, can be used when the value is required immediately for output.

Table 3: String Manipulation Member Tags

Tag Description

[String->Append] Casts the parameters to strings and appends them
to the string. Modifies the string and returns no value.
Requires one string parameter.

[String->Merge] Inserts a merge string into the string. Requires two
parameters, the location at which to insert the merge
string and the string to insert. Optional third and fourth
parameters specify an offset into the merge string and
number of characters of the merge string to insert.

[String->PadLeading] Pads the front of a string to a specified length with a
pad character. Modifies the string and returns no value.
Requires a length to pad the string. Optional second
parameter is the padding character (defaults to space).

[String->PadTrailing] Pads the end of a string to a specified length with a
pad character. Modifies the string and returns no value.
Requires a length to pad the string. Optional second
parameter is the padding character (defaults to space).

[String->Remove] Removes a substring from the string. The first parameter
is the offset at which to start removing characters.
The second parameter is the number of characters to
remove. Defaults to removing to the end of the string.

[String->RemoveLeading] Removes all instances of the parameter from the
beginning of the string. Modifies the string and returns
no value. Requires a single string parameter.

[String->RemoveTrailing] Removes all instances of the parameter from the end
of the string. Modifies the string and returns no value.
Requires a single string parameter.

[String->Replace] Replaces every occurence of a substring. Requires two
parameters, the substring to find and the replacement
string. Modifies the string and returns no value. Optional
third parameter specifies the maximum number of
replacements to perform.

[String->Reverse] Reverses the string. Optional parameters specify
a character offset and length for a substring to be
reversed. Defaults to reversing the entire string. Modifies
the string and returns no value.

[String->Trim] Removes all white space from the start and end of the
string. Modifies the string in place and returns no value.

2 8 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

Note: Full documentation and examples for each of the string member tags
can be found in the LDML Reference.

To replace a substring:

Use the [String->Replace] tag. The following example replaces every instance
of and within the string to or.

[Variable: 'myString' = 'Red and Yellow and Blue']
[$myString->(Replace: 'and','or')]
[Output: $myString]

➜ Red or Yellow or Blue

To remove white space from the start and end of a string:

Use the [String->Trim] tag. The following example removes all the white space
from the start and end of the string leaving just the relevant content.

[Variable: 'myString' = ' Green and Purple ']
[$myString->(Trim)]
[Output: $myString]

➜ Green and Purple

Table 4: String Manipulation Tags

Tag Description

[String_Concatenate] Concatenates all of its parameters into a single string.

[String_Insert] Takes three parameters: a string, a -Text keyword/value
parameter which defines the text to be inserted, and
a -Position parameter which defines the offset into the
string at which to insert the text. Returns a new string
with the specified text inserted at the specified location.

[String_Remove] Takes three parameters: a string, a -StartPosition
keyword/value parameter, and a -EndPosition keyword/
value parameter. Returns the string with the substring
from -StartPosition to -EndPosition removed.

[String_RemoveLeading] Takes two parameters: a string and a -Pattern keyword/
value parameter. Returns the string with any occurrences
of the pattern removed from the start.

[String_RemoveTrailing] Takes two parameters: a string and a -Pattern keyword/
value parameter. Returns the string with any occurrences
of the pattern removed from the end.

2 8 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

[String_Replace] Takes three parameters: a string, a -Find keyword/value
parameter, and a -Replace keyword/value parameter.
Returns the string with the first instance of the -Find
parameter replaced by the -Replace parameter.

Note: Full documentation and examples for each of the string tags can be
found in the LDML Reference.

Examples of using string manipulation tags:

 • The [String_Extract] tag can be used to return a portion of a string. In the
following example five characters of the string A Short String are returned

[String_Extract: 'A Short String', -StartPosition=3, -EndPosition=8] ➜ Short

 • The [String_Remove] tag is similar, but rather than returning a portion of
a string, it removes a portion of the string and returns the remainder.
In the following example five characters of the string A Short String are
removed and the remainder is returned.

[String_Remove: 'A Short String', -StartPosition=3, -EndPosition=8] ➜ A String

 • The [String_RemoveLeading] and [String_RemoveTrailing] tags can be used to
remove a repeating character from the start or end of a string. In the
following example asterisks are removed from a string *A Short String*.

[String_RemoveLeading: -Pattern='*',
 (String_RemoveTrailing: -Pattern='*', '*A Short String*')]

➜ A Short String

 • The [String_Replace] tag can be used to replace a portion of a string with
new characters. In the following example the word Short is replaced by
the word Long.

[String_Replace: 'A Short String', -Find='Short', -Replace='Long'] ➜ A Long String

Note: For more powerful string manipulation see the Regular Expressions
section below.

String Conversion Tags
The string data type includes many tags that can be used to change the case
of string values. The available member tags are listed in Table 5: String

2 8 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

Conversion Member Tags and the available substitution tags are listed in
Table 6: String Conversion Tags.

The member tags in this section all modify the base string in place and
do not return a value. In order to see the converted string, the variable
containing the string must be output using the [Output] tag.

[Variable: 'myString' = 'Test']
[$myString->(UpperCase)]
[Output: $myString] ➜ TEST

In contrast, the substitution tags return the modified string directly.

[String_UpperCase: 'Test'] ➜ TEST

The member tags should be used when multiple modifications need to be
made to a string that is stored in a variable. The substitution tags can be
used when the value is required immediately for output.

Table 5: String Conversion Member Tags

Tag Description

[String->Foldcase] Converts all characters in the string for a case-
insensitive comparison. Modifies the string and returns
no value.

[String->Lowercase] Converts all characters in the string to lowercase.
Modifies the string in place and returns no value.
Accepts an optional locale/country code for Unicode
conversion.

[String->Titlecase] Converts the string to titlecase with the first character
of each word capatilized. Modifies the string in place
and returns no value. Accepts an optional locale/country
code for Unicode conversion.

[String->toLower] Converts a character of the string to lowercase.
Requires the position of the character to be modifed.
Modifies the string in place and returns no value.

[String->toUpper] Converts a character of the string to uppercase.
Requires the position of the character to be modifed.
Modifies the string in place and returns no value.

[String->toTitle] Converts a character of the string to titlecase. Requires
the position of the character to be modifed. Modifies the
string in place and returns no value.

[String->Unescape] Converts a string from the hexadecimal URL encoding.

[String->Uppercase] Converts all characters in the string to uppercase.
Modifies the string in place and returns no value.
Accepts an optional locale/country code for Unicode
conversion.

2 8 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

Note: Full documentation and examples for each of the string member tags
can be found in the LDML Reference.

Table 6: String Conversion Tags

Tag Description

[String_LowerCase] Returns the concatenation of all of its parameters in
lowercase.

[String_UpperCase] Returns the concatenation of all of its parameters in
lowercase.

Examples of using string conversion tags:

The [String_UpperCase] and [String_Lowercase] tags can be used to alter the case
of a string. The following example shows the result after using these tags
on the string A Short String.

[String_UpperCase: 'A Short String'] ➜ A SHORT STRING
[String_LowerCase: 'A Short String'] ➜ a short string

String Validation Tags
The string data type includes many tags that can be used to compare and
validate string values. The available member tags are listed in Table 7:
String Validation Member Tags and the available substitution tags are
listed in Table 8: String Validation Tags.

All of these tags return a boolean value True or False depending on whether
the test succeeds or not.

Table 7: String Validation Member Tags

Tag Description

[String->BeginsWith] Returns True if the string begins with the parameter.
Comparison is case insensitive. Requires a single string
parameter.

[String->Compare] This tag has three forms. In the first, it returns 0 if the
parameter is equal to the string, 1 if the string contains
the parameter, and -1 if the string does not contain the
parameter. Comparison is case insensitive by default. An
optional -Case parameter makes the comparison case
sensitive. Requires a single string parameter.

2 9 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

 The second form requires three parameters. The first
two parameters are an offset and length into the third
string parameter. The comparison is only performed with
this parameter substring.

 The third form requires two additional parameters. The
fourth and fifth parametres are an offset and length
into the base string. The comparison is only performed
between the base and parameter substrings.

 [String->CompareCodePointOrder] accepts the same
parameters as [String->Compare], but provides accurate
comparisons for Unicode characters with code points
U+10000 and above.

[String->Contains] Returns True if the string contains the parameter as a
substring. Comparison is case insensitive. Requires a
single string parameter.

[String->EndsWith] Returns True if the string ends with the parameter.
Comparison is case insensitive. Requires a single string
parameter.

[String->Equals] Returns True if the parameter of the tag is equal to the
string. Comparison is case insensitive. Equivalent to the
== symbol.

Note: Full documentation and examples for each of the string member tags
can be found in the LDML Reference.

To compare two strings:

Use the string comparison member tags. The following code checks
whether a string stored in a variable is equal to or contains another string.

[Variable: 'testString' = 'A short string']

[Output: $testString->(BeginsWith: 'a')] ➜ True
[Output: $testString->(BeginsWith: 'A short')] ➜ True
[Output: $testString->(BeginsWith: 'string')] ➜ False
[Output: $testString->(EndsWith: 'string')] ➜ True
[Output: $testString->(Contains: 'short')] ➜ True
[Output: $testString->(Equals: 'a short string')] ➜ True
[Output: $testString->(Compare: 'a short string', -Case)] ➜ False
[Output: $testString->(Compare: 3, 5, 'short')] ➜ True
[Output: $testString->(Compare: 3, 5, 'x short other', 3, 5)] ➜ True

2 9 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

Table 8: String Validation Tags

Tag Description

[String_EndsWith] Returns boolean True if the string ends with the string
specified in the -Find parameter. Takes two parameters:
a string value and a -Find keyword/value parameter.

Note: Full documentation and examples for each of the string tags can be
found in the LDML Reference.

String Information Tags
The string data type includes many tags that can be used to get informa-
tion about string and character values. The available member tags are listed
in Table 9: String Information Member Tags and the available substitu-
tion tags are listed in Table 10: String Information Tags. In addition, tags
which are specific to getting information about characters in a string are
listed in Table 11: Character Information Member Tags.

These tags return different data types depending on what information is
being retrieved about the string. Those tags that return a character posi-
tion or require a character position as a parameter all number characters
starting from 1 for the first character in the string.

Table 9: String Information Member Tags

Tag Description

[String->Find] Returns the position at which the first parameter is found
within the string or 0 if the first parameter is not found
within the string. Requires a single string parameter.

[String->Get] Returns a specific character from the string. Requires a
single integer parameter.

[String->Size] Returns the number of characters in the string.[String-
>Length] is a synonym.

[String->SubString] Returns a substring. The start of the substring is defined
by the first parameter and the length of the substring is
defined by the second parameter. Requires two integer
parameters.

Note: Full documentation and examples for each of the string member tags
can be found in the LDML Reference.

2 9 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

To return the length of a string:

 • The length of a string can be returned using the [String->Size] tag.

[Output: 'Alpha'->Size] ➜ 5

 • The length of a [Variable] value, [Field] value or any value returned by an
LDML tag can be returned using the [String->Size] tag.

[Output: $StringVariable + ' ' + $StringVariable->Size] ➜ Alpha 5
[Output: (Field: 'First_Name') + ' ' + (Field: 'First_Name')->Size] ➜ Joe 3

To return a portion of a string:

 • A specific character from a string can be returned using the [String->Get]
tag. In the following example, the third character of Alpha is returned.

[Output: 'Alpha'->(Get: 3)] ➜ p

 • A specific range of characters from a string can be returned using the
[String->Substring] tag. In the following example, six characters are returned
from the string, starting at the third character.

[Output: 'A String Value'->(Substring: 3, 6)] ➜ String

 • The start of a string can be returned using the [String->Substring] tag with
the first parameter set to 1. The second parameter will define how many
characters are returned from the start of the string. In the following
example, the first eight characters of the string are returned.

[Output: 'A String Value'->(Substring: 1, 8)] ➜ A String

 • The end of a string can be returned using the [String->Substring] tag with
the second parameter omitted. The following example returns the
portion of the string after the tenth character.

[Output: 'A String Value'->(Substring: 10)] ➜ Value

Table 10: String Information Tags

Tag Description

[String_Extract] Takes three parameters: a string, a -StartPosition
keyword/value parameter, and a -EndPosition keyword/
value parameter. Returns a substring from -StartPosition
to -EndPosition.

[String_FindPosition] Takes two parameters: a string value and a -Find
keyword/value parameter. Returns the location of the
-Find parameter in the string parameter.

[String_IsAlpha] Returns boolean True if the string contains only
alphabetic characters (a-z or A-Z).

[String_IsAlphaNumeric] Returns boolean True if the string contains only
alphabetic characters or numerals (a-z, A-Z, or 0-9).

2 9 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

[String_IsDigit] Returns boolean True if the string contains only
numerals (0-9).

[String_IsHexDigit] Returns boolean True if the string contains only
hexadecimal numerals (0-9 and a-f).

[String_IsLower] Returns boolean True if the string contains only
lowercase alphabetic characters (a-z).

[String_IsNumeric] Returns boolean True if the string contains only
numerals, hyphens, or periods.

[String_IsPunctuation] Returns boolean True if the string contains only
punctuation characters.

[String_IsSpace] Returns boolean True if the string contains only white
space.

[String_IsUpper] Returns boolean True if the string contains only
uppercase alphabetic characters (A-Z).

[String_Length] Returns the number of characters in the string.

Note: Full documentation and examples for each of the string tags can be
found in the LDML Reference.

Example of using [String_Length] tag:

The [String_Length] tag can be used to return the number of characters in a
string. This tag returns the same results as the [String->Size] tag except the
method of calling the tag is somewhat different.

The following example shows how to return the length of the string
A Short String using both the [String_Length] tag and the [String->Size] tag. The
result in both cases is 14.

[String_Length: 'A Short String'] ➜ 14
[Output: 'A Short String'->Size] ➜ 14

Examples of using string validation tags:

The characters in a string can be checked to see if they meet certain criteria
using the [String_Is…] tags. Each character in the string is checked to see if
it meets the criteria of the tag. If any single character does not meet the
criteria then False is returned.

 • In the following example a string word is checked to see which validation
strings it passes. The string is in lowercase and consists entirely of alpha-
betic characters. It is not in uppercase and does not consist entirely of
numeric characters.

2 9 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

[String_IsAlpha: 'word'] ➜ True
[String_IsAlphaNumeric: 'word'] ➜ True
[String_IsLower: 'word'] ➜ True
[String_IsNumeric: 'word'] ➜ False
[String_IsUpper: 'word'] ➜ False

 • In the following example a string 2468 is checked to see which validation
strings it passes. The string consists entirely of numeric characters. It does
not consist entirely of alphabetic characters.

[String_IsAlpha: '2468'] ➜ False
[String_IsAlphaNumeric: '2468'] ➜ True
[String_IsNumeric: '2468'] ➜ True

 • Some of the validation tags are intended to be used on individual char-
acters. The following example shows how each of these tags can be used.

[String_IsDigit: '9'] ➜ True
[String_IsHexDigit: 'a'] ➜ True
[String_IsPunctuation: '.'] ➜ True
[String_IsSpace: ' '] ➜ True

Table 11: Character Information Member Tags

Tag Description

[String->CharDigitValue] Returns the integer value of a character or -1 if the
character is alphabetic. Requires a single parameter that
specifies the location of the character to be inspected.

[String->CharName] Returns the Unicode name of a character. Requires
a single parameter that specifies the location of the
character to be inspected.

[String->CharType] Returns the Unicode type of a character. Requires
a single parameter that specifies the location of the
character to be inspected.

[String->Digit] Returns the integer value of a character according to
a particular radix. Requires two parameters. The first
specifies the location of the character to be inspected.
The second specifies the radix of the result (e.g. 16 for
hexadecimal).

[String->GetNumericValue] Returns the decimal value of a character or a negative
number of the character is alphabetic. Requires a single
parameter that specifies the location of the character to
be inspected.

[String->IsAlnum] Returns True if the character is alphanumeric. Requires
a single parameter that specifies the location of the
character to be inspected.

2 9 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

[String->IsAlpha] Returns True if the character is alphabetic. Requires
a single parameter that specifies the location of the
character to be inspected.

[String->IsBase] Returns True if the character is part of the base
characters of Unicode. Requires a single parameter that
specifies the location of the character to be inspected.

[String->IsCntrl] Returns True if the character is a control character.
Requires a single parameter that specifies the location
of the character to be inspected.

[String->IsDigit] Returns True if the character is numeric. Requires
a single parameter that specifies the location of the
character to be inspected.

[String->IsLower] Returns True if the character is lowercase. Requires
a single parameter that specifies the location of the
character to be inspected.

[String->IsPrint] Returns True if the character is printable (i.e. not a
control character). Requires a single parameter that
specifies the location of the character to be inspected.

[String->IsSpace] Returns True if the character is a space. Requires
a single parameter that specifies the location of the
character to be inspected.

[String->IsTitle] Returns True if the character is titlecase. Requires
a single parameter that specifies the location of the
character to be inspected.

[String->IsUpper] Returns True if the character is uppercase. Requires
a single parameter that specifies the location of the
character to be inspected.

[String->IsWhitespace] Returns True if the character is white space. Requires
a single parameter that specifies the location of the
character to be inspected.

[String->IsUAlphabetic] Returns True if the character has the Unicode alphabetic
attribute. Requires a single parameter that specifies the
location of the character to be inspected.

[String->IsULowercase] Returns True if the character has the Unicode lowercase
attribute. Requires a single parameter that specifies the
location of the character to be inspected.

[String->IsUUppercase] Returns True if the character has the Unicode uppercase
attribute. Requires a single parameter that specifies the
location of the character to be inspected.

[String->IsUWhiteSpace] Returns True if the character has the Unicode white
space attribute. Requires a single parameter that
specifies the location of the character to be inspected.

2 9 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

Note: Full documentation and examples for each of the string member tags
can be found in the LDML Reference.

To inspect the Unicode properties of a string:

Use the character information member tags. The following example shows
the information that is provided for a standard ASCII character b. The char-
acter name and type are provided according to the Unicode standard. The
[String->Integer] tag returns the decimal ASCII value for the character. The
[String->Digit] tag with a radix of 16 returns the hexadecimal value for the
character.

[Output: 'b'->(CharName: 1)] ➜ LATIN SMALL LETTER B
[Output: 'b'->(CharType: 1)] ➜ LOWERCASE_LETTER
[Output: 'b'->(IsLower: 1)] ➜ True
[Output: 'b'->(IsUpper: 1)] ➜ False
[Output: 'b'->(IsWhiteSpace: 1)] ➜ False
[Output: 'b'->(Integer: 1)] ➜ 98
[Output: 'b'->(Digit: 1, 16)] ➜ 11

The information tags can be used on any Unicode characters. The
following example shows the tags being used on a Traditional Chinese
character that roughly translates to “and”. The character is neither upper-
case nor lowercase and is identified by the Unicode reference 4E26.

[Output: ' '->(CharName: 1)] ➜ CJK UNIFIED IDEOGRAPH-4E26
[Output: ' '->(CharType: 1)] ➜ OTHER_LETTER
[Output: ' '->(IsLower: 1)] ➜ False
[Output: ' '->(IsUpper: 1)] ➜ False
[Output: ' '->(IsWhiteSpace: 1)] ➜ False

Note: The character can be represented in a string by \u4E26 or in HTML
as the entity 並.

Table 12: Unicode Tags

Tag Description

[String_GetUnicodeVersion] Returns the version of the Unicode standard which
Lasso supports.

[String_CharFromName] Returns the character corresponding to the specified
Unicode character name.

2 9 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

String Casting Tags
The string data type includes many tags which can be used to cast a value
to or from the string data type. These tags are documented in the Casting
Values to Strings section earlier in this chapter and in corresponding
sections in the chapters for each data type.

In addition, the [String->Split] tag can be used to cast a string into an array.
This tag is described in Table 13: String Casting Member Tags.

Table 13: String Casting Member Tags

Tag Description

[String->Split] Splits the string into an array of strings based on the
delimiter specified in the first parameter. This tag does
not modify the string, but returns the new array. Requires
a single string parameter.

To convert a string into an array:

A string can be converted into an array using the [String->Split] tag. A single
parameter defines what character should be used to split the string into the
multiple elements of the array. The following example splits a string on the
space character, returning an array of words from the string.

[Output: 'A String Value'->(Split: ' ')]

➜ (Array: (A), (String), (Value))

Regular Expressions
The [String_FindRegExp] and [String_ReplaceRegExp] tags can be used to
perform regular expressions find and replace routines on text strings. A
regular expression is a powerful pattern-matching language that allows
complex replacements to be specified easily.

Note: Full documentation of regular expression methodology is outside the
scope of this manual. The implementation of regular expressions in LDML
closely matches that in the Perl language. Consult a standard reference on
regular expressions for more information about how to use this flexible tech-
nology.

2 9 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

Table 14: Regular Expression Tags

Tag Description

[String_FindRegExp] Takes two parameters: a string value and a -Find
keyword/value parameter. Returns an array with each
instance of the -Find regular expression in the string
parameter. Optional -IgnoreCase parameter uses case
insensitive patterns.

[String_ReplaceRegExp] Takes three parameters: a string value, a -Find
keyword/value parameter, and a -Replace keyword/value
parameter. Returns an array with each instance of
the -Find regular expression replaced by the value of
the -Replace regular expression the string parameter.
Optional -IgnoreCase parameter uses case insensitive
parameters. Optional -ReplaceOnlyOne parameter
replaces only the first pattern match.

A regular expression is assembled by creating a match string. The simplest
match string is just a word containing characters or numbers. The match
string bird matches the word “bird”. Match strings are case sensitive unless
the -IgnoreCase parameter is specified. Match strings can also contain
symbols such as \w which matches any alphanumeric character. The match
string b\wrd would match the word “bird” or the word “bard”. Square
brackets can be used to generate custom sets of characters or ranges of
characters. The match string [bc]ard will match either the word “bard” or the
word “card”. The match string [bB]ard will match either the word “bard” or
the word “Bard”.

All of the symbols which can be used in match strings are detailed in Table
15: Regular Expression Matching Symbols.

2 9 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

Table 15: Regular Expression Matching Symbols

Symbol Description

a-z A-Z 0-9 Alphanumeric characters (and any other characters not
defined as symbols) match the specified character. Case
sensitive.

. Period matches any single character.

^ Circumflex matches the beginning of a line.

$ Dollar sign matches the end of a line.

\\… Escapes the next character. This allows any symbol to
be specified as a matching character.

[…] Character class. Matches any character contained within
the square brackets.

[^…] Character exception class. Matches any character which
is not contained within the square brackets.

[a-z] Character range. Matches any character between the
two character specified. Can be used with characters or
numbers.

\t Matches a tab character.

\r Matches a return character.

\n Matches a new-line character.

\" Matches a double quote.

\' Matches a single quote.

\\w Matches an alphanumeric 'word' character (underscore
included).

\\W Matches a non-alphanumeric character.

\\s Matches a blank, whitespace character (space, tab,
carriage return, etc.).

\\S Matches a non-blank, non-whitespace character.

\\d Matches a digit character (0-9).

\\D Matches a non-digit character.

Note: Other than the built-in escaped characters \n, \r, \t, \", and \' all other
escaped characters in regular expressions should be preceded by two back-
slashes.

Matching symbols can be used as components of more complex expres-
sions using combination symbols. The simplest combination symbol is
+ which matches the preceding matching symbol one or more times. The
expression [abcd]+ matches any word containing only the letters a, b, or c
including “cab”, “cad”, “dab”, “bad”, “add”, etc.

3 0 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

All of the symbols which can be used in match strings are detailed in Table
16: Regular Expression Combination Symbols.

Table 16: Regular Expression Combination Symbols

Symbol Description

| Alternation. Matches either the character before or the
character after the symbol.

() Grouping for output. Defines a named group for output.
Nine groups can be defined.

(?:) Grouping without output. Can be used to create a logical
grouping that should not be assigned to an output.

* Asterisk. Matches 0 or more repetitions of the preceding
symbol.

*? Non-greedy variant works the same as asterisk, but
matches the shortest string possible.

+ Plus Sign. Matches 1 or more repetitions of the
preceding symbol.

+? Non-greedy variant works the same as the plus sign, but
matches the shortest string possible.

? Question Mark. Makes the preceding symbol optional.

{n} Matches n repetitions of the preceding symbol.

{n,} Matches at least n repetitions of the preceding symbol.

{n,m} Matches at least n, but no more than m repetitions of
the preceding symbol.

{…}? Non-greedy variant works the same as the bracketed
expressions, but matches the shortest string possible.

The parentheses are a special combination symbol that defines a portion
of the match string as a named sub-expression that can be referenced in
the replacement string. For example a matching string of blue(world) would
match the word blueworld. A replacement string of green\1 would then result
in greenworld as output. The word world is named as sub-expression 1 by
virtue of the parentheses.

Table 17: Regular Expression Replacement Symbols

Symbol Description

a-z A-Z 0-9 Alphanumeric characters (and any other characters not
defined as symbols) place the specified character in the
output.

\\1 … \\9 Names a group in the replace string. Up to nine groups
can be specified using the numerals 1 through 9.

3 0 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

Note: Other than the built-in escaped characters \n, \r, \t, \", and \' all other
escaped characters in regular expressions should be preceded by two back-
slashes.

Table 18: Regular Expression Advanced Symbols

Symbol Description

(#) Regular expression comment. The contents are not
interpreted as part of the regular expression.

(?i) Sets the remainder of the regular expression to be case
insensitive. Similar to specifying -IgnoreCase.

(?-i) Sets the remainder of the regular expression to be case
sensitive (the default).

(?i:) The contents of this group will be matched case
insensitive and the group will not be added to the output.

(?-i:) The contents of this group will be matched case
sensitive and the group will not be added to the output.

(?=) Positive look ahead assertion. The contents are matched
following the current position, but not added to the output
pattern.

(?!) Negative look ahead assertion. The same as above,
but the content must not match following the current
position.

(?<=) Positive look behind assertion. The contents are
matched preceding the current position, but not added to
the output pattern.

(?<!) Negative look behind assertion. The same as above,
but the contents must not match preceding the current
position.

\\b Matches the boundary between a word and a space.

\\B Matches a boundary not between a word and a space.

Examples of using [String_ReplaceRegExp]:

The [String_ReplaceRegExp] tag works much like [String_Replace] except that
both the -Find parameter and the -Replace can be regular expressions.

 • In the following example, every occurrence of the world Blue in the string
is replaced by the HTML code Blue so that the word
Blue appears in blue on the Web page. The -Find parameter is specified so

3 0 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

either a lowercase or uppercase b will be matched. The -Replace parameter
references \\1 to insert the actual value matched into the output.

[String_ReplaceRegExp: 'Blue Lake sure is blue today.',
 -Find='([Bb]lue)',
 -Replace='\\1', -EncodeNone]

➜ Blue lake sure is blue today.

 • In the following example, every email address is replaced by an HTML
anchor tag that links to the same email address. The \\w symbol is used
to match any alphanumeric characters or underscores. The at sign @
matches itself. The period must be escaped \\. in order to match an
actual period and not just any character. This pattern matches any email
address of the type name@example.com.

[String_ReplaceRegExp: 'Send email to documentation@blueworld.com.',
 -Find='(\\w+@\\w+\\.\\w+)',
 -Replace='\\1', -EncodeNone]

➜ Send email to
documentation@blueworld.com.

Examples of using [String_FindRegExp]:

The [String_FindRegExp] tag returns an array of items which match the
specified regular expression within the string. The array contains the full
matched string in the first element, followed by each of the matched subex-
pressions in subsequent elements.

 • In the following example, every email address in a string is returned in
an array.

[String_FindRegExp: 'Send email to documentation@blueworld.com.',
 -Find='\\w+@\\w+\\.\\w+']

➜ (Array: (documentation@blueworld.com))

 • In the following example, every email address in a string is returned
in an array and sub-expressions are used to divide the username and
domain name portions of the email address. The result is an array with
the entire match string, then each of the sub-expressions.

[String_FindRegExp: 'Send email to documentation@blueworld.com.',
 -Find='(\\w+)@(\\w+\\.\\w+)']

➜ (Array: (documentation@blueworld.com), (documentation), (blueworld.com))

 • In the following example, every word in the source is returned in an
array. The first character of each word is separated as a sub-expression.
The returned array contains 16 elements, one for each word in the source

3 0 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

string and one for the first character sub-expression of each word in the
source string.

[String_FindRegExp: 'The quick brown fox jumped over a lazy dog.',
 -Find='(\\w)\\w*']

➜ (Array: (The), (T), (quick), (q), (brown), (b), (fox), (f), (jumped), (j),
 (over), (o), (a), (a), (lazy), (l), (dog), (d))

The resulting array can be divided into two arrays using the following
code. This code loops through the array (stored in Result_Array) and
places the odd elements in the array Word_Array and the even elements in
the array Char_Array using the [Repetition] tag.

[Variable: 'Word_Array' = (Array), 'Char_Array'=(Array)]
[Variable: 'Result_Array' = (String_FindRegExp:
 'The quick brown fox jumped over a lazy dog.', -Find='(\\w)\\w*')]
[Loop: $Result_Array->Size]
 [If: (Repetition) == 2]
 [$Char_Array->(Insert: $Result_Array->(Get: (Loop_Count)))]
 [Else]
 [$Word_Array->(Insert: $Result_Array->(Get: (Loop_Count)))]
 [/If]
[Loop]

[Output:$Word_Array]

[Output: $Char_Array]

➜
(Array: (The), (quick), (brown), (fox), (jumped), (over), (a), (lazy), (dog))

(Array: (T), (q), (b), (f), (j), (o), (a), (l), (d))

 • In the following example, every phone number in a string is returned
in an array. The \\d symbol is used to match individual digits and the
{3} symbol is used to specify that three repetitions must be present. The
parentheses are escaped \\(and \\) so they aren’t treated as grouping char-
acters.

[String_FindRegExp: 'Phone (800) 555-1212 for information.'
 -Find='\\(\\d{3}\\) \\d{3}-\\d{4}']

➜ (Array: ((800) 555-1212))

 • In the following example, only words contained within HTML bold tags
 … are returned. Positive look ahead and look bind assertions are
used to find the contents of the tags without the tags themselves. Note
that the pattern inside the assertions uses a non-greedy modifier.

[String_FindRegExp: 'This is some sample text!'
 -Find='(?<=).+?(?=)']

➜ (Array: (sample text))

3 0 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 4 – S T R I N G O P E R A T I O N S

15
Chapter 15

Math Operations

Numbers in Lasso are stored and manipulated using the decimal and
integer data types. This chapter details the symbols and tags that can be
used to manipulate decimal and integer values and to perform mathemat-
ical operations.

 • Overview provides an introduction to the decimal and integer data types
and how to cast values to and from other data types.

 • Math Symbols describes the symbols that can be used to create math-
ematical expressions.

 • Decimal Member Tags describes the member tags that can be used with
the decimal data type.

 • Integer Member Tags describes the member tags that can be used with
the integer data type.

 • Math Tags describes the substitution and process tags that can be used
with numeric values.

Overview
Mathematical operations and number formatting can be performed in
LDML using a variety of different methods on integer and decimal values.
There are three types of operations that can be performed:

 • Symbols can be used to perform mathematical calculations within
LDML tags or to perform assignment operations within LassoScripts.

 • Member Tags can be used to format decimal or integer values or to
perform bit manipulations.

 • Substitution Tags can be used to perform advanced calculations.

3 0 5

L A S S O 7 . 1 L A N G U A G E G U I D E

Each of these methods is described in detail in the sections that follow.
This guide contains a description of every symbol and tag and many exam-
ples of their use. The LDML Reference is the primary documentation source
for LDML symbols and tags. It contains a full description of each symbol
and tag including details about each parameter.

Integer Data Type
The integer data type represents whole number values. Basically, any posi-
tive or negative number which does not contain a decimal point is an
integer value in Lasso. Examples include -123 or 456. Integer values may
also contain hexadecimal values such as 0x1A or 0xff.

Spaces must be specified between the + and - symbols and the parameters,
otherwise the second parameter of the symbol might be mistaken for an
integer literal.

Table 1: Integer Tag

Tag Description

[Integer] Casts a value to type integer.

Examples of explicit integer casting:

 • Strings which contain numeric data can be cast to the integer data type
using the [Integer] tag. The string must start with a numeric value. In the
following examples the number 123 is the result of each explicit casting.
Only the first integer found in the string 123 and then 456 is recognized.

[Integer: '123'] ➜ 123
[Integer: '123 and then 456'] ➜ 123

 • Decimals which are cast to the integer data type are rounded to the
nearest integer.

[Integer: 123.000000] ➜ 123
[Integer: 123.999] ➜ 124

Decimal Data Type
The decimal data type represents real or floating point numbers. Basically,
any positive or negative number which contains a decimal point is a
decimal value in Lasso. Examples include -123.0 and 456.789. Decimal
values can also be written in exponential notation as in 1.23e2 which is
equivalent to 1.23 times 102 or 123.0.

3 0 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

Spaces must be specified between the + and - symbols and the parameters,
otherwise the second parameter of the symbol might be mistaken for a
decimal literal.

Table 2: Decimal Tag

Tag Description

[Decimal] Casts a value to type decimal.

The precision of decimal numbers is always displayed as six decimal places
even though the actual precision of the number may vary based on the
size of the number and its internal representation. The output precision of
decimal numbers can be controlled using the [Decimal->Format] tag described
later in this chapter.

Examples of implicit decimal casting:

 • Integer values are cast to decimal values automatically if they are used as
a parameter to a mathematical symbol. If either of the parameters to the
symbol is a decimal value then the other parameter is cast to a decimal
value automatically. The following example shows how the integer 123 is
automatically cast to a decimal value because the other parameter of the
+ symbol is the decimal value 456.0.

[Output: 456.0 + 123] ➜ 579.000000

The following example shows how a variable with a value of 123 is auto-
matically cast to a decimal value.

[Variable: 'Number'=123]
[Output: 456.0 + (Variable: 'Number')] ➜ 579.000000

Examples of explicit decimal casting:

 • Strings which contain numeric data can be cast to the decimal data type
using the [Decimal] tag. The string must start with a numeric value. In the
following examples the number 123.000000 is the result of each explicit
casting. Only the first decimal value found in the string 123 and then 456 is
recognized.

[Decimal: '123'] ➜ 123.000000
[Decimal: '123.0'] ➜ 123.000000
[Decimal: '123 and then 456'] ➜ 123.000000

 • Integers which are cast to the decimal data type simply have a decimal
point appended. The value of the number does not change.

[Decimal: 123] ➜ 123.000000

3 0 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

Mathematical Symbols
The easiest way to manipulate integer and decimal values is to use the
mathematical symbols. Table 3: Mathematical Symbols details all the
symbols that can be used with integer and decimal values.

Table 3: Mathematical Symbols

Symbol Description

+ Adds two numbers. This symbol should always be
separated from its parameters by a space.

- Subtracts the right parameter from the left parameter.
This symbol should always be separated from its
parameters by a space.

* Multiplies two numbers.

/ Divides the left parameter by the right parameter.

% Modulus. Calculates the left parameter modulo the right
number. Both parameters must be integers.

Each of the mathematical symbols takes two parameters. If either of the
parameters is a decimal value then the result will be a decimal value. Many
of the symbols can also be used to perform string operations. If either of
the parameters is a string value then the string operation defined by the
symbol will be performed rather than the mathematical operation.

Note: Full documentation and examples for each of the mathematical
symbols can be found in the LDML Reference.

Examples of using the mathematical symbols:

 • Two numbers can be added using the + symbol. The output will be a
decimal value if either of the parameters are a decimal value. Note that
the symbol + is separated from its parameters by spaces and negative
values used as the second parameter should be surrounded by paren-
theses.

[Output: 100 + 50] ➜ 150
[Output: 100 + (-12.5)] ➜ 87.500000

 • The difference between numbers can be calculated using the - symbol.
The output will be a decimal value if either of the parameters are a
decimal value.

[Output: 100 - 50] ➜ 50
[Output: 100 - (-12.5)] ➜ 112.500000

3 0 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

 • Two numbers can be multiplied using the * symbol. The output will be a
decimal value if either of the parameters are a decimal value.

[Output: 100 * 50] ➜ 5000
[Output: 100 * (-12.5)] ➜ -1250.000000

Table 4: Mathematical Assignment Symbols

Symbol Description

= Assigns the right parameter to the variable designated
by the left parameter.

+= Adds the right parameter to the value of the left
parameter and assigns the result to the variable
designated by the left parameter.

-= Subtracts the right parameter from the value of the
left parameter and assigns the result to the variable
designated by the left parameter.

*= Multiplies the value of the left parameter by the value of
the right parameter and assigns the result to the variable
designated by the left parameter.

/= Divides the value of the left parameter by the value of
the right parameter and assigns the result to the variable
designated by the left parameter.

%= Modulus. Assigns the value of the left parameter
modulo the right parameter to the left parameter. Both
parameters must be integers.

Each of the symbols takes two parameters. The first parameter must be a
variable that holds an integer or decimal value. The second parameter can
be any integer or decimal value. The result of the operation is calculated
and then stored back in the variable specified as the first operator.

Note: Full documentation and examples for each of the mathematical
symbols can be found in the LDML Reference.

Examples of using the mathematical assignment symbols:

 • A variable can be assigned a new value using the = symbol. The
following example shows how to define an integer variable and then set
it to a new value. The new value is output using the [Output] tag.

<?LassoScript
 Variable: 'IntegerVariable'= 100;
 $IntegerVariable = 123456;
 Output: $IntegerVariable;
?>

➜ 123456

3 0 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

 • A variable can be used as a collector by adding new values using the +=
symbol. The following example shows how to define an integer variable
and then add several values to it. The final value is output using the
[Output] tag.

<?LassoScript
 Variable: 'IntegerVariab'e= 0;
 $IntegerVariable += 123;
 $IntegerVariable += (-456);
 Output: $IntegerVariable;
?>

➜ -333

Table 5: Mathematical Comparison Symbols

Symbol Description

== Returns True if the parameters are equal.

!= Returns True if the parameters are not equal.

< Returns True if the left parameter is less than the right
parameter.

<= Returns True if the left parameter is less than or equal to
the right parameter.

> Returns True if the left parameter is greater than the
right parameter.

>= Returns True if the left parameter is greater than or
equal to the right parameter.

Each of the mathematical symbols takes two parameters. If either of the
parameters is a decimal value then the result will be a decimal value. Many
of the symbols can also be used to perform string operations. If either of
the parameters is a string value then the string operation defined by the
symbol will be performed rather than the mathematical operation.

Note: Full documentation and examples for each of the mathematical
symbols can be found in the LDML Reference.

Examples of using the mathematical comparison symbols:

 • Two numbers can be compared for equality using the == symbol and !=
symbol. The result is a boolean True or False. Integers are automatically
cast to decimal values when compared.

[Output: 100 == 123] ➜ False
[Output: 100.0 != (-123.0)] ➜ True
[Output: 100 ==100.0] ➜ True
[Output: 100.0 != (-123)] ➜ False

3 1 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

 • Numbers can be ordered using the <, <=, >, and <= symbols. The result is
a boolean True or False.

[Output: -37 > 0] ➜ False
[Output: 100 < 1000.0] ➜ True

Decimal Member Tags
The decimal data type includes one member tag that can be used to format
decimal values.

Table 6: Decimal Member Tag

Tag Description

[Decimal->SetFormat] Specifies the format in which the decimal value will be
output when cast to string or displayed to a visitor.

Note: Full documentation and examples for this tag can be found in the
LDML Reference.

Decimal Format
The [Decimal->SetFormat] tag can be used to change the output format of a
variable. When the variable is next cast to data type string or output to the
format file it will be formatted according to the preferences set in the last
call to [Decimal->SetFormat] for the variable. If the [Decimal->SetFormat] tag is
called with no parameters it resets the formatting to the default. The tag
takes the following parameters.

3 1 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

Table 7: [Decimal->SetFormat] Parameters

Keyword Description

-Precision The number of decimal points of precision that should
be output. Defaults to 6.

-DecimalChar The character which should be used for the decimal
point. Defaults to a period.

-GroupChar The character which should be used for thousands
grouping. Defaults to empty.

-Scientific Set to True to force output in exponential notation.
Defaults to False so decimals are only output in
exponential notation if required.

-Padding Specifies the desired length for the output. If the
formatted number is less than this length then the
number is padded.

-PadChar Specifies the character that will be inserted if padding is
required. Defaults to a space.

-PadRight Set to True to pad the right side of the output. By
default, padding is appended to the left side of the
output.

To format a decimal number as US currency:

Create a variable that will hold the dollar amount, DollarVariable. Use
[Decimal->SetFormat] to set the -Precision to 2 and the -GroupChar to comma.

[Variable: 'DollarVariable' = 0.0]
[$DollarVariable->(SetFormat: -Precision=2, -GroupChar=',')]

$[Output: $DollarVariable]

[Variable: 'DollarVariable' = $DollarVariable + 1000]
[$DollarVariable->(SetFormat: -Precision=2, -GroupChar=',')]

$[Output: $DollarVariable]

[Variable: 'DollarVariable' = $DollarVariable / 8]
[$DollarVariable->(SetFormat: -Precision=2, -GroupChar=',')]

$[Output: $DollarVariable]

➜
$0.00

$1,000.00

$12.50

3 1 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

Integer Member Tags
The integer data type includes many member tags that can be used to
format or perform bit operations on integer values. The available member
tags are listed in Table 8: Integer Member Tags.

Table 8: Integer Member Tags

Tag Description

[Integer->SetFormat] Specifies the format in which the integer value will be
output when cast to string or displayed to a visitor.

[Integer->BitAnd] Performs a bitwise And operation between each bit in
the base integer and the integer parameter.

[Integer->BitOr] Performs a bitwise Or operation between each bit in the
base integer and the integer parameter.

[Integer->BitXOr] Performs a bitwise Exclusive-Or operation between each
bit in the base integer and the integer parameter.

[Integer->BitNot] Flips every bit in the base integer.

[Integer->BitShiftLeft] Shifts the bits in the base integer left by the number
specified in the integer parameter.

[Integer->BitShiftRight] Shifts the bits in the base integer right by the number
specified in the integer parameter.

[Integer->BitClear] Clears the bit specified in the integer parameter.

[Integer->BitFlip] Flips the bit specified in the integer parameter.

[Integer->BitSet] Sets the bit specified in the integer parameter.

[Integer->BitTest] Returns true if the bit specified in the integer parameter
is true.

Note: Full documentation and examples for each of the integer member tags
can be found in the LDML Reference.

Integer Format
The [Integer->SetFormat] tag can be used to change the output format of a
variable. When the variable is next cast to data type string or output to
the format file it will be formatted according to the preferences set in the
last call to [Integer->SetFormat] for the variable. If the [Integer->SetFormat] tag
is called with no parameters it resets the formatting to the default. The tag
takes the following parameters.

3 1 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

Table 9: [Integer->SetFormat] Parameters

Keyword Description

-Hexadecimal If set to True, the integer will output in hexadecimal
notation.

-Padding Specifies the desired length for the output. If the
formatted number is less than this length then the
number is padded.

-PadChar Specifies the character that will be inserted if padding is
required. Defaults to a space.

-PadRight Set to True to pad the right side of the output. By
default, padding is appended to the left side of the
output.

To format an integer as a hexadecimal value:

Create a variable that will hold the value, HexVariable. Use [Integer->SetFormat]
to set -Hexadecimal to True..

[Variable: 'HexVariable' = 255]
[$HexVariable->(SetFormat: -Hexadecimal=True)]

[Output: $HexVariable]

[Variable: 'HexVariable' = $HexVariable / 5]
[$HexVariable->(SetFormat: -Hexadecimal=True)]

[Output: $HexVariable]

➜
0xff

0x33

Bit Operations
Bit operations can be performed within Lasso’s 64-bit integer values. These
operations can be used to examine and manipulate binary data. They can
also be used for general purpose binary set operations.

Integer literals in LDML can be specified using hexadecimal notation. This
can greatly aid in constructing literals for use with the bit operation. For
example, 0xff is the integer literal 255. The [Integer->SetFormat] tag with a
parameter of -Hexadecimal=True can be used to output hexadecimal values.

The bit operations are divided into three categories.

 • The [Integer->BitAnd], [Integer->BitOr], and [Integer->BitXOr] tags are used to
combine two integer values using the specified boolean operation. In

3 1 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

the following example the boolean Or of 0x02 and 0x04 is calculated and
returned in hexadecimal notation.

[Var: 'BitSet'=0x02]
[$BitSet->(SetFormat: -Hexadecimal=True]
[$BitSet->(BitOr: 0x04]
[Output: $BitSet]

➜ 0x06

 • The [Integer->BitShiftLeft], [Integer->BitShiftRight], and [Integer->BitNot] tags are
used to modify the base integer value in place. In the following example,
0x02 is shifted left by three places and output in hexadecimal notation.

[Var: 'BitSet'=0x02]
[$BitSet->(SetFormat: -Hexadecimal=True]
[$BitSet->(BitShift: 3]
[Output: $BitSet]

➜ 0x10

 • The [Integer->BitSet], [Integer->BitClear], [Integer->BitFlip], and [Integer->BitTest]
tags are used to manipulate or test individual bits from an integer value.
In the following example, the second bit an integer is set and then
tested.

[Var: 'BitSet'=0]
[$BitSet->(BitSet: 2)]
[$BitSet->(BitTest 2)]

➜ True

3 1 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

Math Tags
LDML contains many substitution tags that can be used to perform math-
ematical functions. The functionality of many of these tags overlaps the
functionality of the mathematical symbols. It is recommended that you use
the equivalent symbol when one is available.

Additional tags detailed in the section on Trigonometry and Advanced
Math.

Table 10: Math Tags

Tag Description

[Math_Abs] Absolute value. Requires one parameter.

[Math_Add] Addition. Returns sum of multiple parameters.

[Math_Ceil] Ceiling. Returns the next higher integer. Requires one
parameter.

[Math_ConvertEuro] Converts between the Euro and other European Union
currencies.

[Math_Div] Division. Divides each of multiple parameters in order
from left to right.

[Math_Floor] Floor. Returns the next lower integer. Requires one
parameter.

[Math_Max] Maximum of all parameters.

[Math_Min] Minimum of all parameters.

[Math_Mod] Modulo. Requires two parameters. Returns the value of
the first parameter modulo the second parameter.

[Math_Mult] Multiplication. Returns the value of multiple parameters
multiplied together.

[Math_Random] Returns a random number.

[Math_RInt] Rounds to nearest integer. Requires one parameter

[Math_Roman] Converts a number into roman numerals. Requires one
positive integer parameter.

[Math_Round] Rounds a number with specified precision. Requires
two parameters. The first value is rounded to the same
precision as the second value.

[Math_Sub] Subtraction. Subtracts each of multiple parameters in
order from left to right.

Note: Full documentation and examples for each of the math tags can be
found in the LDML Reference.

3 1 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

If all the parameters to a mathematical substitution tag are integers then
the result will be an integer. If any of the parameter to a mathematical
substitution tag is a decimal then the result will be a decimal value and
will be returned with six decimal points of precision.

In the following example the same calculation is performed with integer
and decimal parameters to show how the results vary. The integer example
returns 0 since 0.125 rounds down to zero when cast to an integer.

[Math_Div: 1, 8] ➜ 0
[Math_Div: 1.0, 8] ➜ 0.125000

Examples of using math substitution tags:

The following are all examples of using math substitution tags to calculate
the results of various mathematical operations.

[Math_Add: 1, 2, 3, 4, 5] ➜ 15
[Math_Add: 1.0, 100.0] ➜ 101.000000
[Math_Sub: 10, 5] ➜ 5
[Math_Div: 10, 9] ➜ 11
[Math_Div: 10, 8.0] ➜ 12.500000
[Math_Max: 100, 200] ➜ 200

Rounding Numbers
Lasso provides a number of different methods for rounding numbers:

 • Numbers can be rounded to integer using the [Math_RInt] tag to round
to the nearest integer, the [Math_Floor] tag to round to the next lowest
integer, or the [Math_Ceil] tag to found to the next highest integer.

[Math_RInt: 37.6] ➜ 38
[Math_Floor: 37.6] ➜ 37
[Math_Ceil: 37.6] ➜ 38

 • Numbers can be rounded to arbitrary precision using the [Math_Round]
tag with a decimal parameter. The second parameter should be of the
form 0.01, 0.0001, 0.000001, etc.

[Math_Round: 3.1415926, 0.0001] ➜ 3.1416
[Math_Round: 3.1415926, 0.001] ➜ 3.142
[Math_Round: 3.1415926, 0.01] ➜ 3.14
[Math_Round: 3.1415926, 0.1] ➜ 3.1

 • Numbers can be rounded to an even multiple of another number using
the [Math_Round] tag with an integer or decimal parameter.

[Math_Round: 1463, 1000] ➜ 1000
[Math_Round: 1463, 500] ➜ 1500
[Math_Round: 1463, 20] ➜ 1460
[Math_Round: 1463, 3] ➜ 1464

3 1 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

[Math_Round: 3.1415926, 0.5] ➜ 3.0
[Math_Round: 3.1415926, 0.25] ➜ 3.25
[Math_Round: 3.1415926, 1.000] ➜ 3.000
[Math_Round: 3.1415926, 5.0] ➜ 5.0

 • If a rounded result needs to be shown to the user, but the actual value
stored in a variable does not need to be rounded then either the
[Integer->SetFormat] or [Decimal->SetFormat] tags can be used to alter how the
number is displayed. See the documentation of these tags earlier in the
chapter for more information.

Random Numbers
The [Math_Random] tag can be used to return a random number in a given
range. The result can optionally be returned in hexadecimal notation (for
use in HTML color variables).

Note: When returning integer values [Math_Random] will return a maximum
32-bit value. The range of returned integers is approximately between
+/- 2,000,000,000.

Table 11: [Math_Random] Parameters

Keyword Description

-Min Minimum value to be returned.

-Max Maximum value to be returned. For integer results
should be one greater than maximum desired value.

-Hex If specified, returns the result in hexadecimal notation.

To return a random integer value:

In the following example a random number between 1 and 99 is returned.
The random number will be different each time the page is loaded.

[Math_Random: -Min=1, -Max=100]

➜ 55

To return a random decimal value:

In the following example a random decimal number between 0.0 and 1.0
is returned. The random number will be different each time the page is
loaded.

[Math_Random: -Min=0.0, -Max=1.0]

➜ 0.55342

3 1 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

To return a random color value:

In the following example a random hexadecimal color code is returned.
The random number will be different each time the page is loaded. The
range is from 16 to 256 to return two-digit hexadecimal values between 10
and FF.

<font color="#[Math_Random: -Min=16, -Max=256, -Hex][Math_Random: -Min=16,
-Max=256, -Hex][Math_Random: -Min=16, -Max=256, -Hex]">Color

➜ Color

Trigonometry and Advanced Math
Lasso provides a number of tags for performing trigonometric functions,
square roots, logarighthms, and calculating exponents.

Table 12: Trigonmetric and Advanced Math Tags

Tag Description

[Math_ACos] Arc Cosine. Requires one parameter. The return value is
in radians between 0 and π.

[Math_ASin] Arc Sine. Requires one parameter. The return value is in
radians between -2/π and 2/π.

[Math_ATan] Arc Tangent. Requires one parameter. The return value
is in radians between -2/π and 2/π.

[Math_ATan2] Arc Tangent of a Quotient. Requires two parameters.
The return value is in radians between -π and π.

[Math_Cos] Cosine. Requires one parameter.

[Math_Exp] Natural Exponent. Requires one parameter. Returns e
raised to the specified power.

[Math_Ln] Natural Logarithm. Requires one parameter. Also [Math_
Log].

[Math_Log10] Base 10 Logarithm. Requires one parameter.

[Math_Pow] Exponent. Requires two parameters: a base and an
exponent. Returns the base raised to the exponent.

[Math_Sin] Sine. Requires one parameter.

[Math_Sqrt] Square Root. Requires one positive parameter.

[Math_Tan] Tangent. Requires one parameter.

3 1 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

Examples of using advanced math substitution tags:

The following are all examples of using math substitution tags to calculate
the results of various mathematical operations.

[Math_Pow: 3, 3] ➜ 27
[Math_Sqrt: 100.0] ➜ 10.000000

Locale Formatting
Lasso can format currency, percentages, and scientific values according to
the rules of any country or locale. The tags in Table 13: Locale Formatting
Tags are used for this purpose. Each tag accepts an optional language code
and country code which specifies the locale to use for the formatting.

The default is language en for English and country US for the United States.
A list of valid language and country codes can be found in the LDML
Reference.

Table 13: Locale Formatting Tags

Tag Description

[Currency] Formats a number as currency. Requires one parameter,
the currency amount to format. The second parameter
specifies the language and the third paramter specifies
the country for the desired locale.

[Percent] Formats a number as a percentage. Requires one
parameter, the currency amount to format. The second
parameter specifies the language and the third paramter
specifies the country for the desired locale.

[Scientific] Formats a number using scientific notation. Requires
one parameter, the currency amount to format. The
second parameter specifies the language and the third
paramter specifies the country for the desired locale.

[Locale_Format] Formats a number. Requires one parameter, the decimal
amount to format. The second parameter specifies the
language and the third paramter specifies the country for
the desired locale.

3 2 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 5 – M A T H O P E R A T I O N S

16
Chapter 16

Date and Time Operations

Dates and times in Lasso can be stored and manipulated as special date
and duration data types. This chapter describes the tags that can be used to
manipulate dates and times.

 • Overview provides an introduction to using the Lasso date and duration
data types.

 • Date Tags describes the substitution and member tags that can be used
to cast, format, and display dates and times.

 • Duration Tags describes the substitution and member tags that can be
used to cast, format, and display durations.

 • Date and Duration Math describes the tags that are used to perform
calculations using both dates and durations.

Overview
This chapter introduces the date and the duration data types in LDML
7. Dates are a data type that represent a calendar date and/or clock time.
Durations are a data type that represents a length of time in hours,
minutes, and seconds. Date and duration data types can be manipulated
in a similar manner as integer data types, and operations can be performed
to determine date differences, time differences, and more. Date data types
may also be formatted and converted to a number of predefined or custom
formats, and specific information may be extrapolated from a date data
type (day of week, name of month, etc.).

Since dates and durations can take many forms, values that represent a
date or a duration must be explicitly cast as date or duration data types
using the [Date] and [Duration] tags. For example, a value of 01/01/2002 12:30:00

3 2 1

L A S S O 7 . 1 L A N G U A G E G U I D E

will be treated as a string data type until it is cast as a date data type using
the [Date] tag:

[Date:'01/01/2002 12:30:00']

Once a value is cast as a date or duration data type, special tags, accessors,
conversion operations, and math operations may then be used.

Internal Date Libraries
When performing date operations, Lasso uses internal date libraries to
automatically adjust for leap years and daylight saving time for the local
time zone in all applicable regions of the world (not all regions recognize
daylight saving time). The current time and time zone are based on that of
the Web server.

Daylight Saving Time Note: Lasso extracts daylight saving time information
from the operating system, and can only support daylight saving time conver-
sions between the years 1970 and 2038. For information on special excep-
tions with date calculations during daylight saving time, see all the Date and
Duration Math section.

Date Tags
For Lasso to recognize a string as a date data type, the string must be
explicitly cast as a date data type using the [Date] tag.

[Date: '5/22/2002 12:30:00']

When casting as a date data type using the [Date] tag, the following date
formats are automatically recognized as valid date strings by Lasso: These
automatically recognized date formats are U.S. or MySQL dates with a four
digit year followed by an optional 24-hour time with seconds. The “/”, “-”,
and “:” characters are the only punctuation marks recognized in valid date
strings by Lasso when used in the formats shown below.

1/25/2002
1/25/2002 12:34
1/25/2002 12:34:56
1/25/2002 12:34:56 GMT

2002-01-25
2002-01-25 12:34:56
2002-01-25 12:34:56 GMT

3 2 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

Lasso also recognizes a number of special purpose date formats which are
shown below. These are useful when working with HTTP headers or email
message headers.

20020125T12:34:56
Tue, Dec 17 2002 12:34:56 -0800
Tue Dec 17 12:34:56 PST 2002

The date formats which contain time zone information (e.g. -0800 or PST)
will be recognized as GMT dates. The time zone will be used to automati-
cally adjust the date/time to the equivalent GMT date/time.

If using a date format not listed above, custom date formats can be defined
as date data types using the [Date] tag with the -Format parameter.

The following variations of the automatically recognized date formats are
valid without using the -Format parameter.

 • If the [Date] tag is used without a parameter then the current date and
time are returned. Milliseconds are rounded to the nearest second.

 • If the time is not specified then it is assumed to be 00:00:00, midnight on
the specified date.

mm/dd/yyyy ➜ mm/dd/yyyy 00:00:00

 • If the seconds are not specified then the time is assumed to be even on
the minute.

mm/dd/yyyy hh:mm ➜ mm/dd/yyyy hh:mm:00

 • An optional GMT designator can be used to specify Greenwich Mean
Time rather than local time.

mm/dd/yyyy hh:mm:ss GMT

 • Two digit years are assumed to be in the 21st century if they are less than
40 or in the 20th century if they are greater than or equal to 40. Two digit
years range from 1940 to 2039. For best results, always use four digit years.

mm/dd/00 ➜ mm/dd/2000
mm/dd/39 ➜ mm/dd/2039
mm/dd/40 ➜ mm/dd/1940
mm/dd/99 ➜ mm/dd/1999

 • Days and months can be specified with or without leading 0s. The
following are all valid Lasso date strings.

1/1/02 01/01/02
1/1/2002 01/01/2002
1/1/2002 16:35 01/01/2002 16:35
1/1/2002 16:35:45 01/01/2002 16:35:45
1/1/2002 12:35:45 GMT 01/01/2002 12:35:45 GMT

3 2 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

To cast a value as a date data type:

If the value is in a recognized string format described previously, simply
use the [Date] tag.

[Date: '05/22/2002'] ➜ 05/22/2002 00:00:00
[Date: '05/22/2002 12:30:00'] ➜ 05/22/2002 12:30:00
[Date: '2002-22-05'] ➜ 2002-22-05 00:00:00

If the value is not in a string format described previously, use the [Date]
tag with the -Format parameter. For information on how to use the
-Format parameter, see the Formatting Dates section later in this chapter.

[Date: '5.22.02 12:30', -Format='%m.%d.%y %H%M'] ➜ 5.22.02 12:30
[Date: '20020522123000', -Format='%Y%m%d%H%M'] ➜ 200205221230

Date values which are stored in database fields or variables can be cast to
the date data type using the date tag. The format of the date stored in the
field or variable should be in one of the format described above or the
-Format parameter must be used to explicitly specify the format.

[Date: (Variable: 'myDate')]
[Date: (Field: 'Modified_Date')]
[Date: (Action_Param: 'Birth_Date')]

3 2 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

Date Tags
LDML contains date substitution tags that can be used to cast date strings
as date data types, format date data types, and perform date/time conver-
sions.

Table 1: Date Substitution Tags

Tag Description

[Date] Used to cast values to date data types when used with
a valid date string as a parameter. An optional -Format
parameter with a date format string may be used to
explicitly cast an unknown date format.
When no parameter is used, it returns the current
date and time. An optional -DateGMT keyword/value
parameter returns GMT date and time.
Also accepts parameters for -Second, -Minute, -Hour,
-Day, -Month, -Year, and -DateGMT for constructing and
outputting dates. Note, these parameters should be not
be used in concert with a string parameter.

[Date_Format] Changes the output format of a Lasso date. Requires
a Lasso date data type or valid Lasso date string as
a parameter (auto-recognizes the same formats as
the [Date] tag). The -Format keyword/value parameter
defines how the date should be reformatted. See the
Formatting Dates section below for more information.

[Date_SetFormat] Sets a date format for output using the [Date] tag for an
entire Lasso format file. The -Format parameter uses
a format string. An optional -TimeOptional parameter
causes the output to not return 00:00:00 if there is no
time value.

[Date_GMTToLocal] Converts a date/time from Greenwich Mean Time to
local time of the machine running Lasso Service.

[Date_LocalToGMT] Converts a date/time from local time to Greenwich Mean
Time.

[Date_GetLocalTimeZone] Returns the current time zone of the machine running
Lasso Service as a standard GMT offset string (e.g.
-0700). Optional -Long parameter shows the name of
the time zone (e.g. PDT).

[Date_Minimum] Returns the minimum possible date recognized by a
Date data type in Lasso.

[Date_Maximum] Returns the maximum possible date recognized as a
Date data type in Lasso.

3 2 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

Note: Full documentation and examples for each date tag can be found in
the LDML Reference.

To display date values:

 • The current date/time can be displayed with [Date]. The example below
assumes a current date of 5/22/2002 14:02:05.

[Date] ➜ 5/22/2002 14:02:05

 • The [Date] tag can be used to assemble a date from individual parameters.
The following tag assembles a valid Lasso date string by specifying each
part of the date separately. Since the time is not specified it is assumed to
be midnight on the specified day.

[Date: -Year=2002, -Month=5, -Day=22] ➜ 5/22/2002 00:00:00

To convert date values to and from GMT:

Any date data type can instantly be converted to and from Greenwich
Mean Time using the [Date_GMTToLocal] and [Date_LocalToGMT] tags. These
tags will only convert the current time zone of the machine running Lasso
Service. The following example uses Pacific Time (PDT) as the current time
zone.

[Date_GMTToLocal:(Date:'5/22/2002 14:02:05')] ➜ 5/22/2002 09:02:05
[Date_LocalToGMT:(Date:'5/22/2002 14:02:05')] ➜ 5/22/2002 07:02:05

To show the current time zone for the server running Lasso Service:

The [Date_GetLocalTimeZone] tag displays the current time zone of the
machine running Lasso Service. The following example uses Pacific Time
(PDT) as the current time zone.

[Date_GetLocalTimeZone] ➜ 0700
[Date_GetLocalTimeZone: -Long] ➜ PDT

3 2 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

Formatting Dates
The [Date] tag and the [Date_Format] tag each have a -Format parameter
which accepts a string of symbols that define the format of the date which
should be parsed in the case of the [Date] tag or formatted in the case of the
[Date_Format] tag. The symbols which can be used in the -Format parameter
are detailed in the following table.

Table 2: Date Format Symbols

Symbol Description

%D U.S. date format (mm/dd/yyyy).

%Q MySQL date format (yyyy-mm-dd).

%q MySQL timestamp format (yyyymmddhhmmss)

%r 12-hour time format (hh:mm:ss [AM/PM]).

%T 24-hour time format (hh:mm:ss).

%Y 4-digit year.

%y 2-digit year.

%m Month number (01=January, 12=December).

%B Full English month name (e.g. "January").

%b Abbreviated English month name (e.g. "Jan").

%d Day of month (01-31).

%w Day of week (01=Sunday, 07=Saturday).

%A Full English weekday name (e.g. "Wednesday").

%a Abbreviated English weekday name (e.g. "Wed").

%H 24-hour time hour (0-23).

%h 12-hour time hour (1-12).

%M Minute (0-59).

%S Second (0-59).

%p AM/PM for 12-hour time.

%G GMT time zone indicator.

%z Time zone offset in relation to GMT (e.g. +0100, -0800).

%Z Time zone designator (e.g. PST, GMT-1, GMT+12)

Each of the date format symbols that returns a number automatically pads
that number with 0 so all values returned by the tag are the same length.

 • An optional underscore _ between the percent sign % and the letter
designating the symbol specifies that space should be used instead of
0 for the padding character (e.g. %_m returns the month number with
space padding).

3 2 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

 • An optional hyphen - between the percent sign % and the letter desig-
nating the symbol specifies that no padding should be performed (e.g.
%-m returns the month number with no padding).

 • A literal percent sign can be inserted using %%.

Note: If the %z or %Z symbols are used when parsing a date, the resulting
Lasso date object will reqpresent the equivalent GMT date/time.

To convert Lasso date data types to various formats:

The following examples show how to convert either Lasso date data types
or valid Lasso date strings to alternate formats.

[Date_Format: '06/14/2001', -Format='%A, %B %d'] ➜ Thursday, June 14
[Date_Format: '06/14/2001', -Format='%a, %b %d'] ➜ Thu, Jun 14
[Date_Format: '2001-06-14', -Format='%Y%m%d%H%M'] ➜ 200106140000

[Date_Format: (Date:'1/4/2002'), -Format='%m.%d.%y'] ➜ 01.04.02
[Date_Format: (Date:'1/4/2002 02:30:00'), -Format='%B, %Y '] ➜ January, 2002
[Date_Format: (Date:'1/4/2002 02:30:00'), -Format='%r'] ➜ 2:30 AM

To import and export dates from MySQL:

A common conversion in Lasso is converting MySQL dates to and from
U.S. dates. Dates are stored in MySQL in the following format yyyy-mm-dd.
The following example shows how to import a date in this format to a U.S.
date format using the [Date_Format] tag with an appropriate -Format param-
eter.

[Date_Format: '2001-05-22', -Format='%D'] ➜ 5/22/2001
[Date_Format: '5/22/2001', -Format='%Q'] ➜ 2001-05-22

[Date_Format: (Date:'2001-05-22'), -Format='%D'] ➜ 5/22/2001
[Date_Format: (Date:'5/22/2001'), -Format='%Q'] ➜ 2001-05-22

To set a custom Lasso date format for a file:

Use the [Date_SetFormat] tag. This allows all date data types on a page to
be output in a custom format without the use of the [Date_Format] tag. The
format specified is only valid for Lasso code contained in the same file
below the [Date_SetFormat] tag.

[Date_SetFormat: -Format='%m%d%y']

The example above allows the following Lasso date to be output in a
custom format without the [Date_Format] tag.

[Date:'01/01/2002'] ➜ 010102

3 2 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

Date Format Member Tags
In addtion to [Date_Format] and [Date_SetFormat], LDML 7 also offers
the [Date->Format] member tags for performing format conversions on date
data types.

Table 3: Date Format Member Tags

Symbol Description

[Date->Format] Changes the output format of a Lasso date data type.
May only be used with Lasso date data types. Requires
a date format string as a parameter.

[Date->SetFormat] Sets a date output format for a particular Lasso date
data type object. Requires a date format string as a
parameter. An optional -TimeOptional parameter causes
the output to not return 00:00:00 if there is no time
value.

To convert Lasso date data types to various formats:

The following examples show how to convert Lasso date data types to alter-
nate formats using the [Date->Format] tag.

[Var:'MyDate'=(Date:'2002-06-14 00:00:00')]
[$MyDate->Format: '%A, %B %d'] ➜ Tuesday, June 14, 2002

[Var:'MyDate'=(Date:'06/14/2002 09:00:00')]
[$MyDate->Format: '%Y%m%d%H%M'] ➜ 200206140900

[Var:'MyDate'=(Date:'01/31/2002')]
[$MyDate->Format: '%d.%m.%y'] ➜ 31.01.02

[Var:'MyDate'=(Date:'09/01/2002')]
[$MyDate->Format: '%B, %Y '] ➜ September, 2002

To set an output format for a specific date data type:

Use the [Date->SetFormat] tag. This causes all instances of a particular date
data type object to be output in a specified format.

[Var:'MyDate'=(Date:'01/01/2002')]
[$MyDate->(SetFormat: '%m%d%y')]

The example above causes all instances of [Var:'MyDate'] in the current
format file to be output in a custom format without the [Date_Format] or
[Date->Format] tag.

[Var:'MyDate'] ➜ 010102

3 2 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

Date Accessors
A date accessor function returns a specific integer or string value from a
date data type, such as the name of the current month or the seconds of
the current time. All date accessor tags in LDML 7 are defined in Table 4:
Date Accessor Tags.

Table 4: Date Accessor Tags

Tag Description

[Date->Year] Returns a four-digit integer representing the year for a
specified date. An optional -Days parameter returns the
number of days in the current year (e.g. 365).

[Date->Month] Returns the number of the month (1=January,
12=December) for a specified date (defaults to current
date). Optional -Long returns the full English month
name (e.g. "January") or -Short returns an abbreviated
English month name (e.g. "Jan"). An optional -Days
parameter returns the number of days in the current
month (e.g. 31).

[Date->Day] Returns the integer day of the month (e.g. 15).

[Date->DayofYear] Returns integer day of year (out of 365). Will work with
leap years as well (out of 366).

[Date->DayofWeek] Returns the number of the day of the week (1=Sunday,
7=Saturday) for a specified date. Optional -Short returns
an abbreviated English day name (e.g. "Sun") and -Long
returns the full English day name (e.g. "Sunday").

[Date->Week] Returns the integer week number for the year of the
specified date (out of 52). The -Sunday parameter
returns the integer week of year starting from Sunday
(default). A -Monday parameter returns integer week of
year starting from Monday.

[Date->Hour] Returns the hour for a specified date/time. An optional
-Short parameter returns integer hour from 1 to 12
instead of 1 to 24.

[Date->Minute] Returns integer minutes from 0 to 59 for a specified
date/time.

[Date->Second] Returns integer seconds from 0 to 59 for the specified
date/time.

[Date->Millisecond] Returns the current integer milliseconds of the current
date/time only.

[Date->Time] Returns the time of a specified date/time.

[Date->GMT] Returns whether the specified date is in local or GMT
time.

3 3 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

To use date accessors:

 • The individual parts of the current date/time can be displayed using the
[Date->...] tags.

[(Date:'5/22/2002 14:02:05')->Year] ➜ 2002
[(Date:'5/22/2002 14:02:05')->Month] ➜ 5
[(Date:'2/22/2002 14:02:05')->(Month: -Long)] ➜ February
[(Date:'5/22/2002 14:02:05')->Day] ➜ 22
[(Date:'5/22/2002 14:02:05')->(DayOfWeek: -Short)] ➜ Wed
[(Date:'5/22/2002 14:02:05')->Time] ➜ 14:02:05
[(Date:'5/22/2002 14:02:05')->Hour] ➜ 14
[(Date:'5/22/2002 14:02:05')->Minute] ➜ 02
[(Date:'5/22/2002 14:02:05')->Second] ➜ 05

 • The [Date->Millisecond] tag can only return the current number of milli-
second value (as related to the clock time) for the machine running
Lasso Service.

[Date->Millisecond] ➜ 957

Duration Tags
A duration is a special data type that represents a length of time. A dura-
tion is not a 24-hour clock time, and may represent any number of hours,
minutes, or seconds.

Similar to dates, durations must be cast as duration data types before they
can be manipulated. This is done using the [Duration] tag. Durations may be
cast in an hours:minutes:seconds format, or just as seconds.

[Duration:'1:00:00'] ➜ 1:00:00
[Duration:'3600'] ➜ 1:00:00

Once a value has been cast as a duration data type, duration calculations
and accessors may then be used. Durations are especially useful for calcu-
lating lengths of time under 24 hours, although they can be utilized for
any lengths of time. Durations are independent of calendar months and
years, and durations that equal a length of time longer that one month
are only estimates based on the average length of years and months (i.e.
365.2425 days per years, 30.4375 days per month). Duration tags in LDML 7
are summarized in Table 5: Duration Tags.

3 3 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

Table 5: Duration Tags

Tag Description

[Duration] Casts values as a duration data type. Accepts a duration
string for hours:minutes:seconds, or an integer number
of seconds. An optional -Week parameter automatically
adds a specified number of weeks to the duration.
Optional -Day, -Hour, -Minute, and -Second parameters
may also be used for automatically adding day, hour,
minute, and time increments to the duration.

[Duration->Year] Returns the integer number of years in a duration
(based on an average of 365.25 days per year).

[Duration->Month] Returns the integer number of months in a duration
(based on an average of 30.4375 days per month).

[Duration->Week] Returns the integer number of weeks in the duration.

[Duration->Day] Returns the integer number of days in the duration.

[Duration->Hour] Returns the integer number of hours in the duration.

[Duration->Minute] Returns the integer number of minutes in the duration.

[Duration->Second] Returns the integer number of seconds in the duration.

To cast and display durations:

 • Durations can be created using the [Duration] tag with the -Week, -Day,
-Hour, -Minute, and -Second parameters. This always returns durations in
hours:minutes:seconds format.

[Duration: -Week=5, -Day=3, -Hour=12] ➜ 924:00:00
[Duration: -Day=4, -Hour=2, -Minute=30] ➜ 98:30:00
[Duration: -Hour=12, -Minute=45, -Second=50] ➜ 12:45:50
[Duration: -Hour=3, -Minute=30] ➜ 03:30:00
[Duration: -Minute=15, -Second=30] ➜ 00:15:30
[Duration: -Second=30] ➜ 00:00:30

 • The -Week, -Day, -Hour, -Minute, and -Second parameters of the [Duration] tag
may also be combined with a base duration for ease of use when setting
a duration value. This always returns durations in hours:minutes:seconds
format.

[Duration:'5:30:30', -Week=5, -Day=3, -Hour=12] ➜ 929:30:30
[Duration:'1:00:00', -Day=4, -Hour=2, -Minute=30] ➜ 99:30:00
[Duration:'3600', -Hour=12, -Minute=45, -Second=50] ➜ 13:45:50

3 3 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

 • Specific increments of time can be returned from a duration using the
[Duration->...] tags.

[(Duration:'8766:30:45')->Year] ➜ 1
[(Duration:'8766:30:45')->Month] ➜ 12
[(Duration:'8766:30:45')->Week] ➜ 52
[(Duration:'8766:30:45')->Day] ➜ 365
[(Duration:'8766:30:45')->Hour] ➜ 8767
[(Duration:'8766:30:45')->Minute] ➜ 525991
[(Duration:'8766:30:45')->Second] ➜ 31559445

Date and Duration Math
Date calculations in Lasso can be performed by using special date math
tags, durations tags, and math symbols in LDML 7. Date calculations that
can be performed include adding or subtracting year, month, week, day,
and time increments to and from dates, and calculating time durations.
Durations are a new data type that represent a length of time in seconds
and are introduced in the preceding Duration Tags section.

Daylight Saving Time Note: Lasso does not account for changes to and
from daylight saving time when performing date math and duration calcu-
lations. One should take this into consideration when performing a date
or duration calculation across dates that encompass a change to or from
daylight saving time (resulting date may be off by one hour).

Date Math Tags
LDML 7 provides two date math substitution tags for performing date
calculations. These tags are generally used for adding increments of time
to a date, and output a Lasso date in the format specified. These tags are
summarized in Table 6: Date Math Tags.

3 3 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

Table 6: Date Math Tags

Tag Description

[Date_Add] Adds a specified amount of time to a Lasso date data
type or valid Lasso date string. First parameter is a
Lasso date. Keyword/value parameters define what
should be added to the first parameter: -Millisecond,
-Second, -Minute, -Hour, -Day, -Week, -Month, or -Year.

[Date_Subtract] Subtracts a specified amount of time from a Lasso date
data type or valid Lasso date string. First parameter
is a Lasso date. Keyword/value parameters define
what should be subtracted from the first parameter:
-Millisecond, -Second, -Minute, -Hour, -Day, -Week,
-Month, or -Year.

[Date_Difference] Returns the time difference between two specified
dates. A duration is the default return value. Optional
parameters may be used to ouput a specific integer
time value instead of a duration: -Millisecond, -Second,
-Minute, -Hour, -Day, -Week, -Month, -Year. Lasso
rounds to the nearest integer when using these optional
parameters.

To add time to a date:

A specified number of hours, minutes, seconds, days, or weeks can be
added to a date data type or valid date string using the [Date_Add] tag.
The following examples show the result of adding different values to the
current date 5/22/2002 14:02:05.

[Date_Add: (Date), -Second=15] ➜ 5/22/2002 14:02:20
[Date_Add: (Date), -Minute=15] ➜ 5/22/2002 14:17:05
[Date_Add: (Date), -Hour=15] ➜ 5/23/2002 05:02:05
[Date_Add: (Date), -Day=15] ➜ 6/6/2002 14:02:05
[Date_Add: (Date), -Week=15] ➜ 9/4/2002 14:02:05
[Date_Add: (Date), -Month=6] ➜ 11/22/2002 14:02:05
[Date_Add: (Date), -Year=1] ➜ 5/22/2003 14:02:05

To subtract time from a date:

A specified number of hours, minutes, seconds, days, or weeks can be
subtracted from a date data type or valid date string using the [Date_Subtract]
tag. The following examples show the result of subtracting different values
from the date 5/22/2001 14:02:05.

3 3 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

[Date_Subtract: (Date: '5/22/2001 14:02:05'), -Second=15] ➜ 5/22/2001 14:01:50
[Date_Subtract: (Date:'5/22/2001 14:02:05'), -Minute=15] ➜ 5/22/2001 13:47:05
[Date_Subtract: (Date:'5/22/2001 14:02:05'), -Hour=15] ➜ 5/21/2001 23:02:05
[Date_Subtract: '5/22/2001 14:02:05', -Day=15] ➜ 5/7/2001 14:02:05
[Date_Subtract: '5/22/2001 14:02:05', -Week=15] ➜ 2/6/2001 14:02:05

To determine the time difference between two dates:

Use the [Date_Difference] tag. The following examples show how to calculate
the time difference between two date data types or valid date strings.

[Date_Difference: (Date: '5/23/2002'), (Date:'5/22/2002')] ➜ 24:00:00
[Date_Difference: (Date:'5/23/2002'), (Date:'5/22/2002'), -Second] ➜ 86400
[Date_Difference: (Date:'5/23/2002'), '5/22/2002', -Minute] ➜ 3600
[Date_Difference: (Date: '5/23/2002'), '5/22/2002', -Hour] ➜ 24
[Date_Difference: '5/23/2002', (Date:'5/22/2002'), -Day] ➜ 1
[Date_Difference: '5/23/2002', (Date:'5/30/2002'), -Week] ➜ 1
[Date_Difference: '5/23/2002', '6/23/2002', -Month] ➜ 1
[Date_Difference: '5/23/2002', '5/23/2001', -Year] ➜ 1

Date and Duration Math Tags
LDML 7 provides three member tags that perform date math operations
requiring both date and duration data types. These tags are used for adding
durations to dates, subtracting a duration from a date, and determining a
duration between two dates. These tags are summarized in Table 7: Date
and Duration Math Tags.

Table 7: Date and Duration Math Tags

Tag Description

[Date->Add] Adds a duration to a Lasso date data type. Optional
keyword/value parameters may be used in place of
a duration to define what should be added to the first
parameter: -Millisecond, -Second, -Minute, -Hour, -Day,
-Week.

[Date->Subtract] Subtracts a duration from a Lasso date data type.
Optional keyword/value parameters may be used in
place of a duration to define what should be subtracted
from the first parameter: -Millisecond, -Second, -Minute,
-Hour, -Day, -Week.

3 3 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

[Date->Difference] Calculates the duration between two date data types.
The second parameter is subtracted from the first
parameter to deteremine a duration. Optional parameters
may be used to ouput a specified integer time value
instead of a duration: -Millisecond, -Second, -Minute,
-Hour, -Day, -Week, -Month, -Year. Lasso rounds to the
nearest integer when using these optional parameters.

Note: The [Date->Add] and [Date->Subtract] tags do not directly output values, but
can be used to change the values of variables that conatin date or duration
data types.

To add a duration to a date:

Use the [Date->Add] tag. The following examples show how to add a dura-
tion to a date and return a date.

[Var_Set:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Add:(Duration:'24:00:00'))]
[$MyDate] ➜ 5/23/2002 00:00:00

[Var_Set:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Add:(Duration:'3600'))]
[$MyDate] ➜ 5/22/2002 12:30:00

[Var_Set:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Add: -Week=1)]
[$MyDate] ➜ 5/29/2002 00:00:00

To subtract a duration from a date:

Use the [Date->Subtract] tag. The following examples show how to subtract a
duration from a date and return a date.

[Var_Set:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Subtract:(Duration:'24:00:00'))]
[$MyDate] ➜ 5/21/2002

[Var:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Subtract:(Duration:'7200'))]
[$MyDate] ➜ 5/22/2002 9:30:00

[Var:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Subtract: -Day=3)]
[$MyDate] ➜ 5/19/2002 00:00:00

To determine the duration between two dates:

Use the [Date->Difference] tag. The following examples show how to calculate
the time difference between two dates and return a duration.

3 3 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

[Var_Set:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Difference:(Date:'5/15/2002 01:30:00'))] ➜ 169:30:00

[Var:'MyDate'=(Date: '5/22/2002')]
[$MyDate->(Difference:(Date:'5/15/2002'), -Day)] ➜ 7

Using Math Symbols
In LDML 7, one has the ability to perform date and duration calculations
using math symbols (similar to integer data types). If a date or duration
appears to the left of a math symbol then the appropriate math operation
will be performed and the result will be a date or duration as appropriate.
All math symbols that can be used with dates or durations are shown in
Table 8: Date Math Symbols.

Table 8: Date Math Symbols

Tag Description

+ Used for adding a date and a duration, or adding two
durations.

- Used for subtracting a duration from a date, subtracting
a duration from a duration, or determining the duration
between two dates.

* Used for multiplying durations by an interger value.

/ Used for dividing durations by an integer or duration
value.

To add or subtract dates and durations:

The following examples show addition and subtraction operations using
dates and durations.

[Output: (Date: '5/22/2002') + (Duration:'24:00:00')] ➜ 5/23/2002
[Output: (Date: '5/22/2002') - (Duration:'48:00:00')] ➜ 5/20/2002

To determine the duration between two dates:

The following calculates the duration between two dates using the minus
symbol (-) .

[Output: (Date: '5/22/2002') - (Date:'5/15/2002')] ➜ 168:00:00

To add one day to the current date:

The following example adds one day to the current date.

[(Date) + (Duration: -Day=1)]

3 3 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

To multiply or divide a durations by an integer:

The following examples show multiplication and division operations using
durations and integers.

[Output: (Duration: -Minute=10) * 12] ➜ 02:00:00
[Output: (Duration: '60') * 10] ➜ 00:10:00
[Output: (Duration: -Hour=1) / 2] ➜ 00:30:00
[Output: (Duration: '00:30:00') / 10] ➜ 00:03:00

To divide a duration by a duration:

The following examples show division of durations by durations. The
resulting value is a decimal data type.

[Output: (Duration: -Hour=24) / (Duration: -Hour=6)] ➜ 4.0
[Output: (Duration: '05:00:00') / (Duration: '00:30:00')] ➜ 10.0

To return the duration between the current date and a day in the
future:

The following example returns the duration between the current date and
12/31/2004.

[Output: (Date: '12/31/2004') - (Date)]

3 3 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 6 – D A T E A N D T I M E O P E R A T I O N S

17
Chapter 17

Arrays and Maps

This chapter describes the array, map, and pair data types in LDML that
allow sets of data to be stored and manipulated.

 • Overview provides an introduction to arrays, maps, and pairs.

 • Arrays describes the array data type and its member tags.

 • Maps describes the map data type and its member tags.

 • Pair describes the pair data type and its member tags.

 • Common Arrays and Maps describes substitution tags in LDML that
return array or map values.

Overview
Arrays, maps, and pairs are compound data types that allow many values
to be stored in a single variable. Each is suited to storing a different type of
structured data.

 • Arrays are used to store a sequence of values. Values are stored and
retrieved based on a numeric index. The order of values within the array
is preserved.

 • Maps are used to store and retrieve values based on a key of any type.
The order of values within maps are not preserved. Usually, maps are
used to store and retrieve values based on a string key.

 • Pairs are used to store two values in an ordered pair. Either the first or
second value can be retrieved. Pairs are most commonly used as values
within an array or when retrieving parameters in custom tags.

3 3 9

L A S S O 7 . 1 L A N G U A G E G U I D E

Arrays
An array is a sequence of values which are stored and retrieved by numeric
index. The values stored in an array can be of any data type in LDML.
Arrays can store any values from strings and integers to other arrays and
maps. By nesting compound data types very complex data structures can be
created.

Types of Arrays
Arrays can be used in LDML for several different purposes. The same
member tags can be used on each type of array, but some have specific uses
when used with a particular type of array. These specific uses are described
in the examples for each member tag.

 • A List Array is a sequence of string, decimal, or integer values. New
values can be appended to the end of the list or inserted between two
elements of the list using [Array->Insert]. Two lists can be merged using
[Array->Merge]. The order of elements in the array is important, but may
be manipulated using the array member tags.

 • A Storage Array is a sequence of “cubby holes” for values. Values
are stored into a slot identified by an integer and later retrieved. The
[Array->Get] tag is used to store and retrieve values, but the order of
elements in the array is never altered and multiple arrays are never
merged.

 • A Pair Array is a sequence of pairs. [Action_Params] returns an array
of pairs which identify the command tags and name/value pairs that
comprise the current Lasso action. This array can be manipulated and
then passed as a parameter to an [Inline] tag.

Creating Arrays
Arrays are created using the [Array] constructor tag. The parameters of the
tag become the initial values stored in the array. The parameters can be
string, decimal, or integer literals, constructor tags for other complex data
types, or name/value pairs which are interpreted as pairs to be added to the
array.

Table 1: Array Tag

Tag Description

[Array] Creates an array that contains each of the parameters
of the tag. If no parameters are specified, an empty
array is created.

3 4 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

To create an array:

 • The following example creates an empty array and stores it in a variable.

[Variable: 'EmptyArray' = (Array)]

 • The following example shows an array of string literals.

[Array: 'String One', 'String Two', 'String Three']

 • The following example shows an array with a combination of string,
decimal, and integer literals.

[Array: 'String One', 2, 3.333333]

 • The following example shows how to use values from database fields,
form parameters, variables, or tokens as the initial values for an array.

[Array: (Field: 'Field_Name'), (Action_Param: 'Parameter_Name'),
 (Variable: 'Variable_Name'), (Token_Value: 'Token_Name')]

 • The following example shows an array of pairs. Each name/value pair
becomes a single pair within the array returned by the tag.

[Array: 'Name_One'='Value_One', 'Name_Two'='Value_Two']

 • The following example shows an array of arrays. The array returned by
the following code will only contain two array elements. Each array
element will in turn contain two integer elements. Nested arrays can be
used to store mathematical multi-dimensional arrays.

[Array: (Array: 1, -1), (Array: -1, 0)]

 • The following example shows how to create an array from a string. The
[String->Split] tag can be used to split a string into an array which contains
one element for each substring delimited by the parameter to the tag.
The following string is split on the comma , character into an array of
four elements.

[Output: 'One,Two,Three,Four,Five'->Split(',')]

Values are always copied into an array. They are never stored by reference
to the original value. This applies both to simple data types and compound
data types. There is no way in LDML to store a reference to a compound
data type, except for the name of the variable containing the data type.

3 4 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

Array Member Tags
The array data type has a number of member tags that can be used to store,
retrieve or delete array elements or to otherwise manipulate array values.

Table 2: Array Member Tags

Tag Description

[Array->Find] Returns an array of elements that match the parameter.
Accepts a single parameter of any data type.

[Array->FindIndex] Returns an array of the indicies for elements that match
the parameter. Accepts a single parameter of any data
type.

[Array->Get] Returns an item from the array. Accepts a single
integer parameter identifying the index of the item to be
returned. This tag can be used as the left parameter of
an assignment operator to set an element of the array.

[Array->Insert] Inserts a value into the array. Accepts a single parameter
which is the value to be inserted and an optional integer
parameter identifying the index of the location where
the value should be inserted. Defaults to the end of the
array. Returns no value.

[Array->Join] Joins the items of the array into a string. Accepts a
single string parameter which is placed inbetween each
item from the array. The opposite of [String->Split].

[Array->Last] Returns the last item in the array.

[Array->Merge] Merges an array parameter into the array. Accepts an
array parameter and three integer parameters that
identify which items from the array parameter should be
inserted into the array. Defaults to inserting the entire
array parameter at the end of the array. Returns no
value.

[Array->Remove] Removes an item from the array. Accepts a single
integer parameter identifying the index of the item to be
removed. Defaults to the last item in the array. Returns
no value.

[Array->RemoveAll] Removes any elements that match the parameter from
the array. Accepts a single parameter of any data type.
Returns no value.

[Array->Size] Returns the number of elements in the array.

[Array->Sort] Reorders the elements of the array in alphabetical or
numerical order. Accepts a single boolean parameter.
Sorts in ascending order by default or if the parameter is
True and in descending order if the parameter is False.

3 4 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

The following examples show how to manipulate an array by getting,
setting, inserting, and deleting values. The examples are all based on the
following array which contains the seven days of the week in English.

[Variable: 'DaysOfWeek' = (Array: 'Sunday', 'Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday')]

To get the size of an array:

Use the [Array->Size] tag. The following example shows how to output the
size of the DaysOfWeek array.

[Output: $DaysOfWeek->Size] ➜ 7

To get elements of an array:

 • To get an element of the array use the [Array->Get] tag with the appro-
priate index. In the following example different elements of the
DaysOfWeek array are returned.

[Output: $DaysOfWeek->(Get: 1)] ➜ Sunday
[Output: $DaysOfWeek->(Get: 4)] ➜ Wednesday

 • The last element of the array can be returned by using [Array->Get] with
a parameter of [Array->Size]. [Array->Size] will return 7 since the array
DaysOFWeek is 7 elements long and element 7 of the array is Saturday.

[Output: $DaysOFWeek->(Get: ($DaysOfWeek->Size))] ➜ Saturday

 • All of the elements in the array can be returned
using [Iterate] … [/Iterate] tags. The following example shows how to list all
of the days of the week.

[Iterate: $DaysOfWeek, (Variable: 'DayName')]

[Variable: 'DayName']
[/Iterate]

➜
Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

 • Alternately, all of the elements in the array can be returned
using [Loop] … [/Loop] tags. The following example shows how to list
all of the days of the week by using [Array->Get] with a parameter of
[Loop_Count].

[Loop: ($DaysOfWeek->Size)]

[Output: $DaysOFWeek->(Get: (Loop_Count))]
[/Loop]

3 4 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

➜
Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

To set elements of an array:

The [Array->Get] member tag can be used on the left side of an assignment
operator to set the value stored in the specified index within the array.

 • In the following example, the value of the second element of the array
DaysOfWeek is set to the Spanish word for Monday, Lunes.

<?LassoScript
 $DaysOfWeek->(Get: 2) = 'Lunes';
?>

The value of the second element of the array can then be output using
the [Array->Get] tag.

[Output: $DaysOfWeek->(Get: 2)] ➜ Lunes

 • Elements of the array can be modified using any of the assignment
symbols. In the following example, the substring day is removed from
the third element of the array using the deletion assignment symbol -=
leaving Tues. This value is then output.

<?LassoScript
 $DaysOFWeek->(Get: 3) -= 'day';
 Output: $DaysOfWeek->(Get: 3);
?>

➜ Tues

To insert elements into an array:

 • The [Array->Insert] tag can be used to insert a single element in the array.
In the following example Sunday is inserted at the end of the array
DaysOfWeek. The whole array is then output.

<?LassoScript
 $DaysOfWeek->(Insert: 'Sunday');

 Loop: ($DaysOfWeek->Size);
 Output: $DaysOfWeek->(Get: (Loop_Count)) + ' ';
 /Loop;
?>

➜ Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sunday

3 4 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

 • The [Array->Insert] tag can also be used to insert a single element anywhere
in the array. In the following example Tuesday is inserted as the third
element of the array DaysOfWeek. This pushes back all the other elements
of the array. No values in the array are removed or replaced by the
[Array->Insert] tag. The whole array is then output.

<?LassoScript
 $DaysOfWeek->(Insert: 'Tuesday', 3);

 Loop: ($DaysOfWeek->Size);
 Output: $DaysOfWeek->(Get: (Loop_Count)) + ' ';
 /Loop;
?>

➜ Sunday Monday Tuesday Tuesday Wednesday Thursday Friday Saturday

To remove elements from an array:

 • The [Array->Remove] tag can be used to remove a single element from
the array. If no parameter is specified then the last item of the array is
removed. In the following example the last item of the array Saturday is
removed and then the entire array is displayed.

<?LassoScript
 $DaysOfWeek->(Remove);

 Loop: ($DaysOfWeek->Size);
 Output: $DaysOfWeek->(Get: (Loop_Count)) + ' ';
 /Loop;
?>

➜ Sunday Monday Tuesday Wednesday Thursday Friday

 • The [Array->Remove] tag can also be used to remove a single element
anywhere in the array. In the following example the fourth value in the
array is removed. This removes the element Wednesday. The whole array
is then output.

<?LassoScript
 $DaysOfWeek->(Remove: 4);

 Loop: ($DaysOfWeek->Size);
 Output: $DaysOfWeek->(Get: (Loop_Count)) + ' ';
 /Loop;
?>

➜ Sunday Monday Tuesday Thursday Friday Saturday

To display the elements of an array:

 • Arrays can be displayed by simply outputting the variable that contains
the array. All of the elements of the array are displayed surrounded by

3 4 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

parentheses. This is useful primarily for debugging purposes so the
values in an array can be inspected without writing a loop to output all
of the elements of the array.

[Variable: 'DaysOfWeek']

➜ (Array: (Sunday), (Monday), (Tuesday), (Wednesday), (Thursday), (Friday),
(Saturday))

 • Arrays can be displayed by joining the elements of the array into a string.
In the following example the days of the week are output with commas
between each element.

[Output $DaysOfWeek->(Join: ',')]

➜ Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,Saturday

Arrays and Strings
Arrays can be used for string manipulation using a combination of array
and string member tags. First, the string to be manipulated is transformed
into an array using the [String->Split] tag, then the array is manipulated, and
finally the string is rendered from the array using the [Array->Join] tag.

The following example demonstrates how to modify a URL which is stored
in a variable. This same technique can be used to modify any string which
can be split into array elements based on a specific delimiter.

To parse, modify, and reassemble a URL using array tags:

 1 Store the URL to be modified in a string variable, here named
URL_Variable.

[Variable: 'URL_Variable' = 'http://www.example.com/default.lasso?
 -FindAll&-Database=Contacts&-Table=People&-KeyField=ID']

 2 Use [String->Split] to break the URL apart into several different vari-
ables. First, the string is split on ? to split the base of the URL from the
parameters. These two parameters are stored in temporary variables,
URL_Base and URL_Parameters.

[Variable: 'Temp_Array' = ($URL_Variable->(Split: '?'))]
[Variable: 'URL_Base' = ($Temp_Array->(Get: 1))]
[Variable: 'URL_Parameters' = ($Temp_Array->(Get: 2))]

 3 Use [String->Split] to break the URL parameters apart into an array at the
ampersand & character.

[Variable: 'URL_Array' = ($URL_Parameters->(Split: '&'))]

 4 Now the parameters array can be manipulated. For this example we will
sort it using the [Array->Sort] command. Other options include removing

3 4 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

or inserting elements, merging two or more URL parameter arrays,
checking for the existence of specific values, etc.

[($URL_Array->Sort)]

 5 Reassemble the URL parameters using the [Array->Join] tag to append each
item in the array to a new variable URL_Parameters. An ampersand & is
placed between each element of the array.

[Variable: 'URL_Parameters'=$URL_Array->(Join: '&')]

 6 Reassemble the full URL by concatenating the original URL_Base to the
new URL_Parameters and store the result in URL_Variable.

[Variable: 'URL_Variable' = $URL_Base + '?' + $URL_Parameters]

 7 Display the modified URL to confirm that the modifications have been
made correctly. The command tags in the URL are now sorted alphabeti-
cally.

[Variable: 'URL_Variable']

➜ http://www.example.com/default.lasso?
 -Database=Contacts&-FindAll&-KeyField=ID&-Table=People

Merging Arrays
The [Array->Merge] tag can be used to merge two arrays by placing the
elements of the tag’s array parameter into the base array. The [Array->Merge]
accepts a number of parameters as detailed in Table 3: [Array->Merge]
Parameters.

Table 3: [Array->Merge] Parameters

Parameter Description

First The array which is to be merged; the source array.

Second The index in the destination array where the elements of
the source array should be inserted. Optional, defaults to
the end of the destination array.

Third The index in the source array of the first element which
should be inserted into the destination array. Optional,
defaults to 1.

Fourth The number of elements from the source array to
insert into the destination array. Optional, defaults to
all elements from the third parameter to the end of the
source array.

3 4 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

The four parameters to [Array->Merge] allow for a selected subset of the
source array to be placed at any location in the destination array. This
allows very complex array manipulations to be performed.

To append an array to the end of another array:

Use the [Array->Merge] tag with a single array parameter. All the elements
of the array parameter will be inserted at the end of the base array. In the
following example, two arrays are created, each containing three integers.
The elements of the second array are merged into the elements of the first
array and then all the elements of the new array are displayed.

<?LassoScript
 Variable: 'First_Array' = (Array: 1, 2, 3);
 Variable: 'Second_Array' = (Array: 4, 5, 6);

 $First_Array->(Merge: $Second_Array);

 Output: $First_Array;
?>

➜ (Array: (1), (2), (3), (4), (5), (6))

To insert a single element from one array into another array:

In the following example the third element of the Second_Array is inserted
as the new first element of the First_Array using the [Array->Merge] tag. The
second parameter to [Array->Merge] is set to 1 so the element will be inserted
as the first element of First_Array. The third parameter is set to 3 so the third
element of Second_Array will be selected. The fourth parameter is set to 1 so
only one element of Second_Array will be copied.

<?LassoScript
 Variable: 'First_Array' = (Array: 1, 2, 3);
 Variable: 'Second_Array' = (Array: 4, 5, 6);

 $First_Array->(Merge: $Second_Array, 1, 3, 1);

 Output: $First_Array;
?>

➜ (Array: (6), (1), (2), (3))

Finding Elements of an Array
The [Array->Find] tag can be used to return a subset of an array which
matches a specified value. This can be used to determine whether an array
contains a value or, when used in concert with the [Array->RemoveAll] tag this
can be used to extract a number of elements from an array.

3 4 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

To determine whether an array contains a value:

In the following example the array DaysOfWeek is checked to see if it
contains an element Thursday using the contains symbol >>.

<?LassoScript
 Variable: 'DaysOfWeek'= (Array: 'Sunday', 'Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday');

 If: ($DaysOfWeek >> 'Thursday');
 Output: 'The array contains Thursday!';
 /If;
?>

➜ The array contains Thursday!

To find the indices where an element occurs within the array:

In the following example, an array is returned that reports the index of
each occurance of 1 within the array.

<?LassoScript
 Variable: 'Find_Array' = (Array: 6, 1, 4, 1, 5, 1, 2, 3, 1);

 Output: $Find_Array->(FindIndex: 1);
?>

➜ (Array: (2), (4), (6), (9))

The result array can be used to modify each occurance of 1 within the array.
In the following example each occurance of 1 within the array is changed
to 0.

<?LassoScript
 Variable: 'Find_Array' = (Array: 6, 1, 4, 1, 5, 1, 2, 3, 1);

 Variable: 'Temp_Array' = $Find_Array(FindIndex: 1);

 Iterate: $Temp_Array, (Variable: 'Temp_Index');
 $Find_Array->(Get: $Temp_Index) = 0;
 /Iterate;

 Output: $Find_Array;
?>

➜ (Array: (6), (0), (4), (0), (5), (0), (2), (3), (0))

To delete elements with a certain value from an array:

In the following example, all elements with value 1 are deleted from an
array Delete_Array. The initial array contains many different integer values.
The resulting array is output after all the elements with value 1 have been
deleted.

3 4 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

<?LassoScript
 Variable: 'Delete_Array' = (Array: 6, 1, 4, 1, 5, 1, 2, 3, 1);

 $Delete_Array->(RemoveAll: 1);

 Output: $Delete_Array;
?>

➜ (Array: (6), (4), (5), (2), (3))

Pair Arrays
Pair arrays can be used to store a sequence of name/value pairs. The order
of elements within a pair array is maintained. The [Action_Params] and
[Params] tags both return pair arrays which contain the parameters passed
with the current Lasso action or into a custom tag respectively.

To create a pair array:

Use the [Array] tag with name/value parameters. Each name/value param-
eter becomes a pair in the resulting array. The following example shows an
array created with three pair elements.

[Array: 'Name_One'='Value_One',
 'Name_Two'='Value_Two',
 'Name_Three'='Value_Three']

To find pairs within a pair array:

The [Array->Find] tag can be used to find pairs within a pair array. The
parameter passed to the [Array->Find] tag is only compared to the [Pair->First]
element of each pair. The [Array->Find] tag returns an array that contains
only the pairs whose first part matches the parameter. The following
example shows an array defined with three pair elements. The [Array->Find]
tag is used to return both elements for the name Alpha.

[Variable: 'Pair_Array' = (Array: 'Alpha'='One', 'Beta'='Two', 'Alpha'=1, 'Beta'=2)]
[Output: $Pair_Array->(Find: 'Alpha')]

➜ (Array: (Pair: (Alpha)=(One)), (Pair: (Alpha)=(1)))

To insert pairs into a pair array:

Use the [Array->Insert] tag with a name/value parameter. The new element
will be inserted at the end of the array by default. The following example
inserts a new element Gamma=Three into Pair_Array.

<?LassoScript
 Variable: 'Pair_Array' = (Array: 'Alpha'='One', 'Beta'='Two', 'Alpha'=1, 'Beta'=2);
 $Pair_Array->(Insert: 'Gamma'='Three');
?>

3 5 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

Sorting Arrays
Arrays can be sorted using the [Array->Sort] tag. This tag reorders the
elements of the array so they will no longer be available at the index they
were originally set.

Examples of sorting arrays:

 • The following LassoScript shows an array with integer elements. The
array is sorted and then the values of the array are output. The default
sort order is ascending.

<?LassoScript
 Variable: 'Sort_Array' = (Array: 6, 4, 5, 2, 3, 1);

 $Sort_Array->(Sort);

 Output: $Sort_Array;
?>

➜ (Array: (1), (2), (3), (4), (5), (6))

 • The following LassoScript shows the DaysOFWeek array being sorted in
descending alphabetical order. The [Array->Sort] tag accepts one parameter.
True for ascending order or False for descending order. The default is True.

<?LassoScript
 Variable: 'DaysOfWeek'= (Array: 'Sunday', 'Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday');

 $DaysOfWeek->(Sort: False);

 Output: $DaysOfWeek;
?>

➜ (Array: (Wednesday), (Tuesday), (Thursday), (Sunday), (Saturday), (Monday),
(Friday))

Maps
Maps store and retrieve values based on a key. This allows for specific
values to be stored under a name and then retrieved later using that same
name. The name or key is usually a string value, but can actually be a value
of any valid data type in LDML.

Maps can only store one value per key. When a new value with the same
key is inserted into a map it replaces the previous value which was stored
in the map. If you need to create a data structure that stores more than one
value per key, use an array of pairs instead.

3 5 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

Note: The order of elements in a map is not defined. As more elements are
added to a map the order may change and should never be relied upon.

Table 4: Map Tag

Tag Description

[Map] Creates a map that contains each of the name/value
parameters of the tag. If no parameters are specified, an
empty map is created.

To create a map:

 • The following example creates an empty map and stores it in a variable.

[Variable: 'EmptyMap' = (Map)]

 • The following example shows a map with data stored using string literals
as keys. The map is similar to a database record storing information
about a particular site visitor.

[Map: 'First_Name'='John', 'Last_Name'='Doe', 'Phone_Number'='800-555-1212']

 • The following example shows a map with integer literals as keys. This
map could be used to lookup the name of a day of the week based on its
order within the week.

[Map: 1='Sunday',
 2='Monday',
 3='Tuesday',
 4='Wednesday',
 5='Thursday',
 6='Friday',
 7='Saturday']

 • The following example shows a map which contains arrays that are
retrieved using string literals as keys. The map contains two arrays which
are named Array_One and Array_Two.

[Map: 'Array_One' = (Array: 1, 2, 3, 4, 5),
 'Array_Two' = (Array: 9, 8, 7, 6, 5)]

Map Member Tags
The map data type has a number of member tags that can be used to store,
retrieve or delete map elements by key.

3 5 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

Table 5: Map Member Tags

Tag Description

[Map->Find] Returns a value from the map by key. Accepts a single
parameter which is the key of the value to be returned.

[Map->Get] Returns a pair from the map by integer index. Accepts
a single parameter which is the index of the value to be
returned.

[Map->Keys] Returns an array of all the keys specified in the map.

[Map->Insert] Inserts a value into the map by key. Accepts a single
name/value pair parameter which specifies the key and
value to be inserted.

[Map->Remove] Removes a value from the map by key. Accepts a single
parameter which is the key of the value to be deleted.

[Map->Size] Returns the number of elements (keys) in the map.

[Map->Values] Returns an array of all the values specified in the map.

The following examples show how to manipulate a map by inserting,
removing, and displaying elements. The examples are all based on the
following array which contains the seven days of the week in English each
with an integer key corresponding to their calendar order.

[Variable: 'DaysOfWeek' = (Map: 1='Sunday',
 2='Monday',
 3='Tuesday',
 4='Wednesday',
 5='Thursday',
 6='Friday',
 7='Saturday')]

To get values from a map:

 • The value for a given key within the map can be retrieved using the
[Map->Find] tag. The tag accepts a single parameter which is the key of the
value to be returned. The key can be any value in Lasso. In the following
example the numeric keys in the DaysOfWeek variable are used to return
several days of the week.

[Output: $DaysOfWeek->(Find: 2)] ➜ Monday
[Output: $DaysOfWeek->(Find: 4)] ➜ Wednesday
[Output: $DaysOfWeek->(Find: 6)] ➜ Friday

 • All of the keys used within a map can be displayed using the [Map->Keys]
tag. In the following example, the integer keys of the DaysOfWeek map are
displayed.

[Output $DaysOfWeek->Keys]

3 5 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

➜ (Array: (1), (2), (3), (4), (5), (6), (7))

 • All of the values used within a map can be displayed using the
[Map->Values] tag. In the following example, the string values of the
DaysOfWeek map are displayed.

[Output $DaysOfWeek->Values]

➜ (Array: (Sunday), (Monday), (Tuesday), (Wednesday), (Thursday), (Friday),
(Saturday))

 • All of the elements in a map can be displayed using the [Iterate] … [/Iterate]
tags. In the following example, a temporary variable TempElement is set
to the value of each element of the map in turn. The [Pair->First] and
[Pair->Second] parts of each element are displayed.

[Iterate: $DaysOfWeek, (Variable: 'TempElement')]

[Output: $TempElement->First] = [Output: $TempElement->Second]
[/Iterate]

➜
1 = Sunday

2 = Monday

3 = Tuesday

4 = Wednesday

5 = Thursday

6 = Friday

7 = Saturday

 • Alternately, all of the elements in a map can be displayed using the
[Loop] … [/Loop] tags. In the following example, the [Map->Size] tag is used
to return the size of the map and the [Map->Get] tag is used to return a
particular element of the map. These tags function exactly like the same
tags used on a pair array. A temporary variable TempElement is used to
make the code easier to read.

[Loop: ($DaysOfWeek->Size)]
 [Variable: 'TempElement' = ($DaysOfWeek->(Get: (Loop_Count)))]

[Output: $TempElement->First] = [Output: $TempElement->Second]
[/Loop]

➜
1 = Sunday

2 = Monday

3 = Tuesday

4 = Wednesday

5 = Thursday

6 = Friday

7 = Saturday

Note: Map elements cannot be set using the [Map->Get] member tag. Instead,
map elements should be inserted using the [Map->Insert] member tag with the
same key value as an element in the map.

3 5 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

To insert values into a map:

Elements can be added to the map or the value for a given key can be
changed within a map using the [Map->Insert] tag.

 • Use the [Map->Insert] tag with a name/value parameter to insert a
new value into a map. The following example shows how to add an
Extra Saturday to the map stored in DaysOfWeek. No value is returned
by the [Map->Insert] tag, but the new value for key 8 is retrieved using
[Map->Find] to show that the new element has been added.

<?LassoScript
 $DaysOfWeek->(Insert: 8='Extra Saturday');
 Output: $DaysOfWeek->(Find: 8);
?>

➜ Extra Saturday

 • Use the [Map->Insert] tag with the name of a value already stored in
the map to replace that value within the map. The following example
shows how to change the value for key 8 to Extra Sabado, substituting the
Spanish word for Saturday. No value is returned by the [Map->Insert] tag,
but the new value for key 8 is retrieved using [Map->Find] to show that the
element has been modified.

<?LassoScript
 $DaysOfWeek->(Insert: 8='Extra Sabado');
 Output: $DaysOfWeek->(Find: 8);
?>

➜ Extra Sabado

To remove values from a map:

The value for a key can be removed from a map using the [Map->Remove]
tag. The tag accepts a single parameter, the name of the element to be
removed. In the following example, the Extra Sabado entry is removed from
the map stored in DaysOfWeek.

<?LassoScript
 $DaysOfWeek->(Remove: 8);
?>

To display the elements of a map:

For debugging purposes all of the elements of a map can be output simply
by displaying the value of the variable holding the map. This is a quick way
to see the value stored in a map, but is not intended to be used to show to
site visitors.

[Variable: 'DaysOfWeek']

3 5 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

➜ (Map: (1)=(Sunday),
 (2)=(Monday),
 (3)=(Tuesday),
 (4)=(Wednesday),
 (5)=(Thursday),
 (6)=(Friday),
 (7)=(Saturday))

Maps vs Pair Arrays
Maps and pair arrays can both be used to store data which is retrieved
by name. Maps store a single value per name. Pair arrays can store many
different values for each name. Maps do not maintain the order of
elements contained within them. Pair arrays do maintain the order of
elements, though they generally cannot be sorted. Maps contain only
values associated with names (although the names and values can be of
any data type). Arrays can contain a combination of pairs and other data
types.

Maps should be used when the set of keys by which data will be retrieved
is unique. Maps can be used as an equivalent for database records. Maps
provide fast lookup of a value associated with a key.

Pair arrays should be used when multiple values need to be stored with
each key or when the order of elements stored in the array is important.
Pair arrays are used to return name/value parameters from Lasso actions or
within custom tags.

Pairs
A pair is a compound data type that stores two elements. Pairs are most
commonly used when working with lists of command tags and name/
value parameters in concert with the [Action_Params] tag or when parsing
parameters of a custom tag using the [Params] tag.

Table 6: Pair Tag

Tag Description

[Pair] Creates a pair with the specified name and value as the
first and second elements.

To create a pair:

 • The following example shows how to create a pair using the [Pair] tag.
The tag accepts a single name/value parameter. The name part of the

3 5 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

parameter becomes the First part of the pair. The value part of the param-
eter becomes the Second part of the pair.

[Pair: 'First_Name'='John']

 • Pairs can be created in an [Array] constructor tag by specifying a
name/value parameter as one of the parameters for the new array.
The following example shows how to create an array with three pair
elements.

[Array: 'First_Name'='John', 'Last_Name'='Doe', 'Phone_Number'='800-555-1212']

 • Pairs are also created in a [Map] constructor tag by specifying name/value
parameters. The following example shows how to create a map with
three pairs.

[Map: 'First_Name'='John', 'Last_Name'='Doe', 'Phone_Number'='800-555-1212']

Pair Member Tags
The pair data type has two member tags that can be used to change or
retrieve the two elements of the pair data type.

Table 7: Pair Member Tags

Tag Description

[Pair->First] Returns the first element of the pair. Can be used as the
left parameter of an assignment operator to change the
first element of the pair.

[Pair->Second] Returns the second element of the pair. Can be used as
the left parameter of an assignment operator to change
the second element of the pair.

Note: For compatibility with maps and arrays the [Pair->Size] tag always returns
2 and [Pair->(Get:1)] and [Pair->(Get:2)] work to extract the first and second
elements from a pair.

To get the elements of a pair:

The following example shows how to create a pair using a name/value
parameter and then return the First and Second elements of the pair.

[Variable: 'Test_Pair' = (Pair: 'First_Name'='John')]
[Output: $Test_Pair->First]: [Output: $Test_Pair->Second]

➜ First_Name: John

3 5 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

To set the elements of a pair:

The following example shows how to set the first and second elements of a
pair to new values using the assignment operator =. The altered pair is then
displayed.

<?LassoScript
 Variable: 'Test_Pair' = (Pair: 'First_Name'='John');
 $Test_Pair->First = 'Last_Name';
 $Test_Pair->Second = 'Doe';
 Output: $Test_Pair->First + ': ' + $Test_Pair->Second;

➜ Last_Name: Doe

To display the elements of a pair:

For debugging purposes the elements of a pair can be displayed simply by
outputting the variable which contains the pair. The following example
shows how to output a pair stored in a variable Test_Pair.

[Variable: 'Test_Pair' = (Pair: 'First_Name'='John')]
[Variable: 'Test_Pair']

➜ (Pair: (First_Name)=(John))

Common Maps and Arrays
Lasso returns values in maps or arrays from many different tags. The tags
that return compound data structures are detailed in Table 8: Common
Maps and Arrays. These tags are each covered in more detail in the appro-
priate chapter in this Lasso 7 Language Guide or in the Extending Lasso
Guide.

3 5 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

Table 8: Common Maps and Arrays

Tag Description

[Action_Params] Returns an array of pairs representing the current Lasso
action. Includes both command tags and name/value
parameters.

[File_Uploads] Returns an array of maps representing the files which
were uploaded. The map contains information about
each file such as its original name, temporary storage
location, size, etc.

[Locals] Returns a map which contains an element for each local
variable defined in a custom tag.

[Params] Returns an array of all the parameters passed to a
custom tag. The array will contain single values or pairs
depending on what parameters were passed.

[String->Split] Returns an array with elements created by splitting the
string at the character specified as a parameter.

[Tags] Returns a map with each tag defined in LDML.

[Variables] Returns a map which contains an element for each
variable defined in the current page.

3 5 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

3 6 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 7 – A R R A Y S A N D M A P S

18
Chapter 18

Encoding

Lasso can be used to publish data in many different formats. Encoding
ensures that only legal characters are used for the desired output format.

 • Overview describes the different formats which LDML encoding
supports.

 • Encoding Keywords describes how to use encoding keywords to modify
the output of substitution tags.

 • Encoding Controls describes how to use the [Encode_Set] … [/Encode_Set]
tags to modify the default encoding for substitution tags.

 • Encoding Tags describes the individual substitution tags which can be
used to encode values.

 • Encryption Tags describes tags for securely storing and transmitting
data.

 • Compression Tags describes tags for compressing string data for more
efficient storage or transmission.

Overview
Encoding controls in LDML allow the developer to specify the format in
which data output from substitution tags should be rendered. Encoding
controls ensure that reserved or illegal characters are changed to entities
so that they will display properly in the desired output format. Encoding
controls allow for data to be output in any of the ways described in the
Encoding Formats section below.

3 6 1

L A S S O 7 . 1 L A N G U A G E G U I D E

Encoding Rules
Encoding controls apply to the data output from tags differently depending
on how the tags are used. Substitution tags have default HTML encoding if
they output a value to a page. The value output from a nested substitution
tag is not encoded. Substitution tags which contribute to the output of a
LassoScript have default HTML encoding.

 • Substitution Tags which output a value to the site visitor have a default
encoding of -EncodeHTML. These tags are usually enclosed in square
brackets and do not include nested tags which return values.

The default encoding ensures that any reserved or illegal characters in
HTML are converted to HTML entities so they display properly. The
default encoding can be overridden by explicitly including an encoding
keyword in the substitution tag or using the [Encode_Set] … [/Encode_Set]
tags described below.

In the following example, some HTML code is output using the
[Output] substitution tag. By default the angle brackets in the code are
converted to HTML entities so they will display as angle brackets within
a Web browser. If the -EncodeNone keyword is specified in the [Output]
substitution tag then the angle brackets remain as text angle brackets and
the HTML code will render as Bold Text within the Web browser.

[Output: 'Bold Text'] ➜ Bold Text

[Output: 'Bold Text', -EncodeNone] ➜ Bold Text

 • Nested Substitution Tags are not encoded by default. This ensures
that string calculations can be performed without having to specify any
encoding keywords. However, the encoding of a nested substitution
tag can be changed by explicitly including an encoding keyword. Care
should be taken so that values are not encoded multiple times.

In the following example a string is stored in a variable using explicit
HTML encoding. When the variable is output using the -EncodeNone tag,
the value is output to the page with HTML encoding intact.

[Variable: 'HTML_Text' = (Output: 'Bold Text', -EncodeHTML)]

[Variable: 'HTML_Text', -EncodeNone] ➜ Bold Text

 • Tags within LassoScripts are encoded using the same rules for substi-
tution tags. Tags which add to the output of the LassoScript are HTML
encoded by default unless an explicit encoding keyword is specified or
the [Encode_Set] … [/Encode_Set] tags are used. Tags which are nested are
not encoded by default unless an explicit encoding keyword is specified.

3 6 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 8 – E N C O D I N G

The following example shows a value output from a LassoScript first
with the default HTML encoding, then with an explicit -EncodeNone
keyword specified.

<?LassoScript
 Output: 'Bold Text';
?>

➜ Bold Text

<?LassoScript
 Output: 'Bold Text', -EncodeNone;
?>

➜ Bold Text

 • Square Bracketed Expressions other than tags are not encoded by
default. The use of the [Output] tag or one of the [Encode_…] tags is recom-
mended to ensure that encoding is properly applied to string expres-
sions. In the following example a string expression is output directly.

['' + 'Bold Text' + '']

➜ Bold Text

Encoding Formats
The encoding controls in LDML can be used to output data in any of the
following formats.

 • HTML Encoding is the default output format. Reserved characters in
HTML including < > " & are encoded into HTML entities. Extended-ASCII
and foreign language characters are encoded into a numerical HTML
entity for the character &#nnn;. Use the -EncodeHTML keyword or the
[Encode_HTML] substitution tag.

 • Smart HTML Encoding encodes only extended-ASCII and foreign
language characters. The reserved characters in HTML are not encoded.
This allows HTML code to be displayed with the HTML markup intact
and any unsafe characters encoded using HTML entities. Use the
-EncodeSmart keyword or the [Encode_Smart] substitution tag.

 • Break Encoding encodes carriage returns and line feeds within the text
to HTML
 tags. The remainder of the text is HTML encoded. Text can
be formatted using the -EncodeBreak keyword or the [Encode_Break] substi-
tution tag.

 • XML Encoding encodes reserved characters such as & ' " < > which are
used to create the markup of XML into XML entities. This ensures that
text used in XML tag names or attributes does not contain any reserved

3 6 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 8 – E N C O D I N G

characters. Use the -EncodeXML keyword or the [Encode_XML] substitution
tag.

 • Simple URL Encoding only encodes illegal characters such as
< > # % { } ' ` " | \ ^ ~ [] © ® into URL entities specified as %nn. Simple
URL encoding can be used to encode an entire URL without disturbing
the basic structure of the URL. Use the -EncodeURL keyword or
the [Encode_URL] substitution tag. The following example shows a URL
encoded with the [Encode_URL] tag.

[Encode_URL: 'http://www.example.com/Action.Lasso?The Name=A Value']

➜ http://www.example.com/Action.Lasso?The%20Name=A%20Value

 • Strict URL Encoding encodes both the illegal characters shown
above and the reserved characters in URLs including ; / ? : @ = &. Strict
URL encoding should only be used on the names or values included
as name/value parameters. Use the -EncodeStrictURL keyword or the
[Encode_StrictURL] substitution tag. The following example shows only the
name/value parameter of a URL encoded with the [Encode_StrictURL] tag.

http://www.example.com/Action.Lasso?
 [Encode_StrictURL: 'The Name']=[Encode_StrictURL: 'A Value']

➜ http://www.example.com/Action.Lasso?The%20Name=A%20Value

 • SQL Encoding changes any illegal characters in SQL string values into
their escaped equivalents. Quote marks and backslashes are escaped so
they don’t interfere with the structure of the SQL statement.

[Encode_SQL: 'A "String" is born.']

➜ A \"String\" is born.

 • Base 64 Encoding changes any string value into a string of ASCII
characters which can be safely transmitted through URLs or email. This
algorithm is sometimes used to obscure data so it is difficult to read
by a casual passerby without providing any actual security. Base64 is
also used to transmit passwords (essentially as plain-text) to some Web
servers.

3 6 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 8 – E N C O D I N G

Deactivate encoding for a substitution tag using the -EncodeNone keyword.
By default, nested substitution tags will not have encoding applied so
the -EncodeNone keyword is not required within nested substitution tags.

Encoding Keywords
Encoding keywords can be used within any substitution tag to modify the
encoding of the output value of that tag. Substitution tags which output
values to the page default to -EncodeHTML so this keyword does not need
to be specified if HTML encoding is desired. Nested substitution tags are
not encoded by default, specifying -EncodeNone in nested substitution tag is
unnecessary.

Only one encoding keyword can be used in a tag. If multiple encodings are
desired the [Encode_…] tags should be used.

Table 1: Encoding Keywords

Keyword Description

-EncodeBreak Encodes carriage returns and new line characters into
HTML
 breaks. The remainder of the text is HTML
encoded.

-EncodeHTML Encodes HTML reserved and illegal characters into
HTML entities for highest fidelity display.

-EncodeNone Performs no encoding.

-EncodeSmart Encodes HTML illegal characters into HTML entities.
Useful for encoding strings that contain HTML markup.

-EncodeStrictURL Encodes all URL reserved and illegal characters into
URL entities for highest fidelity data transmission.

-EncodeURL Encodes URL illegal characters into URL entities. Useful
for encoding entire URLs.

-EncodeXML Encodes XML reserved and illegal characters into XML
entities for highest fidelity data transmission.

Please consult the previous section Encoding Formats for information
about what characters each encoding keyword modifies.

Using the encoding keywords:

The following example shows how text is output from the [Output] tag using
first the default -EncodeHTML encoding and then an explicit -EncodeNone
encoding.

[Output: 'Bold Text'] ➜ Bold Text

[Output: 'Bold Text', -EncodeNone] ➜ Bold Text

3 6 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 8 – E N C O D I N G

Encoding Controls
The default encoding keyword for substitution tags which output
values to the Web page being constructed can be modified using the
[Encode_Set] … [/Encode_Set] tags. All square bracketed substitution tags or
tags within a LassoScript that output a value will use the encoding speci-
fied in surrounding [Encode_Set] … [/Encode_Set] tags rather than the default
HTML encoding.

The [Encode_Set] tag accepts a single parameter, an encoding keyword. Any
of the valid encoding keywords from Table 1: Encoding Keywords can
be used. All substitution tags which output values will behave as if this
encoding keyword were specified within the tag.

Nested substitution tags (sub-tags) will not be affected by the
[Encode_Set] … [/Encode_Set] tags. Values from nested substitution tags are
not encoded unless an encoding keyword is specified explicitly within each
tag.

Table 2: Encoding Controls

Keyword Description

[Encode_Set] … [/Encode_Set] Sets the default encoding for all substitution tags which
output values within the container tag.

To change the default encoding for a LassoScript:

Start and end the LassoScript with [Encode_Set] … [/Encode_Set] tags. In the
following LassoScript HTML code is output using [Ouptut] tags. The default
encoding for all tags is set to -EncodeNone so that the HTML is rendered
properly in the output.

<?LassoScript
 Encode_Set: -EncodeNone;
 Output: 'HTML Text';
 /Encode_Set;
?>

➜ Bold Text

3 6 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 8 – E N C O D I N G

Encoding Tags
The encoding substitution tags can be used to explicitly encode any string
value. The output of these tags is the same as the output which would be
produced by using the appropriate encoding keyword on a substitution tag
that returned the same value.

Note: The encoding tags do not accept encoding keywords. Use nested
encoding tags to perform multiple encodings.

Table 3: Encoding Tags

Keyword Description

[Decode_Base64] Decodes a string which has been encoded using the
base 64 algorithm. Accepts one parameter, a string to be
decoded.

[Decode_HTML] Decodes HTML by changing HTML entities back into
extended ASCII characters.

[Decode_URL] Decodes a URL by changing URL entities back into
extended ASCII characters.

[Encode_Base64] Encodes a string using the base 64 algorithm. Accepts
one parameter, a string to be encoded.

[Encode_Break] Encodes carriage returns and new line characters into
HTML
 breaks. The remainder of the text is HTML
encoded.

[Encode_HTML] Encodes HTML reserved and illegal characters into
HTML entities for highest fidelity display.

[Encode_Smart] Encodes HTML illegal characters into HTML entities.
Useful for encoding strings that contain HTML markup.

[Encode_SQL] Encodes illegal characters in SQL string literals by
escaping them with a backslash.

[Encode_StrictURL] Encodes all URL reserved and illegal characters into
URL entities for highest fidelity data transmission.

[Encode_URL] Encodes URL illegal characters into URL entities. Useful
for encoding entire URLs.

[Encode_XML] Encodes XML reserved and illegal characters into XML
entities for highest fidelity data transmission.

Using the encoding tags:

The following example shows how text is output from the
[Encode_HTML] tag with all HTML reserved characters encoded. The
same text is then output from an [Output] tag with an encoding keyword
of -EncodeNone specified.

3 6 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 8 – E N C O D I N G

[Encode_HTML: 'Bold Text'] ➜ Bold Text

[Output: 'Bold Text', -EncodeNone] ➜ Bold Text

Encryption Tags
LDML provides a number of tags which allow data to be encrypted for
secure storage or transmission. Three different types of encryption are
supplied.

 • BlowFish is a fast, popular encryption algorithm. Lasso provides tools
to encrypt and decrypt string values using a developer-defined seed. This
is the best tag to use for data which needs to be stored in a database or
transmitted securely.

 • MD5 is a one-way encryption algorithm that is often used for passwords.
There is no way to decrypt data which has been encrypted using MD5.
See below for an example of how to use MD5 to store and check pass-
words securely.

Table 4: Encryption Tags

Tag Description

[Decrypt_BlowFish] Decrypts a string. Accepts two parameters, a string
to be decrypted and a -Seed keyword with the key or
password for the decryption.

[Encrypt_BlowFish] Encrypts a string. Accepts two parameters, a string
to be encrypted and a -Seed keyword with the key or
password for the encryption.

[Encrypt_MD5] Encrypts a string. Accepts one parameter, a string to be
encrypted. Returns a fixed size hash value for the string
which cannot be decrypted.

Note: The BlowFish tags are not binary safe. The output of the tag will be
truncated after the first null character. It is necessary to use [Encode_Base64]
or [Encode_UTF8] prior to encrypting data that might contain binary characters
using these tags.

BlowFish Seeds
BlowFish requires a seed in order to encrypt or decrypt a string. The same
seed which was used to encrypt data using the [Encrypt_BlowFish] tag must be
passed to the [Decrypt_BlowFish] tag to decrypt that data. If you lose the key
used to encrypt data then the data will be essentially unrecoverable.

3 6 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 8 – E N C O D I N G

Seeds can be any string between 4 characters and 112 characters long.
Pick the longest string possible to ensure a secure encryption. Ideal seeds
contain a mix of letters, digits, and punctuation.

The security considerations of storing, transmitting, and hard coding seed
values is beyond the scope of this manual. In the examples that follow,
we present methodologies which are easy to use, but may not provide the
highest level of security possible. You should consult a security expert if
security is very important for your Web site.

Note: The BlowFish algorithm will return random results if you attempt to
decrypt data which is not actually encrypted.

To store data securely in a database:

Use the [Encrypt_BlowFish] and [Decrypt_BlowFish] tags to encrypt data which
will be stored in a database and then to decrypt the data when it is
retrieved from the database.

 1 Store the data to be encrypted into a string variable, PlainText.

[Variable: 'PlainText' = 'The data to be encrypted.']

 2 Encrypt the data using the [Encrypt_BlowFish] tag with a hard-coded
-Seed value. Store the result in the variable CypherText.

[Variable: 'CypherText' = (Encrypt_BlowFish: (Variable: 'PlainText'),
 -Seed='This is the blowfish seed')]

 3 Store the data in CypherText in the database. The data will not be viewable
without the seed. The following [Inline] … [/Inline] creates a new record in
an Contacts database for John Doe with the CypherText.

[Inline: -Add,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 'First_Name'='John',
 'Last_Name'='Doe',
 'CypherText'=(Variable: 'CypherText')]
[/Inline]

 4 Retrieve the data from the database. The following [Inline] … [/Inline] fetches
the record from the database for John Doe and places the CypherText into a
variable named CypherText.

[Inline: -Search,
 -Database='Contacts',
 -Table='People',
 -KeyField='ID',

3 6 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 8 – E N C O D I N G

 'First_Name'='John',
 'Last_Name'='Doe']
 [Variable: 'CypherText' = (Field: 'CypherText')]
[/Inline]

 5 Decrypt the data using the [Decrypt_BlowFish] tag with the same hard-
coded -Seed value. Store the result in the variable PlainText.

[Variable: 'PlainText' = (Decrypt_BlowFish: (Variable: 'CypherText'),
 -Seed='This is the blowfish seed')]

 6 Display the new value stored in PlainText.

[Variable: 'PlainText']

➜ The data to be encrypted.

To store and check encrypted passwords:

The [Encrypt_MD5] tag can be used to store a secure version of a password
for a site visitor. On every subsequent visit, the password given by the
visitor is encrypted using the same tag and compared to the stored value. If
they match, then the visitor has supplied the same password they initially
supplied.

 1 When the visitor creates an account use [Encrypt_MD5] to create an
encrypted version—a fixed size hash value—of the password they supply.
In the following example, the password they supply is stored in the vari-
able VisitorPassword and the encrypted version is stored in SecurePassword.

[Variable: 'SecurePassword' = (Encrypt_MD5: (Variable: 'VisitorPassword'))]

 2 Store this MD5 hash value for the password in a database along with the
visitor’s username.

 3 On the next visit, prompt the visitor for their username and password.
Fetch the record identified by the visitor’s specified username and
retrieve the MD5 hash value stored in the field SecurePassword.

 4 Use [Encrypt_MD5] to encrypt the password that the visitor has supplied
and compare the result to the stored, encrypted MD5 hash value that
was generated from the password they supplied when they created their
account.

[If: (Encrypt_MD5: (Variable: 'VisitorPassword')) == (Field: 'SecurePassword')]
 Log in successful.
[Else]
 Password does not match.
[/If]

Note: For more security, most log-in solutions require both a username and
a password. The password is not checked unless the username matches first.
This prevents site visitors from guessing passwords unless they know a valid

3 7 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 8 – E N C O D I N G

username. Also, many log-in solutions restrict the number of login attempts
that they will accept from a client’s IP address.

Compression Tags
LDML provides two tags which allow data to be stored or transmitted
more efficiently. The [Compress] tag can be used to compress any text string
into an efficient byte stream that can be stored in a text field in a database
or transmitted to another server. The [Decompress] tag can then be used to
restore a compressed byte stream into the original string.

The compression algorithm should only be used on large string values.
For strings of less than one hundred characters the algorithm may actually
result in a larger string than the source.

These tags can be used in concert with the [Null->Serialize] tag that creates a
string representation of any data type in LDML and the [Null->UnSerialize] tag
that returns the original value based on a string representation. An example
below shows how to compress and decompress an array variable.

Table 5: Compression Tags

Tag Description

[Compress] Compresses a string parameter.

[Decompress] Decompresses a byte stream.

To compress and decompress a string:

 1 Use the [Compress] tag on the variable InputVariable holding the string value
you want to compress. The result is a byte stream that represents the
string which is stored in CompressedVariable.

[Variable: 'InputVariable'='This is the string to be compressed.']
[Variable: 'CompressedVariable'=(Compress: $InputVariable)]

 2 The CompressedVariable can now be decompressed using the [Decompress]
tag. The result is stored in OutputVariable and finally displayed.

[Variable: 'OutputVariable'=(Decompress: $CompressedVariable)]
[Variable: 'OutputVariable']

➜ This is the string to be compressed.

To compress and decompress an array:

 1 Store the array in a variable ArrayVariable.

[Variable: 'ArrayVariable'=(Array: 'one', 'two', 'three', 'four', 'five')]

3 7 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 8 – E N C O D I N G

 2 Use the [Null->Serialize] tag to change the array into a string stored in
InputVariable.

[Variable: 'InputVariable'=$ArrayVariable->Serialize]

 3 Use the [Compress] tag on the variable InputVariable holding the string
representation for the array. The result is a byte stream which is stored in
CompressedVariable.

[Variable: 'CompressedVariable'=(Compress: $InputVariable)]

 4 The CompressedVariable can now be decompressed using the [Decompress]
tag. The result is a string stored in OutputVariable.

[Variable: 'OutputVariable'=(Decompress: $CompressedVariable)]

 5 The string representation of the array can now be changed back into
the array by creating a new variable ArrayVariable and then calling the
[Null->UnSerialize] tag with OutputVariable as a parameter.

[Variable: 'ArrayVariable'=Null]
[$ArrayVariable->(UnSerialize: $OutputVariable)]

 6 Finally, the original array can be output.

[Variable: 'ArrayVariable']

➜ (Array: (one), (two), (three), (four), (five))

3 7 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 8 – E N C O D I N G

19
Chapter 19

Sessions

This chapter documents sessions and server-side variables.

 • Overview describes how sessions operate and how sessions can be used.

 • Session Tags describes the tags which can be used to create, manipulate,
and delete sessions.

 • Session Example describes how to use sessions to store site preferences.

Overview
Sessions allow variables to be created which are persistent from page to
page within a Web site. Rather than passing data from page to page using
HTML forms or URLs, data can be stored in ordinary LDML variables
which are automatically stored and retrieved by Lasso on each page a
visitor loads.

Sessions are very easy to use, but the intricacies can be rather difficult
to explain. The Session Examples section later in this chapter presents
three examples for how to use sessions to perform common tasks. These
examples should be consulted first to see real world examples of sessions
in action before reading through the tag reference sections.

Ways in which sessions can be used:

 • Current State – Sessions can store the current state of a Web site for a
given visitor. They can determine what the last search they performed
was, how the data on a results page was sorted, or in what format the
data should be presented.

 • Store References to Database Records – Key field values can be
stored in a session for quick access to records associated with a site

3 7 3

L A S S O 7 . 1 L A N G U A G E G U I D E

visitor. These might include records in a user database or shopping cart
database.

 • Store Authentication Information – After a visitor has authenticated
themselves using a username and password, that authentication infor-
mation can be stored in a session and then checked on each page to
ensure that the same visitor is accessing data from page to page.

 • Store Data Without Using a Database – Complex data types such as
arrays and maps can be stored in session variables. In a Web site with
multiple forms the data from each form can be stored in a session and
only placed in the database once the final form is submitted. Or, a shop-
ping cart can be stored in a session and only placed in an orders data-
base on checkout.

How Sessions Work
A session has three characteristics: a name, a list of variables that should be
stored, and an ID string that identifies a particular site visitor.

 • Name – The session name is defined when the session is created by the
[Session_Start] tag. The same session name must be used on each page in
the site which wants to load the session. The name usually represents
what type of data is being stored in the session, e.g. Shopping_Cart or
Site_Preferences.

 • Variables – Each session maintains a list of variables which are being
stored. Variables can be added to the session using [Session_AddVariable].
The values for all variables in the session are remembered at the bottom
of each page which loads the session. The last value for each variable is
restored when the session is next loaded.

 • ID – Lasso automatically creates an ID string for each site visitor when
a session is created. The ID string is either stored in a cookie or passed
from page to page using the -Session command tag. When a session is
loaded the ID of the current visitor is combined with the name of the
session to load the particular set of variables for the current visitor.

Sessions are created and loaded using the [Session_Start] tag. This tag should
be used on the top of each page which needs access to the shared variables.
The [Session_Start] either creates a new session or loads an existing session
depending on what session name is specified and the ID for the current
visitor.

Sessions can be set to expire after a specified amount of idle time. The
default is 15 minutes. If the visitor has not loaded a page which starts the
session within the idle time then the session will be deleted automatically.
Note that the idle timeout restarts every time a page is loaded which starts
the session.

3 7 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 9 – S E S S I O N S

Once a variable has been added to a session using the [Session_AddVariable]
tag it will be set to its stored value each time the [Session_Start] tag is called.
The variable does not need to be added to the session on each page. A vari-
able can be removed from a session using the [Session_RemoveVariable] tag.
This tag does not alter the variable’s value on the current page, but prevents
the value of the variable from being stored in the session at the end of the
current page.

Session Tags
Each of the session tags is described in Table 1: Session Tags. The param-
eters for [Session_Start] are described in more detail in Table 2: [Session_
Start] Parameters.

Table 1: Session Tags

Tag Description

[Session_Start] Starts a new session or loads an exisiting session.
Accepts four parameters: -Name is the name of the
session to be started. Additional parameters are
described in Table 2: [Session_Start] Parameters.

[Session_ID] Returns the current session ID. Accepts a single
parameter: -Name is the name of the session for which
the session ID should be returned.

[Session_AddVariable] Adds a variable to a specified session. Accepts two
parameters: -Name is the name of the session and a
second unnamed parameter is the name of the variable.

[Session_RemoveVariable] Removes a variable from a specified session. Accepts
two parameters: -Name is the name of the session
and a second unnamed parameter is the name of the
variable.

[Session_End] Deletes the stored information about a named session
for the current visitor. Accepts a single parameter: -
Name is the name of the session to be deleted.

[Session_Abort] Prevents the session from being stored at the end of the
current page. This allow graceful recovery from an error
that would otherwise corrupt data stored in the session.

[Session_Result] When called immediately after the [Session_Start] tag,
returns "new", "load", or "expire" depending on whether a
new session was created, an existing session loaded, or
an expired session forced a new session to be created.

3 7 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 9 – S E S S I O N S

Table 2: [Session_Start] Parameters

Keyword Description

-Name The name of the session.

-Expires The idle expiration time for the session in minutes.

-ID The ID for the current visitor. If no ID is specified then
the cookie and link parameters will be inspected for valid
visitor IDs.

-UseCookie If specified then site visitors will be tracked by cookie.
-UseCookie is the default unless -UseLink or -UseNone
is specified.

-UseLink If specified then site visitors will be tracked by modifying
all the absolute and relative links in the current format
file.

-UseNone No links on the current page will be modified and a
cookie will not be set. -UseNone allows custom session
tracking to be used.

Note: -UseCookie is the default for [Session_Start] unless -UseLink is or -UseNone is
specified. Use -UseLink to track a session using only links. Use both -UseLink and
-UseCookie to track a session using both links and a cookie.

Starting a Session
The [Session_Start] tag is used to start a new session or to load an existing
session. When the [Session_Start] tag is called with a given -Name parameter
it first checks to see whether an ID is defined for the current visitor. The ID
is searched for in the following three locations:

 • ID – If the [Session_Start] tag has an -ID parameter then it is used as the ID
for the current visitor.

 • Cookie – If a session tracker cookie is found for the name of the session
then the ID stored in the cookie is used.

 • Session – If a -Session command tag for the name of the session was
specified in the link that loaded the current page then the parameter of
that tag is used as the session ID.

The name of the session and the ID are used to check whether a session
has already been created for the current visitor. If it has then the variables
in the session are loaded replacing the values for any variables of the same
name that are defined on the current page.

If no ID can be found, the specified ID is invalid, or if the session identi-
fied by the name and ID has expired then a new session is created.

3 7 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 9 – S E S S I O N S

After the [Session_Start] tag has been called the [Session_ID] tag can be used
to retrieve the ID of the current session. It is guaranteed that either a valid
session will be loaded or a new session will be created by the [Session_Start]
tag.

Note: The [Session_Start] tag must be used on each page you want to access
session variables.

Session Tracking
The session ID for the current visitor can be tracked using two different
methods or a custom tracking system can be devised. The tracking system
depends on what parameters are specified for the [Session_Start] tag.

 • Cookie – The default session tracking method is using a cookie.
If no other method is specified when creating a session then the
-UseCookie method is used by default. The cookie will be inspected auto-
matically when the visitor loads another page in the site which includes
a [Session_Start] tag. No additional programming is required.

The session tracking cookie is of the following form. The name of the
cookie includes the words _Session_Tracker_ followed by the name given
to the session in [Session_Start]. The value for the cookie is the session ID
as returned by [Session_ID].

_SessionTracker_SessionName=1234567890abcdefg

 • Links – If the -UseLink parameter is specified in the [Session_Start] tag
then Lasso will automatically modify links contained on the current
page. The preferences for which links will be modified by Lasso can
be adjusted in the Setup > Global Settings > Sessions section of
Lasso Administration. See the Lasso Professional 7 Setup Guide for
more information. No additional programming beyond specifying the
-UseLink parameter is required.

By default, links contained in the href parameter of …
and in the action parameter of <form action=”…”> … </form> tags will be
modified.

Links are only modified if they reference a file on the same machine
as the current Web site. Any links which start with any of the following
strings are not modified.

file:// ftp:// http:// https://
javascript: mailto: telnet:// #

Links are modified by adding a -Session command tag to the end of the
link parameters. The value of the command tag is the session name
followed by a colon and the session ID as returned by [Session_ID]. For

3 7 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 9 – S E S S I O N S

example, an anchor tag referencing the current file would appear as
follows after the -Session tag was added.

 …

To start a session:

A session can be started using the [Session_Start] tag. The optional
-Expires parameter specifies how long in minutes the session should be
maintained after the last access by the site visitor. The default is 15 minutes.
The optional -UseLink keyword specifies that absolute and relative links in
the current format file should be modified to contain a reference to the
session. The optional -UseCookie keyword specifies that a cookie should
be set in the visitor’s Web browser so that the session can be retrieved in
subsequent pages.

The following example starts a session named Site_Preferences with an idle
expiration of 24 hours (1440 minutes). The session will be tracked using
both cookies and links.

[Session_Start: -Name='Site_Preferences', -Expires='1440', -UseLink, -UseCookie]

When the [Session_Start] tag is called it restores all stored variables. If a vari-
able by the same name has already been created on the page then that vari-
able value will be overwritten by the stored variable value.

To add variables to a session:

Use the [Session_AddVariable] tag to add a variable to a session. Once a vari-
able has been added to a session its value will be remembered at the end
of each format file in which the variable is used. Variables included in a
session will be automatically defined when the [Session_Start] tag is called.
In the following example a variable RealName is added to a session named
Site_Preferences.

[Session_AddVariable: -Name='Site_Preferences', 'Real_Name']

Variables will not be created by the [Session_AddVariable] tag. Each
[Session_AddVariable] should be accompanied by a [Variable] tag that defines
the starting value for the variable.

To remove variables from a session:

Use the [Session_RemoveVariable] tag to remove a variable from a session.
The variable will no longer be stored with the session and its value will not
be restored in subsequent pages. The value of the variable in the current
page will not be affected. In the following example a variable RealName is
removed from a session named Site_Preferences.

[Session_RemoveVariable: -Name='Site_Preferences', 'Real_Name']

3 7 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 9 – S E S S I O N S

To delete a session:

A session can be deleted using the [Session_End] tag with the name of the
session. The session will be ended immediately. None of the variables in
the session will be affected in the current page, but their values will not
be restored in subsequent pages. Sessions can also end automatically if
the timeout specified by the -Expires keyword is reached. In the following
example the session Site_Preferences is ended.

[Session_End: -Name='Site_Preferences']

To pass a session in an HTML form:

Sessions can be added to URLs automatically using the -UseLink keyword
in the [Session_Start] tag. In order to pass a session using a form a hidden
input must be added explicitly. The hidden input should have the name
-Session and the value Session_Name:Session_ID. In the following example,
the ID for a session Site_Preferences is returned using [Session_ID] and passed
explicitly in an HTML form.

<form action="repsonse.lasso" method="POST">
 <input type="hidden" name="-Session"
 value="Site_Preferences:[Session_ID: -Name='Site_Preferences']">
 …
 <input type="submit" name="-Nothing" value="Submit Form">
</form>

To track a session using links only if cookies are disabled:

The following example shows how to start a session using links if cookies
are disabled. The cookie which is created by the session tracker has the
name _SessionTracker_SessionName. If this cookie does not exist then the user
does not have cookies enabled. The following code checks for this cookie
and specifies -UseLink and -UseCookie if it is not present or only -UseCookie if
it is.

[Variable: 'Session_Name' = 'Site_Preferences']
[If: (Cookie_Value: '_SessionTracker_' + $Session_Name) == '']
 [Session_Start: -Name=$Session_Name, -UseLink, -UseCookie]
[Else]
 [Session_Start: -Name=$Session_Name, -UseCookie]
[/If]

3 7 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 9 – S E S S I O N S

Session Example
This example demonstrates how to use sessions to store site preferences
which are persistent from page to page.

Web sites can be customized for individual visitors using sessions. In this
example a site visitor is allowed to enter certain information about them-
selves in various forms throughout the Web site. When subsequent forms
are encountered, the Web site should be able to pre-fill any elements that
the visitor has already specified.

Sessions will be used to track the visitors RealName, EmailAddress, and
FavoriteColor in three variables.

To create the session:

The following code will be specified at the top of every Web page in the
Web site. The session must be started in every Web page which requires
access to or which might modify the stored variables.

 1 The [Session_Start] tag is used to start a session named Site_Preferences.
The expiration of the session is set to 24 hours (1440 minutes). The
session will be tracked by both links and cookies.

[Session_Start: -Name='Site_Preferences', -Expires='1440', -UseLink, -UseCookie]

 2 The three variables RealName, EmailAddress, and FavoriteColor are added to
the session using [Session_AddVariable].

[Session_AddVariable: -Name='Site_Preferences', 'RealName']
[Session_AddVariable: -Name='Site_Preferences', 'EmailAddress']
[Session_AddVariable: -Name='Site_Preferences', 'FavoriteColor']

 3 Finally, default values are established for all three variables. RealName and
EmailAddress are set to the empty string if they are not defined.
FavoriteColor is set to blue #0000cc if it has not been defined. These default
values will only be set the first time the session is started. In subsequent
pages, the variables will automatically be set to the value stored in the
session.

[If: (Variable_Defined: 'RealName') == False]
 [Variable: 'RealName' = '']
[/If]

[If: (Variable_Defined: 'EmailAddress') == False]
 [Variable: 'EmailAddress' = '']
[/If]

[If: (Variable_Defined: 'FavoriteColor') == False]
 [Variable: 'FavoriteColor' = '#0000cc']
[/If]

3 8 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 9 – S E S S I O N S

To use the session variables:

The session variables are used in each page as normal variables. Whatever
value they are set to at the end of the Web page will be the value the vari-
able has the next time the session is started.

 • The FavoriteColor variable can be used to set the color of text by using it in
an HTML tag. In the following example, the visitors RealName will
be shown in the specified color.

 Welcome [Variable: 'RealName']

 • The visitor’s RealName and EmailAddress can be shown in a form by
placing the variables in the HTML <input> tags. The following form allows
the visitor to enter their name and email address and to select a favorite
color from a pop-up menu.

<form action="response.lasso" method="POST">

Your Name:
 <input type="text" name="RealName" value="[Variable: 'RealName']">

Your Email Address:
 <input type="text" name="EmailAddress" value="[Variable: 'EmailAddress']">

Your Favorite Color:
 <select name="FavoriteColor">
 <option value="#0000cc"> Blue </option>
 <option value="#cc0000"> Red </option>
 <option value="#009900"> Green </option>
 </select>

 <input type="submit" name="-Nothing" value="Submit">
</form>

In the response page response.lasso, the form inputs can be retrieved
using the [Action_Param] tag and stored into variables. These new values
will now be stored with the session.

[Variable: 'RealName' = (Action_Param: 'RealName')]
[Variable: 'EmailAddress' = (Action_Param: 'EmailAddress')]
[Variable: 'FavoriteColor' = (Action_Param: 'FavoriteColor')]

3 8 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 9 – S E S S I O N S

3 8 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 1 9 – S E S S I O N S

20
Chapter 20

Files and Logging

LDML provides three sets of tags that create and manipulate files on the
Web server: include tags, logging tags, and file tags.

 • Includes describes how to include format files and library files within
the current format file.

 • Logging describes the [Log_...] tags which allow data to be written to a
text file or to Lasso’s internal error logs.

 • File Tags describes the [File_…] tags which allow files and directories to
be created, read, written, edited, moved, and deleted.

 • File Uploads describes the [File_Uploads] tag which allows files that have
been uploaded with an HTML form to be manipulated.

 • File Streaming Tags describes the [File] and [Directory] tags and data types,
and their various member tags that allow files and folders to be manipu-
lated using an object-oriented methodology.

Includes
LDML allows format files to be included within the current format file.
This can be very useful for setting up site-wide navigation elements (e.g.
page headers and footers), separating the graphical elements of a site from
the programming elements, and for organizing a project into reusable code
components. There are three types of files that can be included with the
various include tags depending on how the LDML code and other data in
the included file needs to be treated.

 • Format Files can be included using the [Include] tag. The LDML code
within the included format file executes at the location of the [Include] tag

3 8 3

L A S S O 7 . 1 L A N G U A G E G U I D E

as if it were part of the current file. Any HTML code or text within the
format file is inserted into the current format file.

[Include: 'format.lasso']

 • Text or Binary Data can be included using the [Include_Raw] tag.
No LDML code in the included file is processed and no encoding is
performed on the included data.

[Include_Raw: 'Picture.gif']

 • LDML Code can be included using the [Library] tag. No output is
returned from the [Library] tag, but any LDML code within the file is
executed.

[Library: 'library.lasso']

 • Variables can be set to the contents of a file using the [Include] and
[Include_Raw] tags. The [Include] tag inserts the results of processing any
LDML code within the file into the variable. The [Include_Raw] tag inserts
the raw text or binary data within the file into the variable.

[Variable: 'File_Data' = (Include: 'format.lasso')]
[Variable: 'File_Data' = (Include_Raw: 'Picture.gif')]

See Chapter 26: Images and Multimedia for tips about how to use
[Include_…] tags to serve images and multimedia files from Lasso.

Library Files
Library files are format files which are used to modify Lasso’s program-
ming environment by defining new tags and data types, setting up global
constants, or performing initialization code. Libraries can be included
within a format file using the [Library] tag or can be added to the global
environment by placing the library file within the LassoStartup folder and
then restarting Lasso Service.

Specifying Paths
All included files reference paths relative to the format file which contains
the include tag. The path specified to the file is usually the same as the
relative or absolute path which would be specified within an HTML anchor
tag to reference the same file.

Files in the same folder as the current format file can be included by speci-
fying the name of the file directly. The following tag includes a file named
Format.lasso in the same folder as the file this tag is specified within.

[Include: 'Format.lasso']

3 8 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

Files in sub-folders within the same folder as the current format file can be
included by specifying the relative path to the file which is to be included.
The following tag includes a library file named Library.lasso within a folder
named Includes that is in the same folder as the file this tag is specified
within.

[Library: 'Includes/Library.lasso']

Files in other folders within the Web serving folder should be speci-
fied using absolute paths from the root of the Web serving folder. The ../
construct can be used to navigate up through the hierarchy of folders. The
following tag includes an image file called Picture.gif from the Images folder
contained in the root of the Web serving folder.

[Include_Raw: '/Images/Picture.gif']

File Suffixes
Any file which is included by Lasso including format files, library files, and
images or multimedia files must have an authorized file suffix within Lasso
Administration. See Chapter 6: Setting Global Preferences of the Lasso
Professional 7 Setup Guide for more information about how to authorize
file suffixes.

By default the following suffixes are authorized within Lasso
Administration. Any of these files suffixes can be used for included files.
The .inc file suffix is often used to make clear the role of format files which
are intended to be included.

.htm .html

.inc .Lasso

.LassoApp .text

.txt .uld

.pdf .xml

.gif .jpg

.psd .png

.bmp .tif

.rgb .cmyk

Error Controls
Includes suppress many errors from propagating out to the including page.
If a syntax error occurs in an included file then the [Include] tag will return
the reported error to the site visitor. If a logical error occurs in an included
file then the [Include] tag will return the contents of the error page with the
error reported. Techniques for debugging included files are listed on the
following pages.

3 8 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

Table 1: Include Tags

Tag Description

[Include] Inserts the specified format file into the current format
file. Any LDML code in the included format file is
executed. Accepts a single parameter, the path and
name of the format file to be included.

[Include_Raw] Inserts the specified file into the current format file. No
processing or encoding is performed on the included file.
Accepts a single parameter, the path and name of the
file to be included.

[Library] Executes any LDML code in the specified format file,
but, inserts no result into the current format file. Accepts
a single parameter, the path and name of the format file
to be executed.

Note: See Chapter 27: HTTP/HTML Content and Controls for documenta-
tion of the [Inlude_URL] tag. Lasso Professional 7 also supports the [Include_CGI]
tag from Lasso Web Data Engine 3.x, but its use has been deprecated. The
[Include_CGI] tag may not be supported in a future version of Lasso.

To include a format file:

Use the include file with the path to the format file which is to be
included. The included format file will be processed and the results will
be inserted into the current format file as if the code had been specified
within the current file at the location of the [Include] tag. The following
example shows how to include a file named format.lasso which is contained
in the same folder as the current format file.

[Include: 'format.lasso']

To include a library file:

Library files which contain custom tag definitions or LDML code that does
not return any output can be included using the [Library] tag. The LDML
code within the library file will be executed, but no result will be returned
to the current format file. The following example shows how to include a
library file named library.lasso which is contained in the same folder as the
current format file.

[Library: 'library.lasso']

To debug an included file:

The include tags do return errors that occur in the included file, but it
can be difficult to debug problems in included files. The errors from
an included file can sometimes be more easily seen by loading the

3 8 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

file directly within a Web browser. This will reveal any syntax errors
within the included file and ensure that all the code in the included file
performs properly. The following URL references a format file named
format.lasso inside an Includes folder.

http://www.example.com/Includes/format.lasso

Note: Some include files rely on variables from the format file that includes
them to operate properly. These include files cannot be debugged by simply
loading them in a Web browser.

To debug an included library file:

Since library files do not ordinarily return any output to the current format
file they can be difficult to debug.

To debug an included library file, insert debugging messages within the
code of the library file using the [Output] tag. Ordinarily, these messages
will never be seen since the [Library] tag does not return any output. The
following example shows an [Output] tag reporting the current error.

[Output: (Error_CurrentError: -ErrorCode) + ': ' + (Error_CurrentError)]

If the [Library] tag which includes the code library is changed to an [Include]
tag then the output of the [Output] tag will be inserted into the current
format file. This allows the debugging messages to be seen. Once the file
is working successfully, the [Include] can be changed back to a [Library] tag to
hide the debugging messages.

To prevent included files from being served directly:

Included files can be named with any file suffix which is authorized
within Lasso Administration. If a file suffix is authorized within Lasso
Administration, but is set to not be served by the Web server application
then files with that file suffix can only be used as include files and can
never be served directly. For example, to authorize the .inc file suffix the
following steps must be taken.

 1 Authorize .inc in Lasso Administration Setup > Settings > File
Extensions.

 2 Using the file suffix controls of your Web server applications, deny the
suffix .inc so that files with that suffix cannot be served. This can usually
be accomplished with specific file suffix controls or with a Web server
realm. Consult the Web server documentation for more information.

Note: If LDML code is placed in an include file that is authorized for
processing by Lasso (step 1 above), but is not set in the Web server prefer-
ences to always be processed by Lasso or never to be served (step 2 above),

3 8 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

then it may be possible for site visitors to view the unprocessed LDML code
by loading the include file directly.

Advanced Methodology
Includes and library files allow LDML format files to be structured in order
to create reusable components, separate programming logic from data
presentation, and in general to make Web sites easier to maintain. There
are many different methods of creating structured Web sites which are
beyond the scope of this manual. Please consult the third party resources
at the OmniPilot Web site for more information.

Logging
The [Log_...] tags allow information output by LDML format files to be
logged to a specified text file, or to one of Lasso’s internal error logs with
a predefined error level. The [Log_...] tags can be used to keep track of
what pages site visitors are visiting or what database actions they have
performed. They can be used to write debugging information to Lasso
Service’s console window, or as a way to log specific format file errors to
Lasso’s internal error logs.

Logging to File
When executed, the contents of the [Log] ... [/Log] container tags is appended
to a specified text file. The [Log] ... [/Log] tags can write to any text file
provided that the file is on the same machine as Lasso Service. The [Log_...]
tags cannot output to the format file that contains them. All returns, tabs,
and spaces between the [Log] … [/Log] tags will be included in the output
data.

The following [Log] … [/Log] tags output a single line containing the date and
time with a return at the end to the file specified. The tags are shown first
with a Windows path, then with a Mac OS X path.

[Log: 'C://Logs/LassoLog.txt'][Server_Date] [Server_Time]
[/Log]

[Log: '///Logs/LassoLog.txt'][Server_Date] [Server_Time]
[/Log]

The path to the directory where the log will be stored should be speci-
fied according to the same rules as those for the file tags. See the File Tags
section of this chapter for full details about relative, absolute, and fully
qualified paths on both Mac OS X and Windows.

3 8 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

Table 2: File Log Tags

Tag Description

[Log] ... [/Log] Logs the contents of the container tags to a specified
text file. Requires the path to the text file as the only
parameter:

To log site visits to a file:

Use the [Server_…] and [Client_…] tags to return information about the
current visitor and what page they are visiting. The following code will log
the current date and time, the visitor’s IP address, the name of the server
and the page they were loading, and the GET and POST parameters that
were specified.

[Log: 'E://Logs/LassoLog.txt'][Server_Date: -Extended] [Server_Time: -Extended]
[Client_IP] [Server_Name] [Response_FilePath] [Client_GETArgs] [Client_POSTArgs]
[/Log]

See Chapter 27: HTTP/HTML Content and Controls for more informa-
tion a about the [Client_…] and [Server_…] tags.

To automatically roll log files by date:

Include a date component in the name of the log file. Since the date
component will change every day, a new log file will be created the first
time an item is logged each day. [Server_Date: -Extended] creates a safe date
format to use. The following example logs to a file named e.g. 2001-05-31.txt.

[Variable: 'Log_File' = ///Logs/' + (Server_Date: -Extended) + '.txt']
[Log: (Variable: 'Log_File'][Server_Date] [Server_Time]
[/Log]

Logging to Lasso’s Internal Error Logs
In Lasso Professional 7, one has the option to log custom data to the Lasso
internal error logs with a defined Lasso error level. Lasso’s internal error
logs include the following:

 • The _Errors table in the Lasso_Internal Lasso MySQL database, viewable via
the Utility > Errors > Lasso Errors page in Lasso Administration.

 • The Lasso Service console window.

 • The LassoErrors.txt file, located in the Lasso Professional 7 folder on the hard
drive.

Lasso Professional 7 uses each of the error logs listed above to log its own
internal errors, which are separate from user-defined logs. Every error in

3 8 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

Lasso’s internal error logs are flagged with an error level of Critical, Warning,
or Detail, and which internal log that is used for each Lasso error level
can be explicitly set in the Monitor > Errors > Setup section of Lasso
Administration. For information on setting up Lasso’s internal error logs
as well as descriptions of each error level, see Chapter 9: Administration
Utilities in the Lasso Professional 7 Setup Guide.

The [Log_Critical], [Log_Warning], and [Log_Detail] tags are used to log custom
data to the Lasso internal error logs with a defined Lasso error level of
Crtical, Warning, or Detail. The following example outputs the date and time
of a page request (with a literal space between) to Lasso’s internal error
logs with an error level of Detail.

[Log_Detail: (Server_Date) + ' ' + (Server_Time)]

Table 3: Lasso Error Log Tags

Tag Description

[Log_Critical] Logs to Lasso's internal error logs with an error level
assignment of Critical. Requires the text to be logged as
a parameter. Logging options for this error level are set
in Lasso Administration.

[Log_Warning] Logs to Lasso's internal error logs with an error level
assignment of Warning. Requires the text to be logged
as a parameter. Logging options for this error level are
set in Lasso Administration.

[Log_Detail] Logs to Lasso's internal error logs with an error level
assignment of Detail. Requires the text to be logged as
a parameter. Logging options for this error level are set
in Lasso Administration.

To log format file errors to the Lasso Service console and Lasso
Administration:

Use the [Log_Critical], [Log_Warning], or [Log_Detail] tags. This will log any
information contained in the tags in Lasso’s internal error logs with a
Lasso error level of Critical, Warning, or Detail. The following example will log
a warning to Lasso’s internal logs if an Out Of Memory error occurs while
processing the format file.

[If: (Error_CurrentError) == (Error_OutOfMemory)]
 [Log_Warning: 'A memory error occured while processing this page.']
[/If]

➜ Warning: A memory error occured while processing this page.

If the Lasso Errors Database and Lasso Service Console options were selected
for Warning in the Monitor > Errors > Setup page in Lasso Administration,

3 9 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

then this message will be logged and displayed in both the Lasso Service
console window and the Monitor > Errors > Lasso Errors page in Lasso
Administration.

Log Preferences
The tag for setting log preferences is described in Table 4: Log Preference
Tag. Log preferences can be viewed or changed in the Monitor > Errors >
Setup section of Lasso Administration.

Table 4: Log Preference Tag

Tag Description

[Log_SetDestination] The first parameter specifies a log message level.
Subsequent parameters specify the destination to which
that level of messages should be logged.

Note: The [Log_SetDestination] tag can only be used by the global administrator.
Use an [Auth_Admin] tag to authorize use of this tag.

The first parameter of [Log_SetDestination] requires a log message level. The
three available log message levels are detailed in Table 5: Log Message
Levels.

Table 5: Log Message Levels

Level Description

Log_Level_Critical Critical error messages that affect the proper functioning
of Lasso Service or requires action by the administrator.

Log_Level_Warning Informative messages about what actions are being
performed by Lasso Service. Generally do not require
action by the administrator.

Log_Level_Detail Detailed messages about the inner workings of Lasso
Service. For example, SQL commands are all logged as
detail messages.

Subsequent parameters of [Log_SetDestination] require a destination code.
The three available destinations available are detailed in Table 6: Log
Destination Codes.

3 9 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

Table 6: Log Destination Codes

Code Description

Log_Destination_Console Messages are logged to the Lasso Service console.
Visible on Windows 2000 when Lasso Service is
launched as an application and on Mac OS X when the
consoleLassoService.command script is used.

Log_Destination_File Messages are logged to the LassoErrors.txt file which is
created in the same folder as Lasso Service.

Log_Destination_Database Messages are logged to the errors table of the site
database which can be viewed in the Monitor > Errors
section of Lasso Administration.

To change the log preferences:

Use the [Log_SetDestination] tag to change the destination of a given log
message level. In the following example, detail messages are sent to the
console and to the errors table of the site database.

[Auth_Admin]
[Log_SetDestination: Log_Level_Detail,
 Log_Destination_Database, Log_Destination_Console]

To reset the log preferences:

The following three commands reset the log preferences to their default
values. Critical errors are sent to all three destinations. Warnings and detail
messages are sent only to the console.

[Auth_Admin]
[Log_SetDestination: Log_Level_Critical,
 Log_Destination_Console, Log_Destination_Database, Log_Destination_File]
[Log_SetDestination: Log_Level_Warning,
 Log_Destination_Console]
[Log_SetDestination: Log_Level_Detail,
 Log_Destination_Console]

File Tags
The [File_…] tags can be used to read and write files on the same machine
as Lasso Service. Any text or binary file with an approved file suffix can be
manipulated. Table 7: File Tags lists the LDML substitution tags that are
available to list, inspect, read, write, modify, and delete files. Examples of
using the tags are included both in this section and in the File Upload
section that follows.

3 9 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

Note: See also the section on File Streaming for information on how to
manipulate files using an object-oriented methodology.

Specifying Paths
There are three different types of paths which can be used with the file tags
depending on where the files that are to be manipulated are located.

 • Relative Paths – Relative paths are specified from the location of the
current format file. Relative paths follow the same basic rules as for
paths specified within the [Include] tags or within HTML anchor <a> tags.

For example, the following tag returns the creation date of a file named
library.lasso located in the same folder as the current format file.

[File_CreationDate: 'library.lasso']

➜ 11/6/2001 14:30:00

The following tag returns the creation date of a file named
library.lasso located in a sub-folder named Includes located in the same
folder as the current format file.

[File_CreationDate: 'Includes/library.lasso']

➜ 8/5/2001 15:35:30

Note: The use of relative paths requires that Lasso Service and the Lasso
Web server connector be running on the same machine. The file tags only
work with files that are located on the same machine as Lasso Service.

 • Absolute Paths – Absolute paths are specified from the root of the
current Web serving folder. Absolute paths always start with a forward
slash /. The root of the current Web serving folder is defined by the
preferences of the Web server and usually corresponds to the loca-
tion of the default page that is served when a simple URL such as
http://www.example.com/ is visited.

Relative paths follow the same basic rules as for paths specified within
the [Include] tags or within HTML anchor <a> tags.

For example, the following tag returns the creation date of a file named
index.html located in the root of the Web serving folder.

[File_CreationDate: '/index.html']

➜ 11/3/2001 16:06:15

3 9 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

The following tag returns the creation date of a file named
header.lasso located in a sub-folder named Includes located in the root of
the Web serving folder.

[File_CreationDate: '/Includes/header.lasso']

➜ 6/7/2001 8:35:45

Note: The use of relative paths requires that Lasso Service and the Lasso
Web server connector be running on the same machine. The file tags only
work with files that are located on the same machine as Lasso Service.

 • Mac OS X Fully Qualified Paths – Fully qualified paths are specified
from the root of the file system. They can be used to specify any files on
the Web server including those outside of the Web serving root.

In Mac OS X, fully qualified paths are always preceded by three forward
slashes ///. This identifier is used to distinguish fully qualified paths from
absolute paths. The root folder /// corresponds to the root of the file
system as defined in the Terminal application (e.g. cd /).

For example, the following tag returns the creation date of Lasso Service
in Mac OS X.

[File_CreationDate: '///Applications/Lasso Professional 7/LassoService']

➜ 11/3/2001 16:06:15

The following tag returns the creation date of Admin.LassoApp located in
the default Web serving folder in Mac OS X.

[File_CreationDate: '///Library/WebServer/Documents/Lasso/Admin.LassoApp']

➜ 6/7/2001 8:35:45

Partitions and mounted servers are located in the ///Volumes/ folder. The
default Web serving folder for Apache is ///Library/WebServer/Documents/ and
for WebSTAR V is ///Applications/4DWebSTAR/WebServer/DefaultSite/.

 • Windows Fully Qualified Paths – Fully qualified paths are specified
from the root of the file system. They can be used to specify any files on
the Web server including those outside of the Web serving root.

In Windows, fully qualified paths are always preceded by the letter name
of a partition, a colon, and two forward slashes C:// or E://. Any mounted
partition can be referenced in this fashion.

For example, the following tag returns the creation date of Lasso Service
from the C: drive in Windows.

[File_CreationDate: 'C://Blue World Communications/Lasso Professional 7/
LassoService.exe']

➜ 11/3/2001 16:06:15

3 9 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

The following tag returns the creation date of Admin.LassoApp located in
the default Web serving folder from the C: drive in Windows.

[File_CreationDate: 'C://InetPub/WWWRoot/Lasso/Admin.LassoApp']

➜ 6/7/2001 8:35:45

Note: The file tags only work with files that are located on the same
machine as Lasso Service or are accessible through a mounted file server.

File Suffixes
Any file which is manipulated by Lasso using the file tags must have an
authorized file suffix within Lasso Administration. See Chapter 6: Setting
Global Preferences of the Lasso Professional 7 Setup Guide for more
information about how to authorize file suffixes.

By default the following suffixes are authorized within Lasso
Administration. Files named with any of these file suffixes can be used with
the file tags.

.htm .html

.inc .incl

.Lasso .LassoApp

.text .txt

.bmp .cmyk

.gif .jpg

.pdf .png

.psd .rgb

.tif .uld

.xml .xsd

.xsl

Note: If permission has been granted to Access Files Outside of Root for the
current user then the file suffix preferences are ignored and files with any file
suffix can be manipulated.

Security
The use of file tags is restricted based upon what permissions have
been granted in Lasso Administration. Any file operation must pass the
following four security checks in order to be allowed.

 • File Tags Enabled – The desired file tag must be enabled within the
Setup > Settings > Tags section of Lasso Administration. Tags which
are disabled in this section are not available for use by any user other
than the global administrator.

3 9 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

 • File Tag Permissions – The current user must have permission to
execute the desired file tag. Permission is granted in the Setup >
Security > Tags section of Lasso Administration. Permission must be
granted for one of the groups in which the current user belongs or for
the AnyUser group.

 • File Permissions – The current user must have permission to execute the
desired file action. Permission is granted in the Setup > Security > Files
section of Lasso Administration. Permission must be granted for one of
the groups to which the current user belongs or for the AnyUser group.

 • Allow Path – The Allow Path for the current user must allow the file to
be accessed. The Allow Path is specified in the Setup > Security > Files
section of Lasso Administration. Any files in sub-folders of the allowed
path can be manipulated using the file tags.

 • File Suffixes – Discussed above. The file to be operated upon must be
named with an approved file suffix.

The Access Files Outside of Root permission specified in the Setup > Security
> Files section of Lasso Administration allows a user to access file without
respect to the allowed path or file suffixes. Any files on the machine
hosting Lasso Service can be manipulated.

Mac OS X Note: See the Mac OS X Tips document in the Documentation folder
for information about how to configure Mac OS X file permissions.

The global administrator has permission to perform any Lasso actions and
is able to access any files on the machine hosting Lasso service without
regard to these security settings.

Table 7: File Tags

Tag Description

[File_Copy] Copies a file or directory from one location to another.
Accepts two parameters, the location of the file or
directory to be copied and the new location. Optional
-FileOverWrite keyword specifies that the destination file
should be overwritten if it exists.

[File_Create] Creates a new, empty file or a new directory. Accepts
one parameter, the location of the file or directory to be
created. If the file name ends in a / then a directory is
created. Optional -FileOverWrite keyword specifies that
the destination file should be overwritten if it exists.

[File_CreationDate] Returns the creation date of a file. Accepts one
parameter, the name of the file or directory to be
inspected.

3 9 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

[File_CurrentError] Reports the last error reported by a file tag. Accepts an
optional keyword -ErrorCode that returns the error code
rather than the error message.

[File_Delete] Deletes a file or directory. Accepts one parameter, the
name of the file or directory to be deleted.

[File_Exists] Returns True if the file or directory exists. Accepts
one parameter, the name of the file or directory to be
inspected.

[File_GetSize] Returns the size in bytes of a file. Accepts one
parameter, the name of the file to be inspected.

[File_IsDirectory] Returns True if the specified path is a directory. Accepts
one parameter, the name of the file or directory to be
inspected.

[File_GetLineCount] Returns the number of lines in a file. Accepts one
parameter, the name of the file to be inspected. Optional
-FileEndOfLine keyword/value parameter specifies what
character represents the end of a line.

[File_ListDirectory] Returns an array of strings. Each item in the array is the
name of one file in the directory. Accepts one parameter,
the name of the directory to be listed.

[File_ModDate] Returns the modification date of a file. Accepts one
parameter, the name of the file or directory to be
inspected.

[File_Move] Moves a file or directory from one location to another.
Accepts two parameters, the location of the file or
directory to be moved and the new location. Optional
-FileOverWrite keyword specifies that the destination file
should be overwritten if it exists.

[File_Read] Reads the contents of a file. Accepts one parameter,
the name of the file to be read. Two optional parameters
-FileStartPos and -FileEndPos define the range of
characters which should be read from the file.

[File_ReadLine] Reads a single line from a file. Accepts two parameters,
the name of the file to be read and -FileLineNumber
specifying which line of the file to read. An optional
keyword/value parameter -FileEndOfLine specifies what
character represents the end of lines within the file.

[File_Rename] Renames a file or directory. Accepts two parameters, the
location of the file or directory to be copied and the new
name. Optional -FileOverWrite keyword specifies that the
destination file should be overwritten if it exists.

[File_SetSize] Sets the size of the specified file. Accepts two
parameters, the name of the file to be modified and the
size in bytes which the file should be set to. Any data
beyond that size in bytes will be truncated.

3 9 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

[File_Write] Writes data to the specified file. Accepts two parameters,
the name of the file to be written and the data which
should be written into the file. Optional -FileOverWrite
keyword specifies that the destination file should be
overwritten if it exists, otherwise the data specified is
appended to the end of the file.

[File_Chmod] Allows the Unix file permissions of a file to be modified.
Requires the path to the file to be modified and an octal
permission string as parameters. This tag is currently
supported on Mac OS X and Linux.

See Appendix A: Error Codes under the table File Codes for a list of error
codes and messages which will be returned by the [File_CurrentError] tag.

To list a directory:

 • Use the [File_ListDirectory] tag with the path to the directory. An array is
returned which can be output using [Loop] … [/Loop] tags. In the following
example the contents of the Web serving folder on a Windows machine
is listed by storing the array of files in an array File_Listing and then
looping through the array. Each machine will have a different listing
depending on what files have been installed in this directory.

[Variable: 'File_Listing' = (File_ListDirectory: 'C://InetPub/WWWRoot/')]
[Loop: ($File_Listing->Size)]

[Output: $File_Listing->(Get: (Loop_Count))]
[/Loop]

➜
default.htm

default.lasso

error.lasso

Images/

Lasso/

Note: The Web serving root on either platform can be listed using
[File_ListDirectory: '/'] as long as both Lasso Service and the Web server are
hosted on the same machine.

 • The number of files in a directory can be counted by simply output-
ting the size of the array which is returned from [File_ListDirectory]. In the
following example, the number of files in the Web serving folder listed
above is returned.

[Variable: 'File_Listing' = (File_ListDirectory: 'C://InetPub/WWWRoot/')]
[Output: $File_Listing->Size]

➜ 5

 • More information about each of the files can be returned using the other
file tags. The following example shows how to return the size, creation

3 9 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

and modification dates of each of the files as well as whether each file is
actually a file or a directory. The two directories do not have sizes or date
information.

[Variable: 'File_Root' = 'C://InetPub/WWWRoot/']
[Variable: 'File_Listing' = (File_ListDirectory: $File_Root)]
[Loop: ($File_Listing->Size)]
 [Variable: 'File_Temp' = $File_Root + $File_Listing->(Get: (Loop_Count))]

[Output: $File_Temp] [File_GetSize: $File_Temp]
 [File_CreationDate: $File_Temp] [File_ModDate: $File_Temp]
 [File_Exists: $File_Temp] [File_IsDirectory: $File_Temp]
[/Loop]

➜
default.htm 4325 11/15/2000 14:00:12 11/13/2000 17:26:18 True False

default.lasso 12130 4/11/2000 12:33:29 3/17/2001 11:09:43 True False

error.lasso 393 11/13/2000 11:46:15 11/13/2000 11:50:47 True False

Images/ True True

Lasso/ True True

To create a new directory:

A new directory can be created using the [File_Create] tag. The tag creates a
directory if the file name specified ends in a slash / character.

 • The following tag would create a new directory named files at the root of
the Web serving folder.

[File_Create: '/files/']

 • The following tag would create a new directory named files at the root of
the Web serving folder using a fully qualified path on Windows 2000.

[File_Create: 'C://InetPub/wwwroot//files/']

 • The following tag would create a new directory named files at the root
of the default Apache Web serving folder using a fully qualified path on
Mac OS X.

[File_Create: '///Library/WebServer/Documents//files/']

To create a new file:

 • A new file can be created using the [File_Create] tag. The data for the file
in the following example comes from a variable File_Contents. The entire
file newfile.lasso is written in one step using [File_Write]. If a file of the same
name already exists in the specified directory it will be overwritten.

[File_Create: '/files/newfile.lasso', -FileOverWrite]
[File_Write: '/files/newfile.lasso', $File_Contents, -FileOverWrite]

 • The following example shows how to do a safe file write. The code
first checks to see if the desired output file is going to overwrite an
existing file. A new file is created and the current error is checked using

3 9 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

[File_CurrentError]. If no error occurred then the file is written using the
[File_Write] tag.

[Variable: 'File_Path' = '/files/newfile.lasso']
[If: (File_Exists: $File_Path) == False]
 [File_Create: $File_Path]
 [If: (File_CurrentError) == (Error_NoError)]
 [File_Write: $File_Path, $File_Contents]
 [Else]

Error - Error Creating File
[Else]

Error - File already exists
[/If]

To import data from a file:

Data can be imported from a file using the [File_ReadLine] tag to read in
each line of the file in turn. The lines of the file can then be parsed and
stored in a database or shown to a user.

In the following example, each line of the file is assumed to be tab-
delimited output from a database which is split into an array and could
be later stored into a database. Each line of the file is split into an array
Array_Temp and then the array is stored in the array File_Array.

[Variable: 'File_Path' = '///Library/WebServer/Documents/import.lasso']
[Variable: 'File_Array' = (Array)]

[If: (File_Exists: $File_Path)]
 [Loop: (File_GetLineCount: $File_Path)]
 [Variable: 'File_Temp' = (File_ReadLine: $File_Path,
 -FileLineNumber=(Loop_Count))]
 [Variable: 'Array_Temp' = $File_Temp->(Split: '\t')]
 [$File_Array->(Insert: ($Array_Temp))]
 [/Loop]
[/If]

The end result of importing the file is an array File_Array which contains
an element for each line of the file. Each element is itself an array that
contains an element for each tab-delimited item of data in the specified
line.

To report errors while working with files:

Errors can be reported using the [File_CurrentError] tag. This tag works in
much the same way as the [Error_CurrentError] tag. The following code creates
a file and writes data into it, reporting errors at each step of the process.

4 0 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

[File_Create: 'e://files/newfile.lasso', -FileOverWrite]

Error was [File_CurrentError: -ErrorCode]: [File_CurrentError].
[File_Write: 'e:\files\newfile.lasso', $File_Contents, -FileOverWrite]

Error was [File_CurrentError: -ErrorCode]: [File_CurrentError].

➜
Error was 0: No Error.

Error was 0: No Error.

See Appendix A: Error Codes under the table File Codes for a list of error
codes and messages which will be returned by the [File_CurrentError] tag.

To change the Unix file permissons of a file:

Use the [File_Chmod] tag. The following example changes the Unix file
system permissions of a file to -rwxrwxr-x (read, write, and execute permis-
sions for the file owner, read, write, and execute permissions for the file
group, and read and execute permissions for all other system users).

[File_Chmod: 'file.txt', -u='rwx', -g='rwx', -o='rx']

Line Endings
Files on Mac OS X, Windows, and Linux each have a different standard for
line endings. Table 8: Line Endings summarizes the different standards.

Table 8: Line Endings

Tag Description

Mac OS X Line feed: \n. Each line is ended with a single line feed
character.

Windows Line feed and carriage return: \r\n. Each line is ended
with both a line feed and a carriage return character.

Linux Line feed: \n. Each line is ended with a single line feed
character.

Line ending differences are handled automatically by Web servers and Web
browsers so are generally only a concern when reading and writing files
using the [File_…] tags. The following tips make working with files from
different platforms easier.

 • The default line endings used by the [File_LineCount] and
[File_ReadLine] tags match the platform default. They are \n in Mac OS and
Linux, and \r\n in Windows.

 • Specify line endings explicitly in the [File_LineCount] and [File_ReadLine]
tags. For example, the following tag could be used to get the line count
for a file orginally created in Linux.

[File_LineCount: 'FileName.txt', -FileEndOfLine='\r']

4 0 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

Or, the following tag could be used to get the line count for a file that
was originally created on Windows.

[File_LineCount: 'FileName.txt', -FileEndOfLine='\r\n']

 • Many FTP clients and Web browsers will automatically translate line
endings when uploading or downloading files. Always check the charac-
ters which are actually used to end lines in a file, don’t assume that they
will automatically be set to the standard of either the current platform or
the platform from which they originated.

 • A text editor such as Bare Bones BBEdit can be used to change the line
endings in a file from one standard to another explicitly.

File Uploads
Files can be uploaded to Lasso using standard HTML form inputs. Any
uploaded files are processed by Lasso and stored in a temporary location.
An array [File_Uploads] is provided that returns information about each of
the uploaded files. The Lasso developer must write code to move the files
to a safe location in the response page to the form in which they were
uploaded. The [File_Copy] tag should be used to move uploaded files to
a permanent location. Any files left in the temporary location once the
format file has finished executing will be deleted.

File Permissions Note: File access permission for All Files is required for a user
to upload files. For more information, see Chapter 8: Setting Up Security in
the Lasso Professional 7 Setup Guide.

HTML Form for File Upload
HTML forms must specify an enctype of multipart/form-data in order for file
upload to work. An <input> tag with a type of file must be specified for each
file that can be uploaded using the form. The following form includes a
single <input> so one file can be uploaded to Lasso.

<form action="response.lasso" method="post" enctype="multipart/form-data">
 Select a file: <input type="file" name="upload" value="">

<input type="submit" value="Upload File">
</form>

Once the site visitor selects a file using the file control shown in their
browser and selects the Upload File button, the format file response.lasso will
be called. Within this file the tag [File_Uploads] returns an array of informa-
tion about each of the files uploaded with the form. In this case the array
will only contain one item.

4 0 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

Table 9: File Upload Tags

Tag Description

[File_Uploads] Returns an array of maps that contain information about
any files that were uploaded with the form that triggered
the current format file.

Each element of the array returned by the [File_Uploads] tag is a map with
the elements defined in Table 10: [File_Uploads] Map Elements. If no files
were uploaded then [File_Uploads] returns an empty array. Note that each
<input> can only be used to upload one file, but multiple <input> tags can be
specified in a single form to upload multiple files.

Table 10: [File_Uploads] Map Elements

Element Description

Upload.Name The path to the file in the temporary location where it is
stored.

Upload.Size The size of the file in bytes.

Upload.Type The type of the file.

Upload.RealName The path to the file which was uploaded on the visitor's
machine. This is the same information as is shown to the
user in the feedback in the file control.

To display information about the uploaded files:

 • Information about the uploaded files can be displayed to the site visitor
by looping through the [File_Uploads] array. The following code loops
through the array and returns information about each uploaded file on
a separate line. The results are shown for a single uploaded file named
Picture.gif.

[If: (File_Uploads->Size == 0)]
 No files were uploaded.
[Else]
 [Loop: (File_Uploads->Size)]
 [Variable: 'File_Temp'= (File_Uploads->(Get: (Loop_Count)))]

[Output: $File_Temp->(Find: 'Upload.Name')]
 [Output: $File_Temp->(Find: 'Upload.Size')]
 [Output: $File_Temp->(Find: 'Upload.Type')]
 [Output: $File_Temp->(Find: 'Upload.RealName')]
 [/Loop]
[/If]

➜
E://WinNT/Temp/Lasso-tmp4.uld 128 image/gif Picture.gif

4 0 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

To move uploaded files to a permanent location:

All of the files which were uploaded will be deleted when the current
format file is finished processing. Each uploaded file must be moved to
another location in order to prevent it from being deleted. It is recom-
mended that you use the [File_Copy] tag to move uploaded files.

The following code moves each file that was uploaded to a folder located
at the path e://uploads/ named upload1.txt, upload2,txt, etc. From there the files
can be further manipulated or moved as needed.

[Variable: 'Path' = 'e://uploads/']
[If: (File_Uploads->Size == 0)]
 No files were uploaded.
[Else]
 [Loop: (File_Uploads->Size)]
 [Variable: 'File_Temp'= (File_Uploads->(Get: (Loop_Count)))]
 [File_Copy: $File_Temp->(Find: 'Upload.Name'),
 ($Path + 'upload' + (loop_count) + '.txt')]
 [/Loop]
[/If]

The code does not return any output if there were no files uploaded.

File Streaming Tags
File streaming tags allow file to be cast as LDML objects and manipu-
lated using member tags. This methodology is more advanced than the
[File_...] tags methodology, giving Lasso developers a wide array of file
connection modes and types for connecting to files.

Note: All guidelines for specifying file paths, file extensions, line endings, and
permissions that were described in the File Tags section also apply to the file
streaming tags described here.

File Data Type
To use the file streaming methodology, a file must first be cast as an LDML
file variable using the [File] tag. This tag is described below.

Table 11: [File] Tag

Tag Description

[File] Casts a file as an LDML object, and sets the open and
read modes. Requires the name and path to a file as a
parameter.

4 0 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

When a file connection is opened using the [File] tag, several different
open modes can be used. These modes optimize the file connection for
best performance depending on the purpose of the connection. The open
modes are described below.

Table 12: File Open Modes

Mode Description

File_OpenRead Sets the file connection to read-only.

File_OpenWrite Sets the file connection to write-only.

File_OpenReadWrite Sets the file connection to read and write.

File_OpenWriteAppend Sets the file connection to write and append data.

File_OpenWriteTruncate Sets the file connection to write and truncate data.

When using the [File] tag, a read mode may also be specified to determine
how the file will be read. The read modes are described below.

Table 13: File Read Modes

Read Mode Description

File_ModeChar Reads a file character by character.

File_ModeLine Reads a character line by line.

To cast a file as an LDML object:

Use the [File] tag. The example below casts a local file named myfile.txt as
an LDML object in read-only/character mode. Note that no single quotes
are used around the open and read mode designators, as they are type
constants and not strings.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeChar)]

Manipulating File Objects
Once a file has been cast as an LDML file data type, various [File] member
tags can be used to manipulate it. These tags can handle file specification,
opening, closing, deleting, reading, writing and meta-data for files.

4 0 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

Table 14: File Streaming Tags

Tag Description

[File->Open] Opens a new connection to a file. Requires the name
and path to a file as a parameter. Optional parameters
may include an open mode and read mode, as in the
[File] tag. The open mode and read mode set in the
initial [File] tag call are used by default if not respecified.

[File->SetMode] Sets the file read mode for the connection. This can
be File_ModeLine for reading a file line by line, or
File_ModeChar for reading a file character by character.
Defaults to File_ModeChar if not specified.

[File->Read] Reads data from a file. Requires the integer number of
bytes (characters) to read as a parameter. Outputs the
file data as bytes.

[File->Write] Writes string data to a file. Requires the text string to
write as a parameter. Two optional comma-delimited
integer parameters may also be specified. The first
specifies the number of characters of the text string to
write, and the second specifies the number of characters
in the text string to skip.

[File->SetPosition] Sets the position of the file’s read/write marker. Requires
an integer line or character position (depending on
mode) as a parameter. All subsequent reads and writes
will occur at the given position.

[File->Position] Returns the current file position. Defaults to 0 if no
previous file operations have been performed.

[File->Get] Returns the current character or line (depending on the
file’s read mode) at the current file position.

[File->SetSize] Sets the size of the file. Requires an integer parameter
that specifies the size of the file in bytes.

[File->MoveTo] Moves the file to the new path. Requires a path on the
local server as a parameter.

[File->Delete] Deletes the file and reinitializes the type instance.

[File->Size] Returns size of the file in bytes.

[File->Name] Returns the file’s name.

[File->Path] Returns the full internal path to file.

[File->Close] Closes a connection to a file. This tag should be called
whenever a file streaming operation is finished.

[File->IsOpen] Returns a value of True if the file connection has not
been closed.

4 0 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

To read characters from a file:

Use the [File->Read] tag. The file object should be cast with an open mode
that permits reading, and with the read mode set to File_ModeChar. The
example below reads the first 256 characters of myfile.txt.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeChar)]
[$File->(Read: 256)]
[$File->Close]

To read characters from a file starting at a specified position:

Characters can be read starting at a set position using the [File->SetPosition]
tag before the [File->Read] tag. The example below reads 240 characters
starting at character number 16.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeChar)]
[$File->(SetPosition: 16)]
[$File->(Read: 240)]
[$File->Close]

To read lines from a file:

Use the [File->Read] tag. The file object should be cast with an open mode
that permits reading, and with the read mode set to File_ModeLine. The
example below reads the first 4 lines of myfile.txt.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeLine)]
[$File->(Read: 4)]
[$File->Close]

To read lines from a file starting at a specified position:

Lines can be read starting at a set position using the [File->SetPosition] tag
before the [File->Read] tag. The example below reads 6 lines starting at line
number four.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeLine)]
[$File->(SetPosition: 4)]
[$File->(Read: 6)]
[$File->Close]

To reset the read mode during file operations:

Use the [File->SetMode] tag to change the read mode. The example below
starts in File_ModeLine mode, reads the first line of myfile.txt, moves to line
five, changes to File_ModeChar mode, and then reads the next 16 characters.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeLine)]
[$File->(Read: 1)]
[$File->(SetPosition: 5)]
[$File->(SetMode: File_ModeChar)]

4 0 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

[$File->(Read: 16)]
[$File->Close]

To write text to a file:

Use the [File->Write] tag. The file object should be cast with an open mode
that permits writing. The example below adds the text This is some text after
the fifth line of the file.

[Var:'File'=(File: 'myfile.txt', File_OpenWrite, File_ModeLine)]
[$File->(SetPosition: 5)]
[$File->(Write:'this is some text')]
[$File->Close]

To write part of a string variable to a file:

Use the [File->Write] tag with the optional size and offset integer parameters.
This is useful for truncating part of an existing string variable on-the-fly
before writing it to the file. The example below adds the text five to the file
out of a pre-defined string variable with a value of There are five elements.

[Var:'Text'='There are five elements']
[Var:'File'=(File: 'myfile.txt', File_OpenWrite, File_ModeLine)]
[$File->(Write: $Text, 4, 10)]
[$File->Close]

To return information about a file:

The [File->Name], [File->Path], and [File->Size] tags can be used to output the
name, path, and size (in kilobytes) of a file. The example below outputs
the file name, path, and size delimited by HTML line breaks.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeChar)]
[$File->Path]

[$File->Name]

[$File->Size]

[$File->Close]

To move a file to a different folder:

Use the [File->MoveTo] tag. The following examples moves the local myfile.txt
file to a different to folder on a Mac OS X hard drive.

[Var:'File'=(File: 'myfile.txt', File_OpenRead, File_ModeChar)]
[$File->(MoveTo:'///Library/WebServer/Documents/myfile.txt')]
[$File->Close]

4 0 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 0 : F I L E S A N D L O G G I N G

21
Chapter 21

Error Control

This chapter documents the methods Lasso uses to report errors and the
tags available in LDML to capture and respond to errors.

 • Overview provides definitions of the types of errors Lasso reports and
the methods which can be used to capture and respond to them.

 • Error Reporting documents the built-in error messages in Lasso and
how to customize the amount of information provided to site visitors.

 • Custom Error Page explains how to override the built-in error messages
for the entire server or a single site with a custom error page.

 • Error Pages documents how to create action specific error pages.

 • Error Tags documents the [Error_…] process and substitution tags that
can be used to report custom or standard errors and for basic error
handling within a format file.

 • Error Handling documents the [Protect], [Fail], and [Handle] tags for
advanced error handling within a format file.

Overview
Responding to errors gracefully is the hallmark of good programming.
Errors in Lasso run the gamut from expected errors such as a database
search that returns no records to syntax errors that require fixing before
a page will even process. Lasso provides tools to manage errors at several
different levels which can act redundantly to ensure that no errors will be
missed.

The following lists the types of errors that can occur in or are reported by
Lasso. This chapter includes instructions for how to handle each of these
types of errors.

4 0 9

L A S S O 7 . 1 L A N G U A G E G U I D E

Error Types

 • Web Server Errors include file not found errors and access violations
in realms. These will be reported with standard HTTP response codes,
e.g. 404 for File Not Found.

 • Syntax Errors include misspellings of tag names, missing delimiters,
and mismatched data types. Lasso will return an error message rather
than the processed format file if it encounters a syntax error.

 • Action Errors include misspellings of database names, table names, or
fields names and other problems specifying database actions. The data-
base action cannot be performed until the errors are corrected.

 • Action Results can be reported as errors by Lasso. For example if no
records were found after performing a search.

 • Database Errors are generated by the data source application and
include data type mismatches, missing required field values, and others.
Lasso will report the error which was returned from the data source
application without modification.

 • Logical Errors are problems that cause a page to process unexpectedly
even though the syntax of the code is correct. These include infinite
loops, missing cases, and assumptions about the size or composition of
a found set.

 • Security Violations are not strictly errors, but are attempts to perform
database actions or file accesses which are not allowed by the permis-
sions set for the current user. These include permissions to perform
database actions, privileges to add users to groups, permissions to use
specific tags, and specific permissions to use the file tags.

 • Installation Problems can also result in error messages if a Lasso Web
server connector is improperly configured or Lasso Service is unavailable.

 • Operating System Errors can also be reported by Lasso if they occur.
Lasso will report the error without modification.

Some errors are more serious than others. Pages will not be processed at
all if they contain syntax errors or if there are installation problems which
prevent Lasso Service from being accessed. Other errors are commonly
encountered in the normal use of a Web site. Most database errors and
security violations are handled by simple means such as showing a
No Records Found message or displaying a security dialog box to prompt the
user for a username and password.

There are five mechanisms for handling errors which are detailed in this
chapter. These mechanisms can be used singly or in concert to provide
comprehensive error handling.

4 1 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

Error Control Types

 • Automatic Error Reporting is performed by Lasso in response to
unhandled errors. The amount of detail provided in these error messages
can be customized by setting the error reporting level or by creating a
custom server-wide error.lasso file.

 • A Custom Error Page allows the automatic error page to be replaced by
a custom page. Custom error pages are usually created for each site on a
server.

 • Error Tags allow action and logical errors and security violations to be
handled within a format file.

 • Error Handling tags allow advanced error handling to be built into
format files. These techniques allow error handling routines to be built
into a page without disrupting the normal processing of a page if no
errors occur.

Error Reporting
For errors that occur while processing a page, Lasso displays error messages
differently based on the current error reporting level. This allows detailed
error messages to be displayed while developing a Web site and then for
minimal or generic error messages to be displayed once a site has been
deployed.

The default global error reporting level can be set in Lasso Administration
in the Setup > Global > Settings section. The error reporting level can be set to
None, Minimal, or Full. Each of these levels is described in more detail below.

The error reporting level for a particular page can be modified using the
[Lasso_ErrorReporting] tag with a value of None, Minimal, or Full. This will
modify the error reporting level only for the current format file and its
includes without affecting the global default. See the section on the
[Lasso_ErrorReporting] tag below for additional details.

No matter what level of error reporting has been specified, the standard
built-in error message will be replaced by a custom error page if one is
defined. See the following section Custom Error Page for more details.

Error Levels
This section describes how error messages are formatted at each of the
three error reporting levels:

 • None – This level provides only a generic error message with no specific
information or error code. This level can be used on a deployment server

4 1 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

when it is desirable to provide no specific information to the site visitor.
When the error page is displayed the full error code is logged as a detail
error message.

Figure 1: Built-In None Error Message

��

 • Minimal – This level is the default. It provides a minimal error message
and error code. No context about where the error occurred is provided.
This level can be used on a deployment server in order to make trouble-
shooting problems easier. When the error page is displayed the full error
code is logged as a detail error message.

Figure 2: Built-In Minimal Error Message

��

����� �����������

�������������� �����������������������������������

����������� �����

 • Full – This level provides detailed error messages for debugging and
troubleshooting. The path to the current format file is provided along
with information about what files have been included and what param-
eters have been passed to them. If a database or action error is reported,
the built-in error message provides information about what database
action was performed when the error occurred.

Figure 3: Built-In Full Error Message

��

����� �����������

�������������� �����������������������������������
��������������������������������������
��

����������� �����

������� �������

��������� ��

������������� ��

��������� ��������������

��������������� ���������

���������� ���������

������������� ��

������������ �������������������������

������������ �����������

4 1 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

Setting the Error Level
The error reporting level can be set for an individual format file by speci-
fying the [Lasso_ErrorReporting] tag with the desired error level at the top
of the page. If the -Local keyword is used within the tag then the error
level will only be changed within the current included file, custom tag, or
processed code.

Table 1: Error Level Tag

Tag Description

[Lasso_ErrorReporting] Sets the error reporting level for the current page to
'None', 'Minimal', or 'Full'. Defaults to the value set
in Lasso Administration. An optional -Local keyword
modifies the error level for only the current context.

To set the error reporting level within a format file:

Use the [Lasso_ErrorReporting] tag with the desired error reporting level. For
example, the following code sets the error reporting level to Full so the
current format file can be more easily debugged.

[Lasso_ErrorReporting: 'Full']

To set the error reporting level within a local context:

Use the [Lasso_ErrorReporting] tag with the -Local keyword and the desired
error reporting level. For example, the following code sets the error
reporting level to None so no errors are reported from the current include.
This error reporting level will only be in effect until the end of the current
include, custom tag, or process tag.

[Lasso_ErrorReporting: 'None', -Local]

Other Errors
The simple error message in Figure 2: Lasso Service Error Message is
displayed when Lasso Service cannot be contacted by a Lasso Web server
connector. No processing can happen without Lasso Service. This message

4 1 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

will be displayed if Lasso Service is quit or restarted while the Web server
application is still running.

Figure 4: Lasso Service Error Message

Lasso Connector could not communicate with Lasso Service.

Lasso Error

Security violations result in an appropriate HTTP response being sent to
the Web client to ask the site visitor for authentication information. An
authentication dialog like that shown in Figure 3: Authentication Dialog
is presented to the visitor. If they enter a valid username and password
then processing proceeds as normal. If they enter an invalid username
and password then the standard built-in error message will be shown with
details about the security violation.

Figure 5: Authentication Dialog

Custom Error Page
A custom error page can be defined which will be displayed to the site
visitor rather than the built-in error message described in the previous
section. The error message displayed on a custom error page will depend
on the error reporting level which is set in Lasso Administration and on
the current page. However, the rest of the information on the custom error
page is determined by the LDML used to code the page.

There are two ways to define a custom error page. The server-wide error
page is named error.lasso and is located in the Admin folder in the Lasso
Professional 7 application folder. Modifying this page will alter the error
page for all sites that are hosted on their server. By modifying this page it is
possible to add logging or even email notification when errors occur on a
hosted site.

4 1 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

The custom error page for a particular site can be modified by creating a
file named error.lasso and placing it in the root of the Web serving folder.
Each Web site or virtual host which has a distinct Web serving folder can
have a custom error page.

Figure 6: Custom Error Page

Error: No error
Code: 0

Response: /error.lasso
Path: /
Local: ///Library/WebServer/Documents/error.lasso
Realm:
Referrer:

Date: Tuesday, February 5, 2002
Time: 11:30:37 AM
Version: Mac OS X 5.0.0b15

array: (pair: (-nothing)=()), (pair: (-operatorlogical)=(and)), (pair: (-maxrecords)=(50)), (pair: (-skiprecords)=
(0))

Apple Stock: 25.75

Accept: */*
Accept-Language: en
Authorization: Basic YWRtaW5pc3RyYXRvcjouZ3JlZW4u
Connection: Keep-Alive
Extension: Security/Remote-Passphrase
Host: localhost
UA-CPU: PPC
UA-OS: MacOS
User-Agent: Mozilla/4.0 (compatible; MSIE 5.12; Mac_PowerPC)

2/5/02 11:31 AMUntitled

Page 1 of 1http://localhost/error.lasso

To define a custom server-wide error page.

Modify the file error.lasso which is located in the Admin folder of the Lasso
Professional 7 application folder. This file should be kept simple and be
thoroughly debugged before it is used on a production server.

To define a custom error page:

 1 Create a file named error.lasso which includes the default error message to
be displayed to site visitors.

 2 All image links and URLs within the custom error page should be speci-
fied as absolute paths from the root of the Web serving folder. The
following tag contains a reference to picture.gif contained in the
images folder.

 3 Place the error.lasso file in the root of the Web serving folder for the Web
site which is being customized. The file should be accessible by loading
the following URL.

http://www.example.com/error.lasso

Note: The built-in error page will not be displayed if a custom error page is
defined. The values of [Error_CurrentError] and [Error_CurrentError: -Errorcode] should
be reported in some way by the custom error page.

4 1 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

To test a custom error page:

A properly placed error.lasso file can be tested by loading it with each of the
following URLs.

 • The first URL loads the page directly. This confirms that the error.lasso file
is located in the right folder.

http://www.example.com/error.lasso

 • The second URL will cause an error in Lasso that should return the
custom error page. A page not found error will be returned since the file
fakepage.lasso is not present on the Web server.

http://www.example.com/Action.Lasso?-response=fakepage.lasso

Error Pages
A custom error page can be specified in any HTML form or URL based
Lasso action using the -ResponseAnyError command tag. The -ResponseReq
uiredFieldMissingError tag can be used to trap for missing values which are
flagged with the -Required command tag. The -ResponseSecurityError can be
used to trap for security permissions violations.

If an error occurs and no -Response… tag is specified then the default
error message or a custom error page is returned as documented in the
previous section Custom Error Page. The details of the Lasso action can
be retrieved in the error page and the specific error message which triggered
the error page can be returned using [Error_CurrentError].

Neither of the response command tags function within [Inline] … [/Inline]
based Lasso actions. Instead, errors should be handled directly within the
[Inline] … [/Inline] tags using the techniques outlined in the Error Tags and
Error Handling sections that follow.

Table 2: Error Response Tags

Tag Description

-ResponseAnyError Specifies the page to return if any error occurs and no
specific error page for that error is specified.

-ResponseReqFieldMissingError Specifies the page to return if a name/value pair
preceded by a -Required command tag does not have
a value. Synonyms include -ResponseRequiredField
MissingError, -ResponseReqColumnMissingError, and
-ResponseRequiredColumnMissingError.

-ResponseSecurityError Specifies the page to return if the current user does not
have permission to perform the requested action.

4 1 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

Error Tags
The [Error_…] tags in LDML allow custom errors to be reported and provide
access to the most recent error that was reported by the code executing in
the current format file. This allows the developer to check for specific errors
and respond if necessary with an error message or code to correct the error.

Lasso maintains a single error code and error message that is set by any
tag which reports an error. The error code and error message should be
checked immediately after a tag that may report an error. If any intervening
tags report errors then the error code and error message will be lost.

Custom errors can be created using the [Error_SetErrorMessage] and
[Error_SetErrorCode] tags. Once set, the [Error_CurrentError] tag or [Error_Code]
and [Error_Msg] tags will return the custom error code and message. A devel-
oper can utilize these tags to incorporate both built-in and custom error
codes into the error recovery mechanisms for a site.

Table 3: Error Tags

Tag Description

[Error_CurrentError] Returns the current error message. Optional -ErrorCode
parameter returns the current error code.

[Error_Code] Returns the current error code.

[Error_Msg] Returns the current error message.

[Error_SetErrorCode] Sets the current error code to a custom value.

[Error_SetErrorMessage] Sets the current error message to a custom value.

To display the current error in a format file:

 • Use the [Error_Msg] tag and the [Error_Code] tag. The following code will
display a short error message.

The current error is [Error_Code]: [Error_Msg].

If the code on the page is executing normally and there is no current
error to report then the code will return.

➜ The current error is 0: No Error.

 • Use the [Error_CurrentError] tag with the optional -ErrorCode keyword. The
following code will display a short error message.

The current error is [Error_CurrentError: -ErrorCode]: [Error_CurrentError].

If the code on the page is executing normally and there is no current
error to report then the code will return.

➜ The current error is 0: No Error.

4 1 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

To set the current error in a format file:

The current error code and message can be set using the [Error_SetErrorCode]
and [Error_SetErrorMessage] tags. These tags will not affect the execution of
the current format file, but will simply set the current error so it will be
returned by the [Error_CurrentError] tag.

In the following example, the error message is set to
A custom error occurred and the error code is set to -1.

[Error_SetErrorMessage: 'A custom error occurred']
[Error_SetErrorCode: -1]

The [Error_CurrentError] tag now reports this custom error when it is called
later in the page, unless any intervening code changed the error message
again.

The current error is [Error_CurrentError: -ErrorCode]: [Error_CurrentError].

➜ The current error is -1: A custom error occurred.

The remainder of the [Error_…] tags provide shortcuts for reporting standard
errors or checking what error is being reported by Lasso so appropriate
steps can be taken. The [Error_…] tags available in LDML are described in
Table 3: Error Type Tag. An example of how to respond to a particular
error message follows.

These tags can be used with the [Error_SetErrorCode] and
[Error_SetErrorMessage] tags to generate standard errors. If a page has code
which deals with an “Add Error” for example, that code can be trig-
gered by an [Inline] that reports an “Add Error” or by setting the current
error to an “Add Error” explicitly using the [Error_SetErrrorCode] and
[Error_SetErrorMessage] tags as shown in the following code.

[Error_SetErrorCode: (Error_AddError: -ErrorCode)]
[Error_SetErrorMessage: (Error_AddError)]

Table 4: Error Type Tags

Tag Description

[Error_AddError] An error occured during an -Add action.

[Error_DatabaseConnection A connection to the specified Lasso data source
Unavailable] connector for the current database cannot be

established.

[Error_DatabaseTimeout] The connection to the Lasso data source connector
timed out.

[Error_DeleteError] An error occured during a -Delete action such as if an
invalid -KeyField or -KeyValue was specified.

4 1 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

[Error_FieldRestriction] An error reported by the Lasso data source connector
that a field cannot be modified. Synonym is [Error_
ColumnRestriction].

[Error_FileNotFound] The specified file in an [Include] tag or -Response… tag
cannot be found.

[Error_InvalidDatabase] The specified database is not configured within Lasso
Administration.

[Error_InvalidPassword] The password for the specified username is invalid.

[Error_InvalidUsername] The specified username cannot be found in the users
database within Lasso security.

[Error_NoError] The code has been executed successfully. This error
code represents the lack of an error.

[Error_NoPermission] The current user does not have permission to perform
the requested database action.

[Error_OutOfMemory] Lasso encountered an internal out of memory error that
prevents the current page from processing.

[Error_RequiredFieldMissing] A value was not specified for an HTML form or URL
parameter preceded by a -Required command tag. Also
[Error_RequiredColumnMissing].

[Error_UpdateError] An error occured during an -Update action such as if an
invalid -KeyField or -KeyValue was specified.

Note: In prior versions of Lasso an [Error_NoRecordsFound] tag was defined. This
tag has been deprecated in favor of checking whether the [Found_Count] is
equal to zero to check if no records were found.

To check for a specific error within [Inline] … [/Inline] tags:

Use a conditional expression in [If] … [/If] tags to compare [Error_CurrentError]
with the specific error type tag you want to check. In the following
example, a different message is displayed if no records were found after
a -FindAll action or if the requested database was not found.

[Inline: -Database='Contacts', -Table='People', -FindAll]
 [If: (Error_CurrentError) == (Error_InvalidDatabase)]
 The database Contacts is not valid.
 [Else: (Error_CurrentError) == (Error_NoPermission)]
 You don't have permission to search Contacts.
 [Else: (Found_Count) == 0]
 No records were found in Contacts.
 [Else]
 … Display Found Set Here …
 [/If]
[/Inline]

4 1 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

Error Handling
LDML includes powerful error handling tags that allow areas of a page
to be protected. Error-specific handlers are called if any errors occur in a
protected area of a page. These tags allow comprehensive error handling
to be built into a page without disturbing the code of the page with many
conditionals and special cases.

Table 5: Error Handling Tags

Tag Description

[Fail] Halts execution of the current page or [Protect]
… [/Protect] block. Takes two parameters: an integer
error code and a string error message.

[Fail_If] Conditionally halts execution of the current page or
[Protect] … [/Protect] block. Takes three parameters:
a conditional expression, an integer error code, and a
string error message.

[Handle] … [/Handle] Conditionally executes after the code in the current
container tag or format file is completed or a [Fail] tag is
called. Takes a conditional expression as a parameter.

[Handle_Error] … [/Handle_Error]
Functions the same as [Handle] … [/Handle] except that
the contents is executed only if an error was reported in
the surrounding [Protect] … [/Protect] tags.

[Protect] … [/Protect] Container tag that protects a portion of a page. If code
inside the container throws an error or a [Fail] tag is
executed inside the container then the error is not
allowed to propagate outside the protected block.

Handle Tags
The [Handle] … [/Handle] tags are used to surround a block of code that will
be executed after the current code segment is completed. The opening
[Handle] tag takes a single parameter which is a conditional expres-
sion. If the conditional expression returns True then the code in the
[Handle] … [/Handle] tags is executed. Every [Handle] tag is given a chance to
execute in the order they were specified so multiple [Handle] … [/Handle] tags
can be executed.

[Handle] … [/Handle] tags will not be executed if a syntax error occurs while
Lasso is parsing a page. When Lasso encounters a syntax error it returns an
error page instead of processing the code on a page.

4 2 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

[Handle] … [/Handle] tags will be executed if a logical error occurs while
Lasso is processing a page. However, the result of the page will be an
error message rather than the output of the page. Code within the
[Handle] … [/Handle] tags can redirect the user to another page using
[Redirect_URL] or can replace the contents of the page being served.

There are two ways to use [Handle] … [/Handle] tags within a format file:

 • When used on their own in a format file, the code inside the
[Handle] … [/Handle] tags will be conditionally executed after all the rest of
the code in the format file has completed. [Handle] … [/Handle] tags can be
used to provide post-processing code for a format file.

 • When used within any LDML container tag, the code inside the
[Handle] … [/Handle] tags will be conditionally executed after the closing
container tag. [Handle] … [/Handle] tags will most commonly be used
within [Protect] … [/Protect] tags to provide error handling.

To specify code to execute if a format file reports an error:

Place [Handle] … [/Handle] tags with a check for [Error_CurrentError] anywhere
in a page, but not inside any other container tags. In the following
example, the opening [Handle] tag checks if [Error_CurrentError] is not equal
to [Error_NoError]. The contents of the page which is being returned to the
visitor is replaced by a custom error message if an error has occurred.

[Handle: (Error_CurrentError) != (Error_NoError)]
 [Var: '__html_reply__' = '<hr>' +
 'An error occurred while processing this page:' +
 (Error_CurrentError: -ErrorCode) + ': ' + (Error_CurrentError) + '.']
[/Handle]

To output debugging messages at the end of a format file:

Place [Handle] … [/Handle] tags throughout a page that check to see if a vari-
able named Debug equals True. The contents of the [Handle] … [/Handle] tags
will only be executed if it does. Note that the [Handle] … [/Handle] tags can
only contain static messages because they do not execute within the flow
of the page.

[Var: 'Debug'=True]

[Handle: (Variable: 'Debug') == True]
 <p>Debugging Message
[/Handle]

Note: If a syntax or logical error occurs while processing the page then this
handle code will execute, but the results may not be visible since the default
error page will be returned in place of the processed page contents.

4 2 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

To specify code to post-process a format file:

Place [Handle] … [/Handle] tags with a condition of True anywhere in the
format file, but not within any other container tags. The contents of the
[Handle] … [/Handle] will execute after the rest of the format file has executed.

In the following example, the global variable which contains the text of
the page which will be sent to the site visitor __html_reply__ is modified
using [String_ReplaceRegExp] so that all occurrences of the words OmniPilot are
wrapped with tags that make them blue.

<?LassoScript
 // This LassoScript implements a post-processor that makes all occurrences
 // of the words OmniPilot within the current format file blue.
 Handle: True; // Unconditionally execute handler.
 Variable: '__html_reply__' = (String_ReplaceRegExp: $__html_reply__,
 -Find='([Bb]lue +[Ww]orld)',
 -Replace='\1');
 /Handle;
?>

Fail Tags
The [Fail] tag allows an error to be triggered from within LDML code.
The two parameters of the tag are the integer error code and string error
message of the error to be reported. Use of the [Fail] tag immediately halts
execution of the current page and starts execution of any [Handle] … [/Handle]
tags contained within.

The [Fail] tag can be used in the following ways:

 • To report an unrecoverable error. Just as Lasso automatically halts execu-
tion of a format file when a syntax error or internal error is encountered,
LDML code can use the [Fail] tag to report an error which cannot be
recovered from.

[Fail: -1, 'An unrecoverable error occured']

 • To trigger immediate execution of the page’s [Handle] … [/Handle] tags. If
an error is handled by one of the [Handle] … [/Handle] tags specified in the
format file (outside of any other container tags) then the code within the
[Handle] … [/Handle] tags will be executed.

 • To trigger immediate execution of a [Protect] … [/Protect] block’s
[Handle] … [/Handle] tags. See the next section Protect Tags for details.

To report a standard Lasso error:

Use the appropriate [Error_…] tag to return the error code and error
message for any of Lasso’s standard errors. In the following example a
No Records Found error is triggered.

4 2 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

[Fail: (Error_NoRecordsFound: -ErrorCode), (Error_NoRecordsFound)]

To conditionally execute a [Fail] tag:

[Fail_If] allows conditional execution of a [Fail] without using a full [If] … [/If]
tag. The first parameter to [Fail_If] is a conditional expression. The last two
parameters are the same integer error code and string error message as in
the [Fail] tag. In the following example the [Fail_If] tag is only executed if the
[Found_Count] is 0.

[Fail_If: (Found_Count == 0),
 (Error_NoRecordsFound: -ErrorCode), (Error_NoRecordsFound)]

Protect Tags
The [Protect] … [/Protect] tags are used to catch any errors that occur within
the code surrounded by the container tags. They create a protected
environment from which errors cannot propagate to the page itself.
Even if an internal error is reported by Lasso it will be caught by the
[Protect] … [/Protect] tags allowing the rest of the page to execute successfully.

Any [Fail] or [Fail_If] tags called within [Protect] … [/Protect] tags will halt execu-
tion only if the code is contained within the [Protect] … [/Protect] tags. Any
[Handle] … [/Handle] tags contained within the [Protect] … [/Protect] tags will be
conditionally executed. The format file will continue executing normally
after the closing [/Protect] tag.

The [Protect] … [/Protect] tags can be used for the following purposes:

 • To protect a portion of a page so that any errors that would normally
result in an error message being displayed to the user are instead
handled in the internal [Handle] … [/Handle] tags.

 • To provide advanced flow control in a page. Code within the
[Protect] … [/Protect] tags is executed normally until a [Fail] tag is
encountered. The code then jumps immediately to the internal
[Handle] … [/Handle] tags.

To protect a portion of a page from logical errors:

Wrap the portion of the page that needs to be protected in
[Protect] … [/Protect] tags. Any internal errors that Lasso reports will be
caught by the [Protect] … [/Protect] tags and not reported to the end user.
[Handle] … [/Handle] should be included to handle the error if necessary.

In the following LassoScript an attempt is made to set the global map
[Tags] to Null. This would have the effect of removing all tags from LDML so
their operation is not allowed. Instead, Lasso reports a logical error. Since
this code is executed within [Protect] … [/Protect] tags no error is reported,

4 2 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

but the [Protect] … [/Protect] tags exit silently and the format file resumes
executing after the end of the LassoScript.

<?LassoScript
 Protect;
 $Tags = Null;
 /Protect;
?>

To use the [Protect] … [/Protect] tags with custom errors:

The following example shows [Protect] … [/Protect] tags which surround code
that contains several [Fail_If] statements with custom error codes -1 and -2.
A pair of [Handle] … [/Handle] tags inside the [Protect] … [/Protect] tags are set to
intercept either of these custom error codes. These [Handle] … [/Handle] tags
will only execute if one of the [Fail_If] tags executes successfully.

[Protect]
 …
 [Fail_If: ($ConditionOne == True), -1, 'Custom error -1']
 …
 [Fail_If: ($ConditionTwo == True), -2, 'Custom error -2']
 …
 [Handle: ((Error_CurrentError: -ErrorCode) == -1)]
 … Handle custom error -1 …
 [/Handle]
 [Handle: (Error_CurrentError: -ErrorCode) == -2)]
 … Handle custom error -2 …
 [/Handle]
[/Protect]

4 2 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 1 – E R R O R C O N T R O L

22
Chapter 22

Control Tags

This chapter documents tags that allow format files to be scheduled for
execution and tags that allow low-level access to Lasso’s internal variables.

 • Authentication Tags details the tags that allow security settings to be
modified.

 • Administration Tags details the tags that provide access to Lasso’s envi-
ronment.

 • Scheduling Events documents how to use the [Event_Schedule] tag to
schedule the loading of format files.

 • Process Tags documents how to programmatically control what code is
processed by Lasso, and how to pause Lasso execution.

 • Configuration Tags allow the configuration of Lasso to be inspected.

 • Page Variables documents the internal variables Lasso uses while
processing a page and tags that allow access to them.

 • Null Data Type documents the base data type and the member tags
common to all data types in LDML.

 • Format File Execution Time Limit describes the built-in time limit on
the lenght of time that format files are allowed to execute.

Authentication Tags
The authentication tags can be used to ensure that all of the code in a page
is run by a registered user in Lasso Security or the global administrator. The
authentication tags work by performing the following tasks when they are
executed:

4 2 5

L A S S O 7 . 1 L A N G U A G E G U I D E

 1 Check the current username and password stored in the client browser. If
the username and password meet the requirements of the authentication
tag used, then the page is served normally.

 2 Otherwise, a browser authentication dialog box is shown to the visitor.

 3 If the client enters a valid username and password, then the page is
served normally.

 4 Otherwise, the visitor is either prompted for a username and password
again or is shown an error. The actual behavior is determined by the
Web browser software.

Table 1: Authentication Tags

Tag Description

[Auth] Allows only configured Lasso users to view the page.
Prompts for a username and password if the current
visitor has not provided a valid username and password.

[Auth_Admin] Allows only the global administrator to view the page.
Prompts for a username and password if the current
visitor is not the global administrator.

[Auth_Group] Allows only configured Lasso users in a specified group
in Lasso Security to view the page. Requires the name
of a Lasso group (or an array of group names) as a
parameter. Prompts for a username and password if the
current visitor has not provided a valid username and
password.

[Auth_User] Allows a single specified user in Lasso Security to view
the page. Requires the name of a Lasso user (or an
array of user names) as a parameter. Prompts for a
username and password if the current visitor has not
provided a valid username and password.

[Auth_Custom] Allows a single user with a specified username
and password to view the page. Requires a custom
username (or array of usernames), password (or array
of corresponding passwords), and realm as parameters.
The custom username does not have to be configured in
Lasso Security.

To prompt a visitor for authentication:

Use the [Auth] tag at the top of a format file. Each visitor will need to enter
a username and password which is configured within Lasso Administration
in order to view the contents of the Web page.

[Auth]

4 2 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

This tag can be used to ensure that only configured users visit a format file.
No Anonymous users or users who do not have a valid username and pass-
word will be allowed.

To restrict a page so only the global administrator can view it:

Use the [Auth_Admin] tag at the top of a format file. Each visitor will need to
enter the global administrator’s username and password in order to view
the contents of the Web page.

[Auth_Admin]

This can be used to hide format files which provide status information that
only the global administrator should be able to read or to protect custom
format files that allow aspects of a Web site to be administered.

To restrict a page to users in a specific Lasso group:

Use the [Auth_Group] tag with the name of the desired group as a parameter.
Each visitor will need to enter a username and password that belongs to
the specified Lasso group in order to view the contents of the Web page.

[Auth_Group: 'Lasso_Group_Name']

To restrict a page to a specific Lasso user:

Use the [Auth_User] tag with the name of the desired user as a parameter.
Each visitor will need to enter the username and password of the Lasso
user specified in order to view the contents of the Web page.

[Auth_User: 'Lasso_User_Name']

To restrict a page to a custom username and password:

Use the [Auth_Custom] tag with a custom username, password, and realm as
parameters (the parameters must be entered in this order). Each visitor will
need to enter this username and password in order to view the contents of
the Web page.

[Auth_Custom: 'Custom_User_Name', 'Custom_Password', 'Custom_Realm']

This tag is useful for authenticating a user that is not necessarily configured
in Lasso Security. The custom realm will be displayed in the authentication
dialog box when the user logs in, and can be used in conjunction with
other realms on the Web server.

4 2 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

Administration Tags
Lasso Security is generally configured through the Lasso Administration
interface and related LassoApps. However, Lasso also provides a number of
tags that allow the security settings to be modified from within format files.
These tags are summarized in Table 2: Administration Tags. See Chapter
8: Setting Up Security of the Lasso Professional 7 Setup Guide for more
information about users and groups.

Table 2: Administration Tags

Tag Description

[Admin_CurrentUsername] Returns the name of the current user whose
permissions are being used to run the page or inline.
Returns nothing for the anonymous user.

[Admin_CurrentGroups] Returns an array of Lasso group names that the current
user belongs to.

[Admin_ChangeUser] Changes a user's password. Requires a valid Lasso
username, old password, and new password as
parameters. This tag can be called by any configured
Lasso user.

[Admin_CreateUser] Creates a new user with the specified password.
Requires a new username and password as parameters.
This tag can be called by any group administrator.

[Admin_GroupAssignUser] Assigns the specified user to the group. Requires
the name of a Lasso group and a Lasso user as
parameters. This tag can only be called by a group
administrator for the group.

[Admin_GroupListUsers] Lists the users who belong to the group. This tag can
only be called by a group administrator for the group.

[Admin_GroupRemoveUser] Removes the specified user from the group. This tag can
only be called by a group administrator for the group.

[Admin_ListGroups] Lists the groups for which a group administrator has
privileges.

[Admin_RefreshSecurity] Refreshes cached security settings. This tag can be
used only by the Lasso global administrator.

[Admin_ReloadDatasource] Reloads a Lasso Data Source Connector. Requires
the internal name or ID number of a Lasso Data
Source Connector as a parameter (as shown in Lasso
Administration). This tag can be used only by the Lasso
global administrator.

[Admin_LassoServicePath] Returns the file path to Lasso Service. This tag can be
used only by the Lasso global administrator.

4 2 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

To return the current username within a format file:

Use the [Admin_CurrentUserName] tag. The following example displays the
current Lasso user being used within an [Inline] tag.

[Inline: -Username='John_Doe', -Password='MyPassword']
 [Admin_CurrentUsername]
[/Inline]

➜ John_Doe

To change the password for a user:

Use the [Admin_ChangeUser] tag. The tag takes three parameters: the
username and password of an existing user, and the new password for
the user. The following example changes the password for John_Doe to
MyPassword from MyOldPassword. The tag returns True if the change was
successful.

[Admin_ChangeUser: 'John_Doe', 'MyOldPassword', 'MyPassword']

➜ True

To list the groups the current user belongs to:

Use the [Admin_CurrentGroups] tag. The following example lists the groups
that John_Doe belongs to.

[Inline: -Username='John_Doe', -Password='MyPassword']
 [Admin_CurrentGroups]
[/Inline]

➜ (Array: (AnyUser), (Johns_Group))

To list the groups the current user can administer:

Use the [Admin_ListGroups] tag. The following example lists the groups that
John_Doe can administer. The username and password for John_Doe are spec-
ified using -Username and -Password command tags in [Inline] … [/Inline] tags
surrounding the call to [Admin_ListGroups]. Since John_Doe is the admin-
istrator of one group, Johns_Group, this one name is returned in a single
element array.

[Inline: -Username='John_Doe', -Password='MyPassword']
 [Admin_ListGroups]
[/Inline]

➜ (Array: (Johns_Group))

To list the users that belong to a group:

Use the [Admin_GroupListUsers] tag. The following example lists the users
that belong to the group named Johns_Group. The username and password

4 2 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

for an administrator of Johns_Group is specified in the [Inline] … [/Inline] tags
surrounding the call to [Admin_GroupListUsers]. An array of usernames is
returned.

[Inline: -Username='John_Doe', -Password='MyPassword']
 [Admin_GroupListUsers: 'Johns_Group']
[/Inline]

➜ (Array: (John_Doe), (Jane_Doe), (Tex_Surname), (Bob_Peoples))

To create a new user:

Use the [Admin_CreateUser] tag. The following example creates a new user
Joe_Random with the password 1234. Joe_Random will not have any permis-
sions beyond those assigned to AnyUsers until he is assigned to a group.
Since only a group administrator can create new users, the username and
password for John_Doe are specified in the [Inline] … [/Inline] tags surrounding
the call to [Admin_CreateUser]. The tag returns True if the user was created or
False if the username already exists.

[Inline: -Username='John_Doe', -Password='MyPassword']
 [Admin_CreateUser: 'Joe_Random', '1234']
[/Inline]

➜ True

To add a user to a group:

Use the [Admin_GroupAssignUser] tag. The following example adds the user
Joe_Random to the group Johns_Group. This tag can only be called by a
group administrator for Johns_Group so the username and password for
John_Doe are specified in the [Inline] … [/Inline] tags surrounding the call to
[Admin_GroupAssignUser]. The tag returns True if the user is successfully added
to the group.

[Inline: -Username='John_Doe', -Password='MyPassword']
 [Admin_GroupAssignUser: 'Johns_Group', 'Joe_Random']
[/Inline]

➜ True

To remove a user from a group:

Use the [Admin_GroupRemoveUser] tag. The following example removes the
user Joe_Random from the group Johns_Group. This tag can only be called
by a group administrator for Johns_Group so the username and password
for John_Doe are specified in the [Inline] … [/Inline] tags surrounding the call
to [Admin_GroupRemoveUser]. The tag returns True if the user is successfully
removed from the group.

4 3 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

[Inline: -Username='John_Doe', -Password='MyPassword']
 [Admin_GroupRemoveUser: 'Johns_Group', 'Joe_Random']
[/Inline]

➜ True

To reload a data source connector:

Use the [Admin_ReloadDataSource] tag. This tag is useful if a data source has
been modified and Lasso needs to be refreshed to see the new changes, and
requires Lasso global administrator permission to use. The example below
refreshes the Lasso MySQL data source connector, which has an internal ID
number of 1 according to the Setup > Data Sources > Connectors section
of Lasso Administration.

[Admin_ReloadDataSource: 1]

To refresh Lasso Security:

Use the [Admin_RefreshSecurity] tag. This tag is required for new settings to
go into effect if Lasso Security is manually altered outside of using Lasso
Administration. This tag requires Lasso global administrator permission to
use.

[Admin_RefreshSecurity]

Scheduling Events
Lasso includes a built-in scheduling facility that allows URL visits to be
scheduled for a specific time in the future or to be scheduled for repeated
visits. The scheduling facility loads the pages as if a client Web browser had
visited the specified URL at the specified time.

Since the URLs can reference any format files available to Lasso Service,
this simple scheduling facility allows powerful events to be scheduled that
can perform any database actions or programming commands available to
Lasso.

The scheduling facility can be used to schedule any of the following events.

 • A Routine Maintenance page that performs database cleanup routines
or optimizes the internal Lasso MySQL databases.

 • A Status Email page that emails an administrator’s address with infor-
mation about Lasso’s current status and what database actions have
occurred since the last status email.

 • A Cache Update page that performs a database search. The results
of the search are stored and used instead of the full search in order to
increase performance. The cached date is updated periodically.

4 3 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

 • Events can load pages on Remote Servers in order to retrieve informa-
tion, trigger an action on the remote server, or check that the remote
server is active.

The event scheduling facility is intended for scheduling events which
will be executed within about a minute of their intended execution time.
It is not intended for high-precision execution of events. Please see the
Extending Lasso Guide for information about how to create custom LDML
tags that can execute with greater precision.

Event Administration
Lasso Administration allows events to be scheduled, the event queue to
be stopped and started, and scheduled events to be viewed, modified, and
deleted. See Chapter 9: Administration Utilities in the Lasso Professional
7 Setup Guide for more information.

Note: The event queue can be stopped in Lasso Administration, but will
always be started again if Lasso Service is relaunched.

Event Tags
Events are scheduled using the [Event_Schedule] tag which is described in
Table 3: Scheduling Tags.

Table 3: Scheduling Tag

Tag Description

[Event_Schedule] Schedules a URL to be loaded by Lasso at a specified
time in the future or schedules repeated loads of a
specified URL.

The [Event_Schedule] tag accepts many different parameters which are
described in Table 4: Scheduling Parameters.

Table 4: Scheduling Parameters

Tag Description

-URL The URL which is to be loaded when the event executes.
The URL can include URL parameters. Required.

-Start The date/time to execute the event or the time to start
executing a repeating event. Optional, defaults to the
current time.

-End The date/time to stop executing a repeating event.
Optional, defaults to never.

4 3 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

-Delay The number of minutes to wait between executions of a
repeating event. Defaults to not repeating if no -Delay is
specified.

-Restart A boolean value specifying whether an event should
continue execution after a restart. Defaults to True.

-Username An optional username which will be used to authenticate
the request for the event URL. Optional.

-Password An optional password which will be used to authenticate
the request for the event URL. Optional.

The parameters of the [Event_Schedule] tag interact to allow a great variety
of different behaviors. The following examples make the use of the param-
eters clear.

To schedule an event to execute immediately:

Use the [Event_Schedule] tag with only a -URL parameter. The event will
execute within about a minute of when it is scheduled. This allows a task
specified in a separate format file to be executed separately from the main
flow of the current format file.

[Event_Schedule: -URL='http://www.example.com/event.lasso']

To schedule an event to happen at a specific time:

Use the [Event_Schedule] tag with a -URL parameter and a -Start parameter.
The event will execute within about a minute of the -Start time.

 • The following event is scheduled to execute at midnight on April 5, 2005.
Since the server will likely be restarted before that date, -Restart is set to
True to ensure this event is not deleted when the server is next restarted.

[Event_Schedule:
 -URL='http://www.example.com/event.lasso',
 -Start='4/5/2005 00:00:00',
 -Restart=True]

 • The following event is scheduled to execute at 4:00 PM on April 5, 2005. The
date/time is specified in Lasso date format. -Restart is set to True to ensure
this event is not deleted when the server is next restarted.

[Event_Schedule:
 -URL='http://www.example.com/event.lasso',
 -Start='4/5/2005 16:00:00'
 -Restart=True]

 • The following event is scheduled to execute four hours after the page
is loaded. The date/time for the -Start parameter is generated using the
[Date_Add] and [Date_GetCurrentDate] tags.

4 3 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

[Event_Schedule:
 -URL='http://www.example.com/event.lasso',
 -Start=(Date_Add: (Date_GetCurrentDate), -Hour=4)]

To schedule an event to repeat:

Use the [Event_Schedule] tag with a -URL parameter, and a -Delay parameter
which specifies that the event should repeat. -Restart is set to False. This
event will not execute after the server is restarted unless we set -Restart to
True.

 • The following event is scheduled to repeat every fifteen minutes starting
immediately.

[Event_Schedule:
 -URL='http://www.example.com/event.lasso',
 -Delay=15,
 -Restart=False]

 • The following event is scheduled to repeat every hour on 12/25/2005. Note
that -Restart is set to True so this event will not be deleted when Lasso
Service is next restarted.

[Event_Schedule:
 -URL='http://www.example.com/event.lasso',
 -Start='12/25/2005 00:00:00',
 -End='12/26/2005 00:00:00',
 -Delay=60,
 -Restart=True]

To schedule an event with a complex schedule:

Events which need to execute on a complex schedule must be rescheduled
every time they are executed. If an event is being rescheduled explicitly
then the -Delay parameter should not be specified.

For example, the following code included in the
http://www.example.com/event.lasso format file will reschedule the same format
file as an event depending on whether or not the condition in the [If] … [/If]
tags is True. If the condition is True then the event will be rescheduled for
fifteen minutes in the future, otherwise the event will be rescheduled for
two hours in the future.

[If: (Variable: 'Reschedule') == True]
 [Event_Schedule:
 -URL='http://www.example.com/event.lasso',
 -Start=(Date_Add: (Date_GetCurrentDate), -Minute=15),
 -Restart=False]
[Else]
 [Event_Schedule:

4 3 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

 -URL='http://www.example.com/event.lasso',
 -Start=(Date_Add: (Date_GetCurrentDate), -Hour=2),
 -Restart=False]
[/If]

Process Tags
The [Process] tag can be used to process LDML code which is contained
within a variable or database field. The LDML code is processed as if it
were contained in the current format file at the location of the [Process] tag.
The code which is processed must be complete, all container tags must be
closed within the processed code.

The [NoProcess] … [/NoProcess] tag can be used to have Lasso ignore a portion
of a page. Any LDML including square bracket or LassoScript syntax which
is contained within the [NoProcess] … [/NoProcess] tags will not be processed
and will be passed through to the browser unchanged. This is most useful
for segments of client-side JavaScript which contains array references using
square brackets or to display a sample of LDML code on a page.

The [Sleep] tag can be used to pause the Lasso processing of the current
format file for a specified number of milliseconds. This may be useful if
Lasso actions need to be synchronized with the actions of other applica-
tions on the Web server or on other servers.

Table 5: Process Tags

Tag Description

[Process] Processes its parameter as LDML code.

[NoProcess] … [/NoProcess] Lasso will not process any LDML code contained within
this container tag.

[Sleep] Pauses execution of the current format file for a
specified number of milliseconds.

Note: The [NoProcess] … [/NoProcess] tags cannot be used within a LassoScript
or within code processed by the [Process] tag. They must be typed exactly as
specified here without any parameters or spaces within the square brackets in
order to work.

To process code stored in a variable:

The following example shows how to store LDML code in a variable and
then process it using the [Process] tag. The result is the same as if the code
has been executed within the current format file at the location of the
[Process] tag.

4 3 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

[Variable: 'LDML_Code'='[Server_Name]']
[Output: 'The current server is ']
[Process: (Variable: 'LDML_Code')]
[Output: '.']

➜ The current server is www.example.com.

To process code stored in a database field:

The following example shows how to process code which is stored in a
database variable. The result is the same as if the code has been executed
within the current format file at the location of the [Process] tag. All records
from the MyCode table of the Example database are found and the code from
the Code field is executed.

[Inline: -Database='Example, -Table='MyCode', -FindAll]
 [Records]
 [Process: (Field: 'Code')]
 [/Records]
[/Inline]

The result will be the result of the Code field for each record.

To instruct Lasso not to process a portion of a page:

Use the [NoProcess] … [/NoProcess] tags. In the following HTML page none of
the square brackets within the JavaScript will be processed by Lasso. This
allows the JavaScript to be parsed properly by the browser without any
additional work by the page developer.

<html>
 <head>
 <title>My Lasso Page!</title>
 [NoProcess]
 <script langugage="JavaScript">
 …
 </script>
 [/NoProcess]
 </head>
 <body>
 … Lasso code here will be processed …
 </body>
</html>

The [NoProcess] … [/NoProcess] tags can also be used selectively around a
small portion of a page that contains square brackets, but shouldn’t be
processed. For example, if you are using square brackets to decorate links
you can use the [NoProcess] … [/NoProcess] tags to ensure the contents of the
square brackets is not processed.

[NoProcess][MyLink][/NoProcess]

4 3 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

➜ [MyLink]

To pause execution of a format file for 15 seconds:

Use the [Sleep] tag with a parameter of 15000.

[Sleep: 15000]

Null Data Type
The null data type is the base type for all other data types in LDML. All of
the tags of the null data type are available for use with values of any data
type in LDML. Several of the member tags of the null data type such as
[Null->Type] have already been introduced.

Table 6: Null Member Tags

Tag Description

[Null] Returns a null literal. This tag is usually used in
comparisons or as a default value for new variables.

[Null->DetachReference] Resets any reference value to null, detaching it from the
master value and allowing it to be reassigned without
affecting the master value. See the Extending Lasso
Guide for information on references.

[Null->Dump] Outputs all the variables and tags for a type. This is
useful as a debugging tool.

[Null->FreezeType] Freezes the type of a value so it cannot be modified. An
error is thrown if a subsequent tag attempts to change
the type of the value.

[Null->FreezeValue] Freezes the value for a data type. An error is thrown if a
subsequent tag attempts to modify the value.

[Null->IsA] Requires a type name as a parameter. Returns true if
the object is of that type or inherits from that type.

[Null->Properties] Returns a pair containing two maps. The first element is
a map of all member variables in the type. The second
element is a map of all member variables in the type.

[Null->RefCount] Returns the number of variables that reference the
object.

[Null->Serialize] Converts the value to a byte stream representation. The
returned string can be stored in a database.

[Null->UnSerialize] Accepts a single parameter which is a byte stream that
represents a Lasso value. The current value is replaced
by the value represented by the parameter.

[Null->Type] Returns the data type of the value.

4 3 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

[Null->XMLSchemaType] Returns the type for the root data type in the standard
Lasso types schema.

To return the type of any variable:

Use the [Null->Type] tag. This tag returns a string which represents the data
type of the value. If the data type is not defined then 'null' is returned. The
following examples show the use of [Null->Type] on literals of different data
types.

[Output: 123->Type] ➜ Integer
[Ouput: 123.456->Type] ➜ Decimal
[Output: 'String'->Type] ➜ String
[Output: Null->Type] ➜ Null
[Output: (Array: 1, 2, 3)->Type] ➜ Array

To store a complex data type:

Use the [Null->Serialize] to transform the data type into a byte stream
string representation that can be stored in a database field. Then use
[Null->Unserialize] to transform the byte stream string representation back
into the original data type. The following example shows how to convert
an array into a string and then back again.

 1 Store the array in a variable ArrayVariable.

[Variable: 'ArrayVariable'=(Array: 'one', 'two', 'three', 'four', 'five')]

 2 Use the [Null->Serialize] tag to change the array into a string stored in
TempVariable.

[Variable: 'TempVariable'=$ArrayVariable->Serialize]

 3 The string representation of the array can now be changed back into
the array by creating a new variable ArrayVariable and then calling the
[Null->UnSerialize] tag with TempVariable as a parameter.

[Variable: 'ArrayVariable'=Null]
[$ArrayVariable->(UnSerialize: $TempVariable)]

 4 Finally, the original array is output.

[Variable: 'ArrayVariable']

➜ (Array: (one), (two), (three), (four), (five))

Extending Lasso Note: The null data type tags are used primarily to create
custom tags and custom data types. To see more examples of null data type
tag usage, see Chapter 3: Custom Tags and Chapter 4: Custom Types in the
Extending Lasso Guide.

4 3 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

Page Variables
Lasso stores many internal values in variables which can be accessed by
an LDML programmer. Lasso also provides a tag that allows access to all
of the variables defined for a page as a map. These tools can be used by
LDML programmers to perform low-level tasks that would not be possible
otherwise.

Table 7: Page Variable Tags

Tag Description

[Variables] Returns a map containing every variable defined in a
page. Can be abbreviated [Vars].

[Tags] Returns a map containing every substitution, container,
and process tag registered globally in Lasso. The map
does not contain custom tags defined on the current
page.

To list all variables defined in the current page:

Use the [Map->Keys] tag on the map returned by [Variables] to display the
name of each variable defined on the current page.

[Variables->Keys]

➜ (Array: (__html_reply__), (__result_code__), (__result_message__),
(__http_header__), (__tag_registry__))

To list all substitution, container, and process tags available in LDML:

Use the [Map->Keys] tag on the map returned by [Tags] to display the name
of every tag defined globally within Lasso.

[Tags->Keys]

The output of this code is a list of close to four hundred tags registered
globally in Lasso. Please see the tag list in Appendix A: LDML 7 Tag List
for a listing of the standard substitution tags.

The list of all custom tags defined on the current page can be returned
using the following code. All custom tags defined on the current page are
stored in the __tags__ variable.

[Output: (Variable: '__tags__')->Keys]

The format will be the same as that for the [Tags] map above.

4 3 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

Table 8: Page Variables

Variable Description

__encoding__ The character set which will be used to encode the page
for delivery to the Web client. Set by [Content_Type].

__html_reply__ The current output of the format file is stored in this
variable. Changing this variable will alter the output that
will be sent to the site visitor.

__http_header__ The header that will be returned by Lasso as part of the
http response. The header can be manipulated using the
[Header] … [/Header] tags.

__tags__ Contains a map of all custom tags defined in the current
page. The global version of this variable is accessible
using the [Tags] tag documented above.

__prototypes__ A map of all default member tags for each LDML 7 data
type is stored in this global variable (see the Extending
Language Guide for more information).

Warning: Altering any variables whose names start with an underscore is not
recommended except using the methods documented in this section. These
variables store internal values that are used by Lasso while processing LDML.

To alter the output of the current format file:

Set the variable __html_reply__ to the desired output. In the following
example, an access denied message is displayed to the user rather than the
output of the current format file.

<?LassoScript
 // This script changes the output of the page to an access denied message.

 $__html_reply__' = '<html>\n';
 $__html_reply__ += '\t<head><title>Access Denied</title></head>\n';
 $__html_reply__ += '\t<body><h1>Access Denied</h1></body>\n';
 $__html_reply__' += '</html>\n';
?>

➜ <html>
 <head><title>Access Denied</title></head>
 <body><h1>Access Denied</h1></body>
</html>

Any LDML tags or HTML code in the format file after this LassoScript will
be appended to the end of the output variable. An [Abort] tag can be used to
halt execution of the page and output the contents of the variable immedi-
ately.

4 4 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

Configuration Tags
Lasso provides a number of tags that allow the current configuration to be
examined. These tags are summarized in Table 9: Configuration Tags.

Table 9: Configuration Tags

Tag Description

[Lasso_DatasourceIsFileMaker] Accepts the name of a single database. Returns
True if the database is being served through Lasso
Connector for FileMaker Pro.

[Lasso_DatasourceIsLassoMySQL] Accepts the name of a single database. Returns
True if the database is being served through Lasso
Connector for Lasso MySQL.

[Lasso_DatasourceIsMySQL] Accepts the name of a single database. Returns
True if the database is being served through Lasso
Connector for MySQL.

[Lasso_DatasourceModuleName] Accepts the name of a single database. Returns the
name of the data source connector for the database.

[Lasso_TagExists] Checks to see if a substitution or process tag
is defined. Returns True or False. Requires one
parameter which is the name of the tag to be
checked.

[Lasso_TagModuleName] Returns the name of the module in which a tag is
defined. Requires one parameter which is the name
of the tag to be checked.

[Lasso_Version] Returns the version of Lasso Professional.

To check whether a tag exists:

Use the [Lasso_TagExists] tag with the tag name of the substitution or
process tag to be checked. The following example will return True if the
[Email_Send] tag is defined.

[Lasso_TagExists: 'Email_Send']

➜ True

To check what module a tag is defined in:

Use the [Lasso_TagModule] tag with the name of the substitution or process
tag to be checked. The following example will return the module that
defines the [NSLookup] tag, NSLookup.class.

[Lasso_TagModuleName: 'NSLookup']

➜ NSLookup.class

4 4 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

Format File Execution Time Limit
Lasso includes a limit on the length of time that a format file will be
allowed to execute. This limit can help prevent errors or crashes caused by
infinite loops or other common coding mistakes. If a format file runs for
longer than the time limit then it is killed and a critical error is returned
and logged.

The execution time limit is set to 10 minutes (600 seconds) by default and
can be modified or turned off in the Setup > Global > Settings section of
Lasso Admin. The execution time limit cannot be set below 60 seconds.

Table 10: Time Limit Tags

Tag Description

[Lasso_ExecutionTimeLimit] Sets the time limit for an individual format file.

The limit can be overrided on a case by case basis by including the
[Lasso_ExecutionTimeLimit] tag at the top of a format file. This tag can set the
time limit higher or lower for the current page allowing it to exceed the
default time limit. Using [Lasso_ExecutionTimeLimit: 0] will deactivate the time
limit for the current format file altogether.

On servers where the time limit should be strictly enforced, access to the
[Lasso_ExecutionTimeLimit] tag can be restricted in the Setup > Global > Tags
and Security > Groups > Tags sections of Lasso Admin.

Asynchronous tags and compound expressions are not affected by the
execution time limit. These processes run in a separate thread from the
main format file execution. If a time limit is desired in an asynchronous
tag the [Lasso_ExecutionTimeLimit] tag can be used to set one.

Note: When the execution time limit is exceeded the thread that is
processing the current format file will be killed. If there are any outstanding
database requests or network connections open there is a potential for some
memory to be leaked. The offending page should be reprogrammed to
run faster or exempted from the time limit using [Lasso_ExecutionTimeLimit: 0].
Restarting Lasso Service will reclaim any lost memory.

4 4 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 2 – C O N T R O L T A G S

23
Chapter 23

Miscellaneous Tags

This chapter documents several tags which do not logically fit into any
other chapter in the Lasso 7 Language Guide.

 • Name Server Lookup documents the [NSLookup] tag.

 • Validation Tags describes tags which validate credit card numbers, email
addresses, and URLs.

 • Unique ID Tags describes the [Lasso_UniqueID] tag.

Name Server Lookup
The [NSLookup] tag is implemented using LJAPI (Lasso Java API). In order to
use the [NSLookup] tag, Java must be configured properly. Please see Chapter
6: Setting Global Preferences and the configuration chapters of the Lasso
Professional 7 Setup Guide for more information.

Table 1: Name Server Lookup Tag

Tag Description

[NSLookup] Requires a single parameter. Returns the IP address if
the parameter is a host name or the host name if the
parameter is an IP address.

To find the IP address of a specific host name:

Use the [NSLookup] tag with the host name as its parameter. The following
example returns the IP address for www.example.com.

[NSLookup: 'www.example.com'] ➜ 127.0.0.1

4 4 3

L A S S O 7 . 1 L A N G U A G E G U I D E

To find the host name for a specific IP address:

Use the [NSLookup] tag with the IP address as its parameter. The following
example returns the host name for the IP address 127.0.0.1.

[NSLookup: '127.0.0.1'] ➜ www.example.com

Validation Tags
LDML provides a set of tags which can be used to validate various text
formats. These tags are summarized in Table 2: Valid Tags.

Table 2: Valid Tags

Tag Description

[Valid_CreditCard] Accepts a single string parameter containing a credit
card number. Returns True if the credit card number is
valid according to the ROT-13 algorithm.

[Valid_Date] Accepts a single string parameter containing a date.
Returns True if the date is in a format that Lasso can
parse or False otherwise.

[Valid_Email] Accepts a single string parameter containing an email
address. Returns True if the email address appears to
be in a valid format.

[Valid_URL] Accepts a single string parameter containing a URL.
Returns True if the URL appears to be in a valid format.

Note: See Chapter 14: String Operations for information about the
[String_Is…] tags that can be used to determine what type of data strings
contain.

To check whether a credit card number is valid:

The [Valid_CreditCard] tag provides a quick check for the basic validity of a
credit card number, but can only ensure that a card is of the right format,
not that an account is active or has available credit. The following code
checks the fake credit card number 8888 8888 8888 8888 and predictably
returns False.

[Valid_CreditCard: '8888888888888888'] ➜ False

4 4 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 3 – M I S C E L L A N E O U S T A G S

Unique ID Tags
The [Lasso_UniqueID] tag can be used to create a simple unique ID. The ID
created by the [Lasso_UniqueID] tag has a very high probability of being
unique since it is based on the current date and time, the IP address of the
current visitor, and a random component.

Unique IDs are usually used to identify a particular record in a data-
base. When a new record is added, one field is set to the value from
[Lasso_UniqueID] and that same value is stored in a variable. When the
record needs to be retrieved from the database, [Lasso_UniqueID] can be used
again.

Table 3: Unique ID Tag

Tag Description

[Lasso_UniqueID] Returns a unique ID.

Server Tags
The following tags provide useful information when logging to the
console. The type of output can be selected by specifying an optional
parameter.

Table 4: Server Tags

Tag Description

[Server_Date] Returns the current date. Accepts a parameter -Short,
-ShortY2K, -Abbrev, or -Long.

[Server_Day] Returns the current weekday. Accepts a parameter -
Short or -Long.

[Server_Time] Returns the current time. Accepts a parameter -Short,
-Long, -Extended.

4 4 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 3 – M I S C E L L A N E O U S T A G S

4 4 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 3 – M I S C E L L A N E O U S T A G S

24
Chapter 24

LassoScript

LassoScript is an alternate method of specifying LDML code. This chapter
describes the syntax rules and conventions of LassoScript.

 • LassoScript Overview describes LassoScript in general and explains
when its use is preferred.

 • LassoScript Syntax fully documents the syntax rules and delimiters for
LassoScript.

LassoScript Overview
LassoScript allows LDML tags and symbols to be used as a scripting
language in a fashion which is complementary with the traditional use of
LDML as a tag-based markup language. LassoScripts have the following
advantages:

 • Concise format allows better formatting of long code segments.

 • Represented as a single object in many visual authoring environments.
This makes it easy to separate the logic of a page from the presentation
or to hide implementation details from Web designers who are working
on the visual aspects of the page.

 • Comments allow code to be self-documented for better maintainability.

 • Compatible with HTML and XML standards for embedding server-side
scripting commands.

 • Provides scripting-like method of coding for programmers who prefer
this method.

LDML tags contained within a LassoScript execute exactly as they would
if they were specified within square brackets. The value returned by a

4 4 7

L A S S O 5 L A N G U A G E G U I D E

LassoScript is the concatenation of all the values which are returned from
the tags that make up the LassoScript. No encoding is applied to the
output of a LassoScript, but normal encoding rules apply to each of the
tags within a LassoScript that outputs values.

The [Output] tag is used to determine the output of values from a LassoScript
and to apply explicit encoding to values output from a LassoScript.

<?LassoScript
 Output: '
This is the output from the LassoScript.', -EncodeNone;
?>

➜
This is the output from the LassoScript.

LassoScript Syntax
LassoScript’s begin with <?LassoScript and end with ?>. LDML tags within
a LassoScript are delimited by a single semi-colon ; at the end of the tag
rather than by square brackets. White space within a LassoScript is ignored.
Comments begin with a double forward slash // and continue to the end of
the line. To continue a comment on another line, another // must be used.
All text in a LassoScript must be part of a tag or part of a comment, no
extraneous text is allowed.

Table 1: LassoScript Delimiters

Delimiter Description

<?LassoScript Starts a LassoScript. Required.

?> Ends a LassoScript. Required.

; Ends an LDML tag. Required.

// Comment. All text to the end of the line will be ignored.

/* … */ Block Comment. All text between the delimiters will be
ignored. Allows multi-line comments.

Note: Square brackets […] are not allowed in LassoScripts. Use parentheses
instead to group tag names and their parameters (Tag_Name: -Parameter);.

To create a LassoScript with a single tag:

LassoScripts can be used for individual LDML tags as well as for groups of
tags. When only a single tag is specified, the semi-colon at the end of the
tag is optional. The container <?LassoScript … ?> can be substituted for the
square bracket container […] if necessary.

<?LassoScript Field: 'Field_Name', -EncodeNone ?>

4 4 8

L A S S O 5 L A N G U A G E G U I D E

C H A P T E R 2 4 – L A S S O S C R I P T

<?LassoScript Math_Add: 1, 2, 3, 4, 5 ?> ➜ 15

To use container tags within a LassoScript:

Container tags are specified just as they are in square-bracketed LDML. The
opening container tag must end with a semi-colon. The closing container
tag should start with a forward slash / and end with a semi-colon.
Indentation is usually used to make the contents of the container tag clear,
but is not required. In the following example a [Loop] tag is used to output
the numbers 1 through 5 using the [Loop_Count] tag.

<?LassoScript
 Loop: 5;
 Output: (Loop_Count) + ' ';
 /Loop;
?>

➜ 1 2 3 4 5

To use container tags between LassoScripts:

Container tags can be opened within one LassoScript then closed in
a subsequent LassoScript. The following example shows a mixture of
LassoScripts and square bracket syntax which implements a loop.

<?LassoScript
 Loop: 5;
?>

 [Output: (Loop_Count) + ' ']

<?LassoScript
 /Loop;
?>

➜ 1 2 3 4 5

To specify a comment within a LassoScript:

Use the // symbol to start a comment. All text until the end of the line will
be part of the comment and will not be executed by the LassoScript.

<?LassoScript
 // This LassoScript only contains a comment.
?>

<?LassoScript
 // The following line has been commented out. It will not be processed.
 // Output: 'Testing';
?>

4 4 9

L A S S O 5 L A N G U A G E G U I D E

C H A P T E R 2 4 – L A S S O S C R I P T

Alternately, specifiy a multi-line comment using the /* … */ delimiter. All
text between these delimiters will not be processed.

<?LassoScript
 /*
 These lines have been commented out. The following line will not be processed.
 Output: 'Testing';
 */
?>

To suppress output from a LassoScript:

Use the [Output_None] … [/Output_None] tags around the LassoScript. In the
following example, the LassoScript will return no value even though it
contains several [Output] tags.

<?LassoScript
 Output_None;

 Output: 'This value will not be seen.';
 Output: 'Neither will this value.';

 /Output_None;
?>

To change the encoding for a LassoScript:

Use the [Encode_Set] … [/Encode_Set] tags around the LassoScript. In the
following example, the LassoScript will not perform any encoding
so HTML values can output from the [Output] tags without use of the
-EncodeNone keyword in each tag.

<?LassoScript
 Encode_Set: -EncodeNone;

 Output: '<p>This HTML code will render
with breaks.';

 /Encode_Set;
?>

➜ <p>This HTML code will render

with breaks.

To convert LDML square bracket code to a LassoScript:

 1 Format the code so each tag is on a separate line.

 2 Remove all opening square brackets [.

 3 Replace all closing square brackets] with semi-colons ;.

 4 Correct the indentation so tags inside container tags are indented.

4 5 0

L A S S O 5 L A N G U A G E G U I D E

C H A P T E R 2 4 – L A S S O S C R I P T

 5 Add <?LassoScript and ?> to the beginning and end of the code.

In the following example the same code is shown in square bracketed
LDML code and then as an equivalent LassoScript.

[Loop: 5]
 [Output: (Loop_Count) + ' ']
[/Loop]

<?LassoScript
 Loop: 5;
 Output: (Loop_Count) + ' ';
 /Loop;
?>

4 5 1

L A S S O 5 L A N G U A G E G U I D E

C H A P T E R 2 4 – L A S S O S C R I P T

4 5 2

L A S S O 5 L A N G U A G E G U I D E

C H A P T E R 2 4 – L A S S O S C R I P T

IV
Section IV

Protocols and Media

This section contains information about tags and techniques for inter-
acting with remote Web servers, sending email, serving multimedia files,
supporting WML and XML browsers and more.

 • Chapter 25: Email contains information about how to send email from
Lasso.

 • Chapter 26: Images and Multimedia contains information about how
to serve images and multimedia files from Lasso.

 • Chapter 27: HTTP/HTML Content and Controls describes tags that
allow the information in the HTTP request to be inspected and for the
HTTP response to be customized.

 • Chapter 28: Wireless Devices contains information about how to serve
WML pages to WAP equipped devices such as personal digital assistants
(PDAs) and cell phones.

 • Chapter 29: XML includes information about how to serve XML data
to clients such as other Web application servers or Web browsers that
support XML and how to send and receive XML-RPC requests.

 • Chapter 30: PDF includes information about how to create dynamic
PDF documents and serve them.

4 5 3

L A S S O 7 . 1 L A N G U A G E G U I D E

4 5 4

L A S S O 7 . 1 L A N G U A G E G U I D E

S E C T I O N I V – P R O T O C O L S A N D M E D I A

25
Chapter 25

Email

This chapter describes how to send email using Lasso.

 • Sending Email describes the [Email_Send] tag.

Sending Email
Lasso includes a built-in system for queuing and sending email messages
from LDML format files. Email messages can be sent to site visitors to
notify them when they create a new account or to remind them of their
login information. Email messages can be sent to administrators when
various errors or other conditions occur. Email messages can even be sent
in bulk to many email addresses to notify site visitors of updates to the
Web site or other news.

Email messages are queued using the [Email_Send] tag. Lasso’s email system
checks the queue periodically and sends any messages which have been
queued. If the email system encounters an error when sending an email
then it requeues the message.

Lasso sends each message to the SMTP server specified in the [Email_Send]
tag or in Lasso Administration. Lasso must have permission to send email
through an SMTP server in order to use the [Email_Send] tag. Consult the
documentation for your SMTP server in order to ensure that the machine
which is hosting Lasso Service has permission to relay mail to your SMTP
server. Optional username and password parameters allow email to be sent
through mail servers that require SMTP AUTH.

The email system is administered using the Monitor > Email section of
Lasso Administration. The Email Queue can be inspected and any errors
which have occurred can be reviewed. Email messages can be queued

4 5 5

L A S S O 7 . 1 L A N G U A G E G U I D E

manually using the Send Email page. The preferences for the email system,
such as how often the queue is checked for messages or how many times
messages are requeued if an error is detected, can be modified using
the Setup page. See Chapter 9: Administration Utilities of the Lasso
Professional 7 Setup Guide for more information.

Note: Lasso’s email system is written in LDML using the TCP/IP tags. See the
Extending Lasso Guide for information about how to create a new solution
based on the email system.

Table 1: Email Tag

Tag Description

[Email_Send] Queues an email message.

The [Email_Send] tag accepts many keyword/value parameters which are
detailed in Table 2: [Email_Send] Parameters.

Table 2: [Email_Send] Parameters

Keyword Description

-Host Optional SMTP host through which to send messages.
Default is the host defined in Lasso Administration.

-To The recipient of the message. Multiple recipients can
be specified by separating their email addresses with
commas. At least one of -To, -CC, or -BCC is required.

-From The sender of the message. The email address specified
must have permission to send messages through the
SMTP host. Required.

-Subject The subject of the message. Required.

-Body The body of the message. Required.

-CC Carbon copy recipients of the message. Multiple
recipients can be specified by separating their email
addresses with commas. At least one of -To, -CC, or
-BCC is required.

-BCC Blind carbon copy recipients of the message. Multiple
recipients can be specified by separating their email
addresses with commas. At least one of -To, -CC, or
-BCC is required.

-Username Specifies the username for SMTP AUTH if required
by the SMTP server. If specified a -Passwod is also
required. Optional.

-Password Specifies the password for SMTP AUTH if required
by the SMTP server. If specified a -Username is also
required. Optional.

4 5 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 5 – E M A I L

-ExtraMIMEHeaders A pair array which defines extra MIME headers that
should be added to the email message. Optional.

-Attachments An array of paths to files (or the path to a single file)
which should be included as attachments with the
message.

Note: The -Email.… command tags from LDML 3 will not operate in LDML 7.

To send an email message:

Use the [Email_Send] tag with the desired parameters. The -Host parameter
must be set to a valid SMTP host. The -From parameter must be set to an
email address which has permission to send messages through the SMTP
host. The -Subject parameter must be set to the desired subject for the email
message. One or more recipients must be specified using the -To, -CC, and
-BCC parameters. The body of the message can be specified using any of the
three methods described here.

 • An email can be sent with a hard-coded body by specifying the message
directly within the [Email_Send] tag. The following example shows an
email sent to example@example.com with a hard-coded message body.

[Email_Send: -Host='mail.example.com',
 -To='example@example.com',
 -From='example@example.com',
 -Subject='An Email',
 -Body='This is the body of the email.']

 • The body of an email message can be assembled in a variable in the
current format file and then sent using the [Email_Send] tag. The following
example shows a variable Email_Body which has several items added to it
before the message is finally sent.

<?LassoScript
 Variable: 'Email_Body' = 'This is the body of the email';
 $Email_Body += '\nSent on: ' + (Server_Date) + ' at ' + (Server_Time);
$Email_Body += '\nCurrent visitor: ' + (Client_Username) + ' at ' + (Client_IP);

 Email_Send: -Host='mail.example.com',
 -To='example@example.com',
 -From='example@example.com',
 -Subject='An Email',
 -Body=$Email_Body;
?>

 • A format file on the Web server can be used as the message body for
an email message using the [Include] tag. A format file created to be
a message body should contain no extra white space. The following
example shows a format file format.lasso which is contained in the same

4 5 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 5 – E M A I L

folder as the current format file being used as the message body for an
email. Any LDML tags within format.lasso will be executed before the
email is sent.

[Email_Send: -Host='mail.example.com',
 -To='example@example.com',
 -From='example@example.com',
 -Subject='An Email',
 -Body=(Include: 'format.lasso')]

To send an email message to multiple recipients:

Email can be sent to multiple recipients by including their addresses as a
comma delimited list in the -To parameter, the -CC parameter, or the -BCC
parameter. Multiple -To, -CC, or -BCC parameters are not allowed.

 • The following example shows an [Email_Send] tag with two recipients
in the -To parameter. The recipients email addresses are specified with
a comma between them example@example.com, somone@example.com. No
extraneous information such as the recipients real names should be
included.

[Email_Send: -Host='mail.example.com',
 -To='example@example.com, someone@example.com',
 -From='example@example.com',
 -Subject='An Email',
 -Body=(Include: 'format.lasso')]

 • The following example shows an [Email_Send] tag with one recipient in
the -To parameter and two recipients in the -CC parameter. The Carbon
Copy parameter is generally used to include recipients who are not the
primary recipient of the email, but need to be informed of the corre-
spondence. The addresses for the carbon copied recipients are stored in
variables and concatenated together with a comma between them using
a + symbol.

[Variable: 'President'='president@example.com']
[Variable: 'Someone'='someone@example.com']
[Email_Send: -Host='mail.example.com',
 -To='example@example.com',
 -CC=($President + ',' + $Someone),
 -From='example@example.com',
 -Subject='An Email',
 -Body=(Include: 'format.lasso')]

 • The following example shows an [Email_Send] tag with one recipient in
the -To parameter and two recipients in the -BCC parameter. The Blind
Carbon Copy parameter can be used to send email to many recipients
without disclosing the full list of recipients to everyone who receives the

4 5 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 5 – E M A I L

email. Each recipient will receive an email that contains only the address
in the -To parameter announce@example.com.

[Email_Send: -Host='mail.example.com',
 -To='announce@example.com',
 -BCC='example@example.com, someone@example.com',
 -From='example@example.com',
 -Subject='An Email',
 -Body=(Include: 'format.lasso')]

To send HTML email:

HTML email requires a few extra MIME headers in order to inform the
email client how to render the message. These MIME headers can be added
to any outgoing email using the -ExtraMIMEHeaders keyword/value param-
eter. The following three parameters are required to send HTML email.

MIME-Version: 1.0
Content-Type: text/html
Content-Transfer-Encoding: 8bit

The following examples shows how to set up these three MIME headers by
storing them in an array and then referencing the array in the [Email_Send]
tag.

[Variable: 'MIME_Headers' = (Array: 'MIME-Version'='1.0',
 'Content-Type'='text/html',
 'Content-Transfer-Encoding'='8bit')]

[Email_Send: -Host='mail.example.com',
 -To='example@example.com',
 -From='example@example.com',
 -Subject='An HTML Email',
 -Body='This is the body of an HTML Email.',
 -ExtraMIMEHeaders=$MIME_Headers]

To send an email message with a Reply-To header:

Any valid email headers can be included with -ExtraMIMeHeaders. For
example, a Reply-To header will specify that a different address than the
From address should be used for responses to a message.

Reply-To: someone@example.com

4 5 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 5 – E M A I L

The following examples shows how to set up an array that contains a
Reply-To header and then referencing the array in the [Email_Send] tag.

[Variable: 'MIME_Headers' = (Array: 'Reply-To'='someone@example.com')]

[Email_Send: -Host='mail.example.com',
 -To='example@example.com',
 -From='example@example.com',
 -Subject='AnEmail',
 -Body='This is the body of the Email.',
 -ExtraMIMEHeaders=$MIME_Headers]

To send attachments with an email message:

Files can be included as attachments to email messages using the
-Attachments parameter. This parameter takes an array of file paths as a value.
When the email is sent, each file is read from disk and encoded using Base-
64 encoding. The recipient’s email client will automatically decode the
attached files and make them available.

The following example shows a single attachment being sent with an email
message. The attachments are named MyAttachment.txt and MyAttachment2.text.
They are located in the same folder as the format file which is sending the
email.

[Email_Send: -Host='mail.example.com',
 -To='example@example.com',
 -From='example@example.com',
 -Subject='AnEmail',
 -Body='This is the body of the Email.',
 -Attachments=(Array: 'MyAttachment.txt', 'MyAttachment2.txt')]

4 6 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 5 – E M A I L

26
Chapter 26

Images and Multimedia

This chapter describes the methods which can be used to manipulate and
serve images and multimedia files using Lasso.

 • Overview provides an overview of the image manipulation and multi-
media features included in Lasso Professional 7.

 • Casting Images as LDML Objects describes how to cast image files as
LDML objects so they can be dynamically edited using LDML.

 • Getting Image Information describes how to access the attributes of an
image using LDML.

 • Converting and Saving Images describes how to convert images from
one format to another, and how to save images to file using LDML.

 • Manipulating Images describes how to edit image files using LDML.

 • Extended ImageMagick Commands describes how to invoke extended
ImageMagick functionality using LDML.

 • Serving Images and Multimedia Files describes how to serve images
and multimedia files through Lasso format files, and how to reference
images and multimedia files stored within the Web server root.

Overview
Lasso Professional 7 includes features that allow you to manipulate and
serve images and multimedia files on the fly. New LDML [Image] tags allow
you to do the following with image files in supported image formats:

 • Scaling and cropping images, facilitating the creation of thumbnail
images on the fly.

 • Rotating images and changing image orientation.

4 6 1

L A S S O 7 . 1 L A N G U A G E G U I D E

 • Apply image effects such as modulation, blurring, and sharpening
effects.

 • Adjusting image color depth and opacity.

 • Combining images, adding logos and watermarks.

 • Image format conversion.

 • Retrieval of image attributes, such as image dimensions, bit depth, and
format.

 • Executing extended ImageMagick commands.

Implementation Note: The image tags and features in LDML 7 are imple-
mented using ImageMagick 5.5.7 (July 2003 build), which is installed as part
of Lasso Professional 7 on Mac OS X 10.3. Windows requires ImageMagick
to be installed separately, which is covered in chapter 4 of the Lasso
Professional 7 Setup Guide. For more information on ImageMagick, visit http:
//www.imagemagick.com.

Introduction to Manipulating Image Files
Image files can be manipulated via LDML by setting a variable that refer-
ences an image file on the server using the [Image] tag, and then using
various member tags to manipulate the variable. Once the image file is
manipulated, it can either be served directly to the client browser, or it can
be saved to disk on the Web server.

To dynamically manipulate an image on the server:

The following shows an example of initializing, manipulating, and serving
an image file named image.jpg using the [Image] tags.

[Var:'MyImage' = (Image: '/images/image.tif')]
[$MyImage->(Scale: -Height=35, -Width=35, -Thumbnail)]
[$MyImage->(Save: '/images/image.jpg')]

In the example above, an image file named image.tif is cast as a Lasso image
data type using the [Image] tag, then resized to 35 x 35 pixels using the
[Image->Scale] tag (the optional -Thumbnail parameter optimizes the image
for the Web). Then, the image is converted to JPEG format and saved to
file using the [Image->Save] tag, and displayed on the current page using an
HTML tag.

This chapter explains in detail how these and other tags are used to manip-
ulate image and multimedia files. This chapter also shows how to output
an image file to a client browser within the context of a format file.

4 6 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

Supported Image Formats
Because the [Image] tags are based on ImageMagick, Lasso Professional
7 supports reading and manipulating over 88 major file formats (not
including sub-formats). A comprehensive list of supported image formats
can be found at the following URL.

http://www.imagemagick.com/www/formats.html

A list of commonly used image formats that are certified to work with
Lasso Professional 7 out of the box without additional components
installed are shown in Table 1: Tested and Certified Image Formats.

Table 1: Tested and Certified Image Formats

Format Description

BMP Microsoft Windows bitmap.

CMYK Raw cyan, magenta, yellow, and black samples.

GIF CompuServe Graphics Interchange Format. 8-bit RGB
PseudoColor with up to 256 palette entries.

JPEG Joint Photographic Experts Group JFIF format. Also
known as JPG.

PNG Portable Network Graphics.

PSD Adobe Photoshop bitmap file.

RGB Raw red, green, and blue samples.

TIFF Tagged Image File Format. Also known as TIF.

Note: Many of the supported formats listed on the ImageMagick site such
as EPS and PDF may be used with the [Image_...] tags, but require additional
components such as Ghostscript to be installed before they will work. These
formats may be used, but because they rely heavily on third-party compo-
nents, they are not officially supported by OmniPilot.

File Permissions
This section describes the file permission requirements for manipulating
files on a Web server using LDML 7. In order to successfully manipulate
and save image files, the following conditions must be met.

 • When saving image files using the [Image] tags, the user (e.g.
AnyUser group for anonymous users) must have Create Files, Read Files,
and Write Files permissions allowed in the Setup > Security > Files
section of Lasso Administration, and the folder in which the image will
be created must be available to the user within the Allow Path field.

4 6 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

 • When creating files, Lasso Service (i.e. the Lasso user in Mac OS X or
LocalSystem user in Windows) must be allowed by the operating system
to write and execute files inside the folder. To check folder permissions
in Windows, right-click on the folder and select Properties > Security.
For Mac OS X, refer to the included Mac_OS_X_Tips.pdf document for
instructions on changing file and folder permissions.

 • Any file extensions being used by the [Image] tags must be allowed in the
Setup > Global Settings > Settings section of Lasso Administration.
This can include .gif, .jpg, .png, or any other supported image format you
are using.

Casting Images as LDML Objects
For Lasso to be able to edit an image via LDML, an image file or image
data must first be cast as an LDML image variable using the [Image] tag.
Once a variable has been set to an image data type, various Image member
tags can be used to manipulate the image. Once the image file is manipu-
lated, it can either be served directly to the client browser, or it can be
saved to disk on the Web server.

Table 2: [Image] Tag:

Tag Description

[Image] Casts an image as an LDML object. Requires either the
name and path of an image file or a binary data string to
initialize an image. Once an image is cast as an object,
it may be edited and saved using [Image] member tags,
which are described throughout this chapter.

Table 3: [Image] Tag Parameters:

Parameter Description

'File Path' Path to image file on the server. Required if -Binary or
-Base64 is not specified.

-Binary Creates an image file from binary image data. Requires
a valid binary string for a supported image format.
Required if a file path is not specified.

-Info Optional parameter retrieves all the attributes of an
image without reading the pixel data. Allows for better
performance and less memory usage when casting an
image (recommended for larger files).

4 6 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

To cast an image file as an LDML object:

Use the [Image] to initialize an image file so it can be manipulated by Lasso.

[Var:'MyImage1'=(Image: '/images/image.jpg')]

To cast a large image file as an LDML object:

Use the [Image] to initialize an image file using the -Info parameter for
increased performance with larger files.

[Var:'MyImage2'=(Image: '/images/largeimage.jpg', -Info)]

To initialize an image from binary image data:

Lasso can create an image from a binary string for a valid image type
using the [Image] tag with the -Binary parameter. The image is initialized
and created in memory only until it is saved using the [Image->Save] tag
described later.

[Var:'Binary'=(Include_Raw: 'image.jpg')]
[Var:'MyImage3'=(Image: -Binary=$Binary)]

Getting Image Information
Information about an image can be returned using special [Image] member
tags. These tags return specific values representing the attributes of an
image such as size, resolution, format, and file comments. All image infor-
mation tags in LDML 7 are defined in Table 4: Image Information Tags.

Table 4: Image Information Tags

Tag Description

[Image->Width] Returns the image width in pixels. Integer value
returned.

[Image->Height] Returns the image height in pixels. Integer value
returned.

[Image->ResolutionH] Returns the horizontal resolution of the image in dpi.
Integer value returned.

[Image->ResolutionV] Returns the vertical resolution of the image in dpi.
Integer value returned.

[Image->Depth] Returns the color depth of the image in bits. Can be
either 8 or 16.

[Image->Format] Returns the image format (GIF, JPEG, etc).

4 6 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

[Image->Pixel] Returns the color of the pixel located at the specified
pixel coordinates (X,Y). The returned value is an array
of RGB color integers (0-255) by default. An optional
-Hex parameter returns a hex color string (#FFCCDD)
instead of an RGB array.

[Image->Comments] Returns any comments included in the image file header.

[Image->Describe] Lists various image attributes, mostly for debugging
purposes. An optional -Short parameter displays
abbreviated information.

[Image->File] Returns the image file path and name, or null for in-
memory images.

To return the height and width of an image:

Use the [Image->Height] and [Image-Width] tags on a defined image variable.
This returns an integer value representing the height and width of the
image in pixels.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->Width] x [$MyImage->Height]

➜ 400 x 300

To return the resolution of an image:

Use the [Image->ResolutionH] and [Image->ResolutionV] tags on a defined image
variable. This returns a decimal value representing the horizontal and
vertical dpi (dots per inch) of the image.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->ResolutionV] x [$MyImage->ResolutionH]

➜ �600 x 600

To return the color depth of an image:

Use the [Image->Depth] tag on a defined image variable. This returns an
integer value representing the color depth of an image in bits.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->Depth]

➜ 16

To return the format of an image:

Use the [Image->Format] tag on a defined image variable. This returns a string
value representing the file format of the image.

[Var: 'MyImage' =(Image: '/images/image.gif')]
[$MyImage->Format]

4 6 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

➜ GIF

To return pixel information about an image:

Use the [Image->Pixel] tag on a defined image variable. This returns a string
value representing the color of the pixel at the specified coordinates.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Pixel: 25, 125, -Hex)]

➜ FF00FF

Converting and Saving Images
This section describes how image files can be converted from one format
to another and saved to file. This is all accomplished using the [Image->Save]
tag, which is described in the following table.

Table 5: Image Conversion and File Tags

Tag Description

[Image->Convert] Converts an image variable to a new format. Requires
a file extension as a string parameter which represents
the new format the image is being converted to (e.g.
'jpg', 'gif'). A -Quality parameter specifies the image
compression ratio (integer value of 1-100) used when
saving to JPEG or GIF format.

[Image->Save] Saves the image to a file in a format defined by the file
extension. Automatically converts images when the
extension of the image to save as differs from that of the
original image. A -Quality parameter specifies the image
compression ratio (integer value of 1-100) used when
saving to JPEG or GIF format.

[Image->AddComment] Adds a file header comment to the image before it is
saved. Passing no parameters removes any existing
comments.

To convert an image file from one format to another:

Use the [Image->Convert] and [Image->Save] tags on a defined image variable,
specifying the new format as part of the [Image->Convert] tag.

[Var: 'MyImage' =(Image: '/images/image.gif')]
[$MyImage->(Convert: 'JPG', -Quality=100)]
[$MyImage->(Save: '/images/image.jpg', -Quality=100)]

4 6 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

To automatically convert an image file from one format to another:

Use the [Image->Save] tag on a defined image variable, changing the image
file extension to the desired image format. A -Quality parameter value of
100 specifies that the resulting JPEG file will be saved at the highest-quality
resolution.

[Var: 'MyImage' =(Image: '/images/image.gif')]
[$MyImage->(Save: '/images/image.jpg', -Quality=100)]

To save a defined image variable to file:

Use the [Image->Save] tag on a defined image variable, specifying the desired
image name, path, and format.

[Var: 'MyImage' =(Image: '/folder/asdf1.jpg')]
[$MyImage->(Save: '/images/image.jpg')]

To rename an image:

Use the [Image->Save] tag on a defined image variable, changing the existing
image file name to the desired image file name.

[Var: 'MyImage' =(Image: '/images/image.gif')]
[$MyImage->(Save: '/images/image.jpg', -Quality=100)]

To add a comment to an image file header:

Use the [Image->AddComment] tag to add a comment to a defined image vari-
able before it is saved to file. This comment is not displayed, but stored
with the image file information.

[Var: 'MyImage' =(Image: '/images/image.gif')]
[$MyImage->(AddComment: 'This is a comment')]
[$MyImage->(Save: '/images/image.gif')]

Manipulating Images
Images can be transformed and manipulated using special [Image] member
tags. These tags change the appearance of the image as it served to the
client browser. This includes tags for changing image size and orientation,
applying image effects, adding text to images, and merging images, which
are described in the following sub-sections.

Changing Image Size and Orientation
Lasso provides tags that allow you to scale, rotate, crop, and invert images.
These tags are defined in Table 6: Image Size and Orientation Tags.

4 6 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

Table 6: Image Size and Orientation Tags

Tag Description

[Image->Scale] Scales an image to a specified size. Requries -Width and
-Height parameters, which specifiy the new size of the
image using either integer pixel values (e.g. 50) or string
percentage values (e.g. '50%'). An optional -Sample
parameter indicates high-quality sampling should be
used. An optional -Thumbnail parameter optimizes the
image for display on the Web.

[Image->Rotate] Rotates an image counterclockwise by the specified
amount in degrees (integer value of 0-360). An optional
-BGColor parameter specifies the hex color to fill the
blank areas of the resulting image.

[Image->Crop] Crops the original image by cutting off extra pixels
beyond the boundaries specified by the parameters.
Requires -Height and -Width parameters which specify
the pixel size of the resulting image, and -Left and -Right
parameters specify the offset of the resulting image
within the initial image.

[Image->FlipV] Creates a vertical mirror image by reflecting the pixels
around the central X-axis.

[Image->FlipH] Creates a horizontal mirror image by reflecting the pixels
around the central Y-axis.

To enlarge an image:

Use the [Image->Scale] tag on a defined image variable. The following
example enlarges image.jpg to 225 X 225 pixels. The optional -Sample param-
eter specifies that the highest-quality sampling should be used.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Scale: -Height=225, -Width=225, -Sample)]
[$MyImage->(Save: '/images/image.jpg')]

To contract an image:

Use the [Image->Scale] tag on a defined image variable. The following
example contracts image.jpg to 25 x 25 pixels. The optional -Thumbnail
parameter optimizes the image for the Web.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Scale: -Height=25, -Width=25, -Thumbnail)]
[$MyImage->(Save: '/images/image.jpg')]

4 6 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

To rotate an image:

Use the [Image->Rotate] tag on a defined image variable. The following
example rotates the image 60 degrees counterclockwise on top of a white
background.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Rotate: 60, -BGColor='FFFFFF')]
[$MyImage->(Save: '/images/image.jpg')]

To crop an image:

Use the [Image->Crop] tag on a defined image variable. The example below
crops 10 pixels off of each side of a 70 x 70 image.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Crop: -Left=10, -Right=10, -Width=50, -Height=50)]
[$MyImage->(Save: '/images/image.jpg')]

To mirror an image:

Use the [Image->FlipV] tag on a defined image variable. The following
example mirrors the image vertically.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->FlipV]
[$MyImage->(Save: '/images/image.jpg')]

Applying Image Effects
Lasso provides tags that allow you to add image effects by applying special
image filters. This includes color modulation, image noise enhancement,
sharpness controls, blur controls, contrast controls, and composite image
merging. These tags are described below in Table 7: Image Effects Tags.

Table 7: Image Effects Tags

Tag Description

[Image->Modulate] Controls the brightness, saturation, and hue of an
image. Brightness, saturation, and hue are controlled by
three comma-delimited integer parameters, where 100
equals the original value.

[Image->Contrast] Enhances the intensity differences between the lighter
and darker elements of the image. Specify ‘False’ to
reduce the image contrast, otherwise the contrast is
increased.

4 7 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

[Image->Blur] Applies either a motion or Gaussian blur to an image. To
apply a motion blur, an -Angle paramater with a decimal
degree value must be specified to indicate the direction
of the motion. To apply a Gaussian blur, a -Gaussian
keyword parameter must be specified in addition to
-Radius and -Sigma parameters that require decimal
values. The -Radius parameter is the radius of the
Gaussian in pixels, and -Sigma is the standard deviation
of the Gaussian in pixels. For reasonable results, the
radius should be larger than the sigma.

[Image->Sharpen] Sharpens an image. Requires -Radius and -Sigma
parameters that require integer values. The -Radius
parameter is the radius of the Gaussian sharp effect
in pixels, and -Sigma is the standard deviation of the
Gaussian sharp effect in pixels. For reasonable results,
the radius should be larger than the sigma. Optional
-Amount and -Threshold parameters may be used to
add an unsharp masking effect. -Amount specifies
the decimal percentage of the difference between the
original and the blur image that is added back into
the original, and -Threshold specifies the threshold in
decimal pixels needed to apply the diffence amount.

[Image->Enhance] Applies a filter that improves the quality of a noisy, lower-
quality image.

To adjust the brightness of an image:

Use the [Image->Modulate] tag on a defined image variable and adjust the first
integer parameter, representing brightness. The following example increases
the brightness of an image by a factor of two.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Modulate: 200, 100, 100)]
[$MyImage->(Save: '/images/image.jpg')]

To adjust the color saturation of an image:

Use the [Image->Modulate] tag on a defined image variable and adjust the
second integer parameter, representing color saturation. The following
example decreases the color saturation of an image by 25%.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Modulate: 100, 75, 100)]
[$MyImage->(Save: '/images/image.jpg')]

4 7 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

To adjust the hue of an image:

Use the [Image->Modulate] tag on a defined image variable and adjust the
third integer parameter, representing hue. The following example tints the
image green by increasing the hue value. Decreasing the hue value tints the
image red.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Modulate: 100, 100, 175)]
[$MyImage->(Save: '/images/image.jpg')]

To adjust the contrast of an image:

Use the [Image->Contrast] tag on a defined image variable. The first example
increases the contrast. The second example uses a False parameter, which
reduces the contrast instead.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->Contrast]
[$MyImage->(Save: '/images/image.jpg')]

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Contrast: 'False')]
[$MyImage->(Save: '/images/image.jpg')]

To apply a motion blur to an image:

Use the [Image->Blur] tag on a defined image variable. The following
example applies a motion blur at 20 degrees.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Blur: -Angle=20)]
[$MyImage->(Save: '/images/image.jpg')]

To apply a Gaussian blur to an image:

Use the [Image->Blur] tag with the -Gaussian parameter on a defined image
variable. The following example applies a Gaussian blur with a radius of
15 pixels and a standard deviation of 10 pixels.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Blur: -Radius=15, -Sigma=10, -Gaussian)]
[$MyImage->(Save: '/images/image.jpg')]

To sharpen an image:

Use the [Image->Sharpen] tag on a defined image variable. The following
example applies a Gaussian sharp effect with a radius of 20 pixels and a
standard deviation of 10 pixels.

4 7 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Sharpen: -Radius=20, -Sigma=10)]
[$MyImage->(Save: '/images/image.jpg')]

To sharpen an image with an unsharp mask effect:

Use the [Image->Sharpen] tag with the -Amount and -Threshold parameters on
a defined image variable. The following example applies an unsharp mask
effect with a radius of 20 pixels and a standard deviation of 10 pixels.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Sharpen: -Radius=20, -Sigma=10, -Amount=50, -Threshold=20)]
[$MyImage->(Save: '/images/image.jpg')]

To enhance a low-quality image:

Use the [Image->Enhance] tag on a defined image variable.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->Enhance]
[$MyImage->(Save: '/images/image.jpg')]

Adding Text to Images
Lasso allows text to be overlaid on top of images using the [Image->Annotate]
tag, as described below in the following table.

Table 8: Annotate Image Tag

Tag Description

[Image->Annotate] Overlays text on to an image. Requires a string value as
a parameter, which is the text to be overlaid. Required
-Left and -Top parameters specify the place of the text
in pixel integers relative to the upper left corner of the
image. An optional -Font parameter specifies the name
(with extension) and full path to a system font to be used
for the text, and an optional -Size parameter specifies
the text size in integer pixels. An optional
-Color parameter specifies the text color as a hex string
('#FFCCDD'). An optional -Aliased keyword parameter
turns on text anti-alising.

Fonts Note: When specifiying a font, the full hard drive path to the font must
be used (e.g. -Font='/Library/Fonts/Arial.ttf'). True Type (.ttf), and Type One (.pfa, .pfb)
font types are officially supported.

4 7 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

To add text to an image:

Use the [Image->Annotate] tag on a defined image variable. The example
below adds the text (c) 2003 OmniPilot Software to the specified image.

[Var: 'MyImage' =(Image: '/images/image.jpg')]
[$MyImage->(Annotate: '(c) 2003 OmniPilot Software', -Left=5, -Top=300,
 -Font='/Library/Fonts/Arial.ttf', -Size=8, -Color='#000000', -Aliased)]
[$MyImage->(Save: '/images/image.jpg')]

Merging Images
Lasso allows images to be merged using the [Image->Composite] tag. The
[Image->Composite] tag supports over 20 different composite methods, which
are described in the following tables.

Table 9: Composite Image Tag

Tag Description

[Image->Composite] Composites a second image onto the current image.
Requires a second LDML image variable to be
composited. An -Op parameter specifies the composite
method which affects how the second image is applied
to the first image (a list of operators is shown below).
Optional -Left and -Top parameter specify the horizontal
and vertical offset of the second image over the first
in integer pixels (defaults to the upper left corner). An
optional -Opacity parameter attenuates the opacity of
the composited second image, where a value of 0 is fully
opaque and 1.0 is fully transparent.

The table below shows the various composite methods that can be speci-
fied in the -Op parameter of the [Image->Composite] tag. The descriptions for
each method are adapted from the ImageMagick Web site.

Table 10: Composite Image Tag Operators

Composite Operator Description

Over The result is the union of the the two image shapes with
the composite image obscuring the image in the region
of overlap.

In The result is the first image cut by the shape of the
second image. None of the second image data is
included in the result.

Out The result is the second image cut by the shape of the
first image. None of the first image data is included in
the result.

4 7 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

Plus The result is the sum of the raw image data with output
image color channels cropped to 255.

Minus The result is the subtraction of the raw image data with
color channel underflow cropped to zero.

Add The result is the sum of the raw image data with color
channel overflow channel wrapping around 256.

Subtract The result is the subtraction of the raw image data with
color channel underflow wrapping around 256.

Difference Returns the difference between two images. This is
useful for comparing two very similar images.

Bumpmap The resulting image is shaded by the second image.

CopyRed The resulting image is the red layer in the image
replaced with the red layer in the second image.

CopyGreen The resulting image is the green layer in the image
replaced with the green layer in the second image.

CopyBlue The resulting image is the blue layer in the image
replaced with the blue layer in the second image.

CopyOpacity The resulting image is the opaque layer in the image
replaced with the opaque layer in the second image.

Displace Displaces part of the first image where the second
image is overlaid.

Threshold Only colors in the second image that are darker than the
colors in the first image are overlaid.

Darken Only dark colors in the second image are overlaid.

Lighten Only light colors in the second image are overlaid.

Colorize Only base spectrum colors in the second image are
overlaid.

Hue Only the hue of the second image is overlaid.

Saturate Only the saturation of the second image is overlaid.

Luminize Only the luminousity of the the second image is overlaid.

Modulate Has the effect of Hue, Saturate, and Luminize functions
applied at the same time.

To overlay an image on top of another image:

Use the [Image->Composite] tag to add a defined image variable to a second
defined image variable. The following example adds image2.jpg offset by five
pixels in the upper left corner of image1.jpg.

[Var: 'MyImage1' =(Image: '/images/image1.jpg')]
[Var: 'MyImage2' =(Image: '/images/image2.jpg')]
[$MyImage1->(Composite: $MyImage2, -Left=5, -Top=5)]
[$MyImage1->(Save: '/images/image1.jpg')]

4 7 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

To add a watermark to an image:

Use the [Image->Composite] tag with the -Opacity parameter to add a defined
image variable to a second defined image variable. The following example
adds a mostly transparent version of image2.jpg to image1.jpg.

[Var: 'MyImage1' =(Image: '/images/image1.jpg')]
[Var: 'MyImage2' =(Image: '/images/image2.jpg')]
[$MyImage1->(Composite: $MyImage2, -Opacity=0.75)]
[$MyImage1->(Save: '/images/image1.jpg')]

To shade image with a second image:

Use the [Image->Composite] tag with the Bumpmap operator to shade a defined
image variable over a second defined image variable.

[Var: 'MyImage1' =(Image: '/images/image1.jpg')]
[Var: 'MyImage2' =(Image: '/images/image2.jpg')]
[$MyImage1->(Composite: $MyImage2, -Op='Bumpmap')]
[$MyImage1->(Save: '/images/image1.jpg')]

To return the pixel difference between two images:

Use the [Image->Composite] tag with the Difference operator to return the pixel
difference between two defined image variables.

[Var: 'MyImage1' =(Image: '/images/image1.jpg')]
[Var: 'MyImage2' =(Image: '/images/image2.jpg')]
[$MyImage1->(Composite: $MyImage2, -Op='Difference')]
[$MyImage1->(Save: '/images/image1.jpg')]

Extended ImageMagick Commands
For users who have experience using the ImageMagick command line
utility, Lasso provides the [Image->Execute] tag to allow advanced users to
take advantage of additional ImageMagick commands and functionality.

Table 11: ImageMagick Execute Tag

Tag Description

[Image->Execute] Execute ImageMagick commands. Provides direct
access to the ImageMagick command-line interface.
Supports the Composite, Mogrify, and Montage
commands.

For detailed descriptions of the Composite, Mogrify, and Montage commands
and corresponding parameters, see the following URL.

http://www.imagemagick.com/www/utilities.html

4 7 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

To execute an ImageMagick command using Lasso:

Use the [Image->Execute] tag on a defined image variable, with the desired
command as the parameter. The following example shows the Mogrify
command for adding a stunning blue border to an image.

[Var: 'MyImage' =(Image: '/images/image.gif')]
[$MyImage->(Execute: 'mogrify -bordercolor blue -border=3x3')]
[$MyImage->(Save: '/images/image.gif')]

Serving Image and Multimedia Files
This section discusses how to serve image and multimedia files, including
referencing files within HTML pages and serving files separately via HTTP.

Referencing Within HTML Files
The easiest way to serve images and multimedia files is simply by refer-
encing files stored within the Web server root using standard HTML tags
such as or <embed>. The path to the image file can be calculated in
the format file or stored within a database field. Since the specified file is
ultimately served by the Web server application which is optimized for
serving images and multimedia files, this is the most efficient way to serve
images and multimedia files.

To generate the path to an image or multimedia file:

 • The following example shows a variable Company_Name that contains
blueworld. This variable is used to construct a path to an image file stored
within the Images folder named with the company name and _logo.gif to
form the full file path /Images/blueworld_logo.gif.

[Variable: 'Company_Name'='blueworld']

➜

 • The following example shows a variable Company_Name that contains
blueworld. This variable is used to construct a path to an image file stored
within the Images folder named with the company name and _logo.gif to
form the full file path /Images/blueworld_logo.gif. The path to the image file

4 7 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

is stored within the variable Image_Path and then reference in the HTML
 tag.

[Variable: 'Company_Name'='blueworld']
[Variable: 'Image_Path'='/Images/' + $Company_Name + '_logo.gif']

➜

 • The following example shows a variable Band_Name that contains
ArtOfNoise. This variable is used to construct a path to sound files stored
within the Sounds folder named with the band name and .mp3 to form
the full file path /Sounds/ArtOfNoise.mp3. The path to the sound file is
stored within the variable Sound_Path and then reference in the HTML
<a> link tag.

[Variable: 'Band_Name'='ArtOfNoise']
[Variable: 'Sound_Path'='/Images/' + $Band_Name + '.mp3']
Download MP3

➜ Art of Noise Song➜Serving Files via
HTTP

Lasso can also be used to serve image and multimedia files rather
than merely referencing them by path. Files are served through Lasso
using the [File_Serve] tag or a combination of the [Content_Type] tag and
[Include_Raw] tags. LDML 7 also includes an [Image->Data] tag that automati-
cally converts an image variable to a binary string, allowing an edited
[Image] variable to be output by [File_Serve] without it first being written to
file.

In order to serve an image or multimedia file through Lasso the MIME type
of the file must be determined. Often, this can be discovered by looking at
the configuration of the Web server or Web browser. The MIME type for a
GIF is image/gif and the MIME type for a JPEG is image/jpeg.

Note: It is not recommended that you configure your Web server application
to process all .gif and .jpg files through Lasso. Lasso will attempt to interpret
the binary data of the image file as LDML code. Instead, use one of the
procedures below to serve an image file with a .lasso extension.

Table 12: Image Serving Tag

Tag Description

[File_Serve] Serves a file in place of the output of the current
format file. The first parameter is the data to be served.
Optional -File parameter specifies the name of the
served data. Optional -Type parameter allows the MIME
type to be overridden from the default of text/html.

4 7 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

[Image->Data] Converts an image variable to a binary string. This is
useful for serving images to a browser without writing
the image to file.

To serve an image file:

 • Use the [File_Serve] tag to set the MIME type of the image to be served,
and use the [Image->Data] tag to get the binary data from a defined [Image]
variable. The [File_Serve] tag aborts the current file so it must be the
last tag to be processed. The following example shows a GIF named
Picture.gif being served from an Images folder.

[Var:'Image'=(Image: '/Images/Picture.gif')]
[File_Serve: $Image->Data, -Type='image/gif']

 • Use the [Content_Type] tag to set the MIME type of the image to be served
and use the [Include_Raw] tag to include data from the image file. The
two tags should be the only content of the file and should not be sepa-
rated by any white space. The following example shows a GIF named
Picture.gif being served from an Images folder.

[Content_Type: 'image/gif'][Include_Raw: '/Images/Picture.gif'][Abort]

If either of the code examples above is stored in a file named Image.lasso at
the root of the Web serving folder then the image could be accessed with
the following tag.

To serve a multimedia file:

Use the [Content_Type] tag to set the MIME type of the file to be served and
use the [Include_Raw] tag to include data from the multimedia file. The two
tags should be the only content of the file and should not be separated
by any white space. The following example shows a sound file named
ArtOfNoise.mp3 being served from a Sounds folder.

[Content_Type: 'audio/mp3'][Include_Raw: '/Sounds/ArtOfNoise.mp3'][Abort]

If the code above is stored in a file named ArtOfNoise.lasso at the root of
the Web serving folder then the sound file could be accessed with the
following <a> link tag.

Art of Noise Song

This same technique can be used to serve multimedia files of any type by
designating the appropriate MIME type in the [Content_Type] tag.

4 7 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

To serve an image file with a proper file extension:

The following example demonstrates how to serve a GIF file with a
.gif extension. The extension .gif must be allowed in Lasso Administration.
Use the [Content_Type] tag to set the MIME type of the image to be served
and use the [Include_Raw] tag to include data from the image file.

[Content_Type: 'image/gif'][Include_Raw: '/Images/Picture.gif'][Abort]

The file will need to be referenced using Action.Lasso and a
-Response command tag within the URL. If the code above is stored in a file
named Image.gif at the root of the Web serving folder then the image could
be accessed with the following tag.

To serve a multimedia file with a proper file extension:

The following example demonstrates how to serve a sound file
with a .mp3 extension. The extension .mp3 must be allowed in Lasso
Administration. Use the [Content_Type] tag to set the MIME type of the
multimedia file to be served and use the [Include_Raw] tag to include data
from the multimedia file.

[Content_Type: 'audio/mp3'][Include_Raw: '/Sounds/ArtOfNoise.mp3'][Abort]

The file will need to be referenced using Action.Lasso and a
-Response command tag within the URL. If the code above is stored in a file
named ArtOfNoise.mp3 at the root of the Web serving folder then the image
could be accessed with the following <a> link tag.

 Art Of Noise Song

This same technique can be used to serve multimedia files of any type by
designating the appropriate MIME type in the [Content_Type] tag.

To limit access to a file:

Since the format file can process any LDML code before serving the image
it is easy to create a file that generates an error if an unauthorized person
tries to access a file. The following code checks the [Client_Username] for the
name John. If the current user is not named John then a file Error.gif is served
instead of the desired Picture.gif file.

<?LassoScript
 Content_Type: 'image/gif';
 If: (Client_Username) == 'John');
 Include_Raw: '/Images/Picture.gif';

4 8 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

 Else;
 Include_Raw: '/Images/Error.gif';
 /If;
?>

This same technique can be used to restrict access to any image or multi-
media file. It could actually be used to restrict access to any format file.

4 8 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

4 8 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 6 – I M A G E S A N D M U L T I M E D I A

27
Chapter 27

HTTP/HTML Content
and Controls

This chapter describes the tags which can be used to send and receive
files with remote HTTP and FTP servers, include files from remote HTTP
and HTTPS servers, interpret HTTP requests, alter the HTTP headers of
responses, and to redirect clients to another URL.

 • Include URLs describes how to include files from remote Web servers,
including SSL-protected servers.

 • Redirect URL describes how to forward clients to a different URL..

 • HTTP Tags describes how to perform HTTP requests to another Web
server.

 • FTP Tags describes how to perform FTP requests to an FTP server.

 • Cookie Tags describes how to set and retrieve cookies from a Web client

 • Caching Tags describes how to cache format file content using Lasso.

 • Server Push describes how to enable progressive download of HTML
pages.

 • Header Tags describes the tags which allow the current HTTP response
headers to be modified.

 • Request Tags describes the tags which return information about the
current HTTP request and allow the HTTP header of the response to be
manipulated.

 • Client Tags describes the tags which return information about the
current Web client.

 • Server Tags describes the tags which return information about the
current Web server.

4 8 3

L A S S O 7 . 1 L A N G U A G E G U I D E

Include URLs
The [Include_URL] tag allows data from another Web server to be included
into the contents of a page which is being served to a visitor. This can
include HTTP or HTTPS servers. The [Include_URL] tag is replaced by the
contents of the remote Web page. Optional parameters allow GET or POST
parameters, authentication information, or extra MIME headers to be sent
along with the request. Other optional parameters also allow for the MIME
headers of the response to be retrieved.

The [Include_URL] tag can be used for any of these purposes.

 • To fetch a remote Web page to show to a site visitor. Lasso can be used
as a proxy that retrieves the remote page, performs some processing,
then sends the page to the visitor.

 • To incorporate a portion of a remote Web page into a Lasso format file.
A remote Web page can be retrieved, the desired content extracted, and
placed into a Lasso format file.

 • [Include_URL] can also be used in pages on the same Web server in which
Lasso is running.

 • To trigger an action in a remote Web application server. [Include_URL]
could be used to trigger a CGI on another Web server.

 • To trigger an action in a remote Web application server protected via SSL.
[Include_URL] could be used to initiate a credit card transaction at a secure
HTTPS processing site.

 • To trigger an action on the same Web server in which Lasso is running.
The [Event_Schedule] tag uses [Include_URL] to call format files at the desig-
nated time.

Implementation Note: The [Include_URL] tag is implemented in LDML 7
using libCURL 7.9.5 with OpenSSL for communication with HTTP and HTTPS
servers. For more information on libCURL, visit http://curl.sourceforge.net. For more
information on OpenSSL, visit http://www.openssl.org.

Table 1: Include URL Tag

Tag Description

[Include_URL] Includes a Web page from a remote HTTP or HTTPS
server, or from the local server. Requires the target
URL as a value parameter and accepts many optional
parameters.

4 8 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

The [Include_URL] tag accepts many parameters which define how the
remote page should be fetched. These are summarized in Table 2:
[Include_URL] Parameters.

Code which is returned by [Include_URL] will be HTML encoded by default.
Specify -EncodeNone so fetched HTML code will be rendered as part of your
Web page. Code which is included with [Include_URL] will not undergo
further processing by Lasso unless the [Process] tag is called explicitly on the
results.

Table 2: [Include_URL] Parameters

Parameter Description

URL Specifies the URL which is to be fetched. Required.

-POSTParams Specifies an array or map of POST parameters.
Optional. The request will be sent using the POST
method if this parameter is included. -POSTParams can
also be used to post a string to a remote server.

-GETParams Specifies an array or map of GET parameters. Optional.

-SendMIMEHeaders Specifies an array of additional MIME headers that
should be included with the request. Optional.

-Username Specifies the username that should be used to
authenticate the request. Optional.

-Password Specifies the password that should be used to
authenticate the request. Passwords are encoded in
Base 64. Optional.

-RetrieveMIMEHeaders Specifies the name of a variable which will be set to
an array containing all of the MIME headers in the
response. Optional.

-NoData Specifies that the data from the request should not be
returned. Optional.

To include a URL into the current format file:

Use the [Include_URL] tag with the URL of the remote page. The following
example shows how to include OmniPilot’s front page.

[Include_URL: 'http://www.blueworld.com/']

The port of a Web server may also be specified in the URL.

[Include_URL: 'http://www.blueworld.com:80/']
[Include_URL: 'http://www.blueworld.com:1024/']
[Include_URL: 'http://www.blueworld.com:8180/']

4 8 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

To include a URL from a password-protected HTTPS server into the
current format file:

Use the [Include_URL] tag with the -Username and -Password parameters
(recommended). The following example shows how to include an SSL-
protected page.

[Include_URL: 'https://store.example.com/', -Username='my_username',
 -Password='my_password']

This can also be achieved without the use of the -Username and -Password
parameters by submitting the username and password in the URL.

[Include_URL: 'my_username:my_password@https://store.example.com']

To simulate an HTML form submission:

An HTML form submission can be simulated using the [Include_URL]
tag with the -POSTParams parameter. The inputs of the form should be
included as name/value parameters within an array. The following form is
shown below as an equivalent [Include_URL] tag.

<form action="http://www.example.com/response.lasso" method="POST">
 <input type="hidden" name="-Database" value="Example">
 <input type="hidden" name="-Table" value="Contacts">
 <input type="hidden" name="-KeyField" value="ID">
 <p><input type="submit" name="-FindAll" value=Find All Records"">
</form>

The form inputs are assembled into an array as follows.

[Variable: 'POST_Params' = (Array: -Database='Example',
 -Table='Contacts', -KeyField='ID', -FindAll='Find All Records')]

This variable can then be included in the [Include_URL] tag. The following
tag will include the contents of the format file response.lasso with the results
of the -FindAll action.

[Include_URL: 'http://www.example.com/response.lasso',
 -POSTParams=(Variable: 'POST_Params')]

To process an included URL:

Often it is necessary to do some post-processing on an included URL in
order to extract a portion of the page. Most included pages will have <html>,
<head> and <body> tags which are redundant since they are specified in the
format file which is including the remote page. The following code extracts
everything between the opening <body> tag and closing </body> tag using a
regular expression.

4 8 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

[Variable: 'Page_Text' = (Include_URL: 'http://www.blueworld.com/')]
[String_ReplaceRegExp: (Variable: 'Page_Text'),
 -Find='.*<body[^>]*>(.*)</body>.*',
 -Replace='\1']

The regular expression will match the entire included file. .* will match all
characters until the <body> tag which is written as <body[^>]*> so that any
parameters of the <body> tag will be included. The parenthesized expres-
sions (.*) matches the contents of the body tag which is ended by </body>.
Finally, .* matches all other characters until the end of the file.

The replacement is simply \1 which replaces the entire expression with
the contents of the first parenthesized expression, the contents of the
<body> … </body> tags.

Redirect URL
The [Redirect_URL] tag can be used to send a client to a different URL.
Processing of the current page stops as soon as [Redirect_URL] is called
(except for [Handle] … [/Handle] tags which execute normally). [Redirect_URL]
works by altering the HTTP response header which is returned to the client.
The use of [Redirect_URL] may override specific settings made using the
[Header] … [/Header] tags. [Redirect_URL] cannot be used on a page below a
[Server_Push] tag.

The parameter to [Redirect_URL] must be a full URL and should include
the explicit protocol, e.g. http://. Specifying an absolute or relative path to
another format file on the Web server will not work. For example, to refer-
ence the home page of the Web server www.example.com, the following full
URL would be used.

http://www.example.com/default.lasso

Table 3: Redirect URL Tag

Tag Description

[Redirect_URL] Accepts a single parameter which is a URL to which the
client should be sent.

To redirect a client to another page:

Specify the full URL of the page to which the client should be redirected
within a [Redirect_URL] tag.

 • The following examples show how to redirect a client to Microsoft’s or
Apple’s Web sites.

4 8 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

[Redirect_URL: 'http://www.microsoft.com/']

[Redirect_URL: 'http://www.apple.com/']

 • The following example shows how to redirect a client to the login page
login.lasso contained in the root folder of the www.example.com Web site.

[Redirect_URL: 'http://www.example.com/login.lasso']

 • The following example shows how to redirect a client to another page
redirect.lasso in the same folder as the current page. The [Server_Name] and
[Response_Path] tags are used to return the name of the current server and
the path to the current response page.

[Redirect_URL: 'http://' + (Server_Name) + (Response_Path) + 'redirect.lasso']

HTTP Tags
LDML 7 provides HTTP protocol tags that allow developers to send and
receive files via HTTP. These tags can generally be used for programmati-
cally uploading and downloading files to and from another Web server.

Implementation Note: The [HTTP_...] tags are implemented in LDML 7 using
libCURL 7.9.5. For more information on libCURL, visit http://curl.sourceforge.net.

Table 4: HTTP Tags

Tag Description

[HTTP_GetFile] Downloads a file from a remote HTTP server. Requires
the -URL parameter, which is the URL from which the file
will be downloaded, and the -File parameter, which is the
name and path to the local file to be created. Optional
-Username and -Password parameters may be used to
specifiy a username and password needed to log in to
the remote HTTP server. This tag is similar to [Include_
URL], except that the file is written to disk rather than
being output inside a Lasso format file.

File Permissions Note: The current Lasso user must have adequate file and
folder permissions to copy a file or write to folder on the local machine. The
same file permissions are required for [HTTP_...] tags as the [File_...] tags. See
Chapter 20: Files and Logging for more information.

4 8 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

To download a file from an HTTP server:

Use the [HTTP_GetFile] tag. The following example downloads a file named
download.zip from the URL http://www.example.com/download.zip to the local
documents folder.

[HTTP_GetFile: -URL='http://www.example.com/download.zip', -File='/documents/
download.zip']

To download a file from a password-protected HTTP server on a non-
default port:

Use the [HTTP_GetFile] tag with the -Username and -Password param-
eters. The following example downloads a file named download.zip at
http://www.example.com:1024/private/download.zip where a username and pass-
word are required to access to the private folder.

[HTTP_GetFile: -URL='http://www.example.com:1024/private/'download.zip, -File='/
documents/download.zip', -Username='my_username', -Password='my_password']

FTP Tags
LDML 7 also provides FTP protocol tags that allow developers to send and
receive files via FTP. These tags can generally be used for programmatically
uploading and downloading files to and from an FTP server.

Note: These tags do not make Lasso Professional 7 an FTP server, but allow
Lasso Professional 7 to put and get files from other FTP servers similar to an
FTP client.

Implementation Note: The [FTP_...] tags are implemented in LDML 7 using
libCURL 7.9.5. For more information on libCURL, visit http://curl.sourceforge.net.

Table 5: FTP Tags

Tag Description

[FTP_PutFile] Uploads a local file up to a remote FTP server. Requires
the -URL parameter, which is the URL folder and file
name of the file to be uploaded, and the -File parameter,
which is the path to the local file to be uploaded.
Optional -Username and -Password parameters may be
used to specifiy a username and password needed to
log in to the remote FTP server.

4 8 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

[FTP_GetFile] Downloads a file from a remote FTP server. Requires
the -URL parameter, which is the URL from which the file
will be downloaded, and the -File parameter, which is the
name and path to the local file to be created. Optional
-Username and -Password parameters may be used to
specifiy a username and password needed to log in to
the remote FTP server.

[FTP_GetListing] Lists all files accessible to the current user in the remote
FTP server URL folder. Outputs an array of maps for
each file entry containing the file name, type (directory,
file, or link), modification date/time, and size in bytes
(for files only). Requires the -URL parameter, which is
the URL of the folder to be listed. Optional -Username
and -Password parameters may be used to specifiy a
username and password needed to log in to the remote
FTP server. The username and password values often
determine which files are shown by the FTP server.

File Permissions Note: The current Lasso user must have adequate file and
folder permissions to copy a file or write to a folder on the local machine. The
same file permissions are required for [FTP_...] tags as the [File_...] tags. See
Chapter 20: Files and Logging for more information.

To upload a file to an FTP server:

Use the [FTP_PutFile] tag. The following example uploads a file named
myfile.zip to the URL ftp://ftp.example.com.

[FTP_PutFile: -URL='ftp://ftp.example.com/myfile.zip', -File='/documents/myfile.zip']

To upload a file to a password-protected FTP server:

Use the [FTP_PutFile] tag with the -Username and -Password param-
eters. The following example uploads a file named myfile.zip to
ftp://ftp.example.com/private/ which requires a username and password to access
the private folder.

[FTP_PutFile: -URL='ftp://ftp.example.com/private/myfile.zip', -File='/documents/
myfile.zip', -Username='my_username', -Password='my_password']

To download a file from an FTP server:

Use the [FTP_GetFile] tag. The following example downloads a file named
download.zip from the URL ftp://ftp.example.com/download.zip.

[FTP_GetFile: -URL='ftp://ftp.example.com/download.zip', -File='/documents/
download.zip']

4 9 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

To download a file from a password-protected FTP server:

Use the [FTP_GetFile] tag with the -Username and -Password parameters.
The following example downloads a file named download.zip from
ftp://ftp.example.com/private/donwload.zip where a username and password are
required to access the private folder.

[FTP_GetFile: -URL='ftp://ftp.example.com/private/download.zip', -File='/documents/
download.zip', -Username='my_username', -Password='my_password']

To list all files available in a folder on a password-protected FTP
server:

Use the [FTP_GetListing] tag with the -Username and -Password parameters. The
following example lists all files in the ftp://ftp.example.com/private/ folder that
are available to the my_username user.

[FTP_GetListing: -URL='ftp://ftp.example.com/private/', -Username='my_username',
-Password='my_password']

 ➜ [Array: (Map: 'FileName'='download.zip',
 'FileSize'='101k',
 'FileType'='File',
 'FileType'='2002-09-29 15:30:00'),
 (Map: 'FileName'='More_Files',
 'FileType'='File',
 'FileType'='2002-09-12 12:14:39')]

Note: The modification date for each file using the [FTP_GetListing] tag will be
returned using the date format that is used by the remote FTP server.

Cookie Tags
Cookies allow small amounts of information to be stored in the Web
browser by Lasso. Each time another page on the same server is loaded, all
stored cookies are sent back to Lasso. Multiple cookies can be stored in a
client’s Web browser and then retrieved on subsequent pages. Cookies can
be used to store a client’s authentication information, customer ID, site
preferences, or even an entire shopping cart. Lasso’s sessions make auto-
matic use of cookies to store each client’s session ID so server-side variables
can be made persistent from page to page.

Please see Chapter 19: Sessions for an introduction to sessions and the
Cookies section of Chapter 2: Web Application Fundamentals for a tech-
nical introduction to cookies.

Cookies are reliant on support from the client’s Web browser for much of
their functionality. Preferences for when cookies expire and what domains

4 9 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

can retrieve a cookie can be established using the [Cookie_Set] tag, but those
preferences must be enforced by the client’s Web browser in order for them
to have any effect. Clients can even turn off cookie support altogether in
most Web browsers.

Cookies are communicated to and from the Web server in the HTTP
response header and subsequent HTTP requests. Cookies are not available
in the page within which they were set, they are only available in subse-
quent pages loaded by the same client.

Table 6: Cookie Tags

Tag Description

[Cookie] Returns the value for a named cookie. Accepts one
required parameter, the name of the cookie whose value
should be returned.

[Cookie_Set] Sets a cookie with a given name and value. See the
table below for details about this tag's parameters.

[Client_CookieList] Returns a string which contains every cookie sent along
with the current HTTP request.

[Client_Cookies] Returns a pair array containing every cookie sent along
with the current HTTP request.

Setting Cookies
Cookies are set using the [Cookie_Set] tag. The one required parameter of
the tag is a user-defined name/value parameter specifying the name of the
cookie and the value which is to be stored under that name. However, it
is recommended that all parameters of the [Cookie_Set] tag be specified in
order to ensure compatibility with the greatest range of Web browsers.

4 9 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

Table 7: [Cookie_Set] Parameters

Tag Description

Name/Value A name/value parameter defines the name of the cookie
and the value which should be stored under that name.
Required.

-Expires The number of minutes until the cookie expires.
Optional. If left blank, most cookies expire when the
client quits their Web browser application. A negative
value instructs a Web browser to expire a cookie
immediately.

-Domain The domain of the cookie. Cookies will only be sent to
servers with this domain. Optional, but recommended.

-Path The path of the cookies. Cookies will only be sent to
pages which are in subfolders of this path. Optional, but
recommended.

-Secure If specified then the cookie will only be transmitted back
through secure HTTPS protocol.

The total number of characters of the name/value parameter and all other
parameters of the [Cookie_Set] tag must be less than 2048 characters. The
name of the cookie must be less than 1024 characters. The value of the
cookie must be less than 1024 characters. The -Expires parameter should
be no more than 10 digits. The -Path and -Domain parameters should be no
more than 256 characters each.

Note: The parameters required for the [Cookie_Set] tag vary depending
on what Web clients are being used by site visitors. In general, it is safest
to specify each of -Expires, -Domain, and -Path in order to ensure maximum
compatibility.

To set a cookie:

Use the [Cookie_Set] tag with each of the parameters defined. The following
example shows how to create a cookie named Cookie_Name with the value
Cookie_Value for the domain example.com with an expiration time of 24 hours
(1440 minutes). The path is set to / so all pages in the site will have access
to the cookie.

[Cookie_Set: 'Cookie_Name'='Cookie_Value'
 -Domain='example.com',
 -Path='/',
 -Expires=1440]

The example above shows -Domain set to example.com. Setting -Domain to
the name of the domain rather than to the name of a particular Web
server ensures that any server within the domain can retrieve the cookie.

4 9 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

For example, mail.example.com and images.example.com could retrieve
Cookie_Name set above.

To set a cookie that can be retrieved by another Web server:

The -Domain parameter can be used to define that a cookie be returned to
another Web server. This can be useful for interactions where a customer
needs to be tracked as they move between different Web servers.

The following example shows how a cookie can be set so that it will be
served to the server www.otherserver.com. This cookie will not be sent to
subsequent pages loaded on the current server by the client. It will only be
served to www.otherserver.com when they visit that Web server.

[Cookie_Set: 'Cookie_Name'='Cookie_Value'
 -Domain='otherserver.com',
 -Path='/',
 -Expires=1440]

Note: Many Web browsers have a preference which prohibits cookies being
set which will be read by a different server. If the -Domain parameter is not
specified to the same domain as the Web server hosting Lasso Service then
the cookie may not be set in all Web browsers.

To delete a cookie:

Cookies can be deleted by setting the -Expires parameter to a negative
number or by resetting the value of the cookie. It is good practice to delete
cookies which are no longer needed. Some Web browsers do not delete
expired cookies properly so extra data may end up being sent to the Web
server with every URL request. The following example shows how to delete
the cookie Cookie_Name by setting it to the empty string '' and setting its
expiration to -1.

[Cookie_Set: 'Cookie_Name'='',
 -Domain='example.com',
 -Path='/',
 -Expires=-1]

Retrieving Cookies
Cookies are retrieved by name. However, only cookies which were sent
by the client’s Web browser along with the current HTTP request can be
retrieved by Lasso. The Web browser determines what cookies to send
based on the domain, path, and expiration set for each cookie. The
implementation differs from browser to browser so some client’s may not
support all types of cookies.

4 9 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

To retrieve a cookie:

If a cookie is available it can be retrieved using the [Cookie] tag. This tag
accepts a single parameter which is the name of the cookie to be retrieved.
The tag will return an empty string if the cookie is not defined. The
following code returns the value Cookie_Value for the cookie Cookie_Name.

[Cookie: 'Cookie_Name'] ➜ Cookie_Value

To retrieve all cookies:

There are two ways to retrieve a list of all cookies that have been sent along
with the current HTTP request.

 • Use [Client_Cookies] to return an array of all cookies set for the current
HTTP request. [Client_Cookies] returns a pair array where each pair
contains the name and value of a cookie. The following example shows
how to display all cookies that are currently set using [Loop] … [/Loop] tags.
The result is the single Cookie_Name with value Cookie_Value.

[Loop: (Client_Cookies->Size)]
 [Variable: 'Temp_Cookie' = (Client_Cookies->(Get: (Loop_Count)))]

[Output: $Temp_Cookie->First + ': ' + $Temp_Cookie->Second]
[/Loop]

➜
Cookie_Name: Cookie_Value

 • Use [Client_CookieList] to return a string that contains the names and
values of all cookies set for the current HTTP request. This tag can be
used for debugging purposes to quickly display a list of all cookies.
The cookies are returned separated by semi-colons ; with the name of
the cookie separated from the value by an equal sign =. The following
example shows a single cookie Cookie_Name with value Cookie_Value.

[Client_CookieList] ➜ Cookie_Name: Cookie_Value;

To check if a cookie is set:

Use the [Array->Find] tag to search through the [Client_Cookies] tag. If the
[Array->Find] returns a pair value then the cookie is set. If it returns Null then
the cookie is not set. Using this method is more reliable than simply
calling [Cookie] with the name of a cookie since it is impossible to tell
whether a returned value of the empty string '' is due to a cookie not being
set or due to a cookie being set to the empty string. The following example
returns True since the cookie Cookie_Name is set.

[If: (Client_Cookies)->(Find: 'Cookie_Name') != Null] True [/If]

 ➜ True

4 9 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

Checking for Cookie Support
Since cookies can be deactivated within a client’s Web browser it is impor-
tant to check whether cookies are supported before allowing a client to
view portions of a Web site that require cookies. The following code will
perform a check for cookie support by setting a cookie and then redirecting
the client to another page which checks the cookie value.

To check whether cookies are supported:

The page cookie_set.lasso contains a [Cookie_Set] tag that sets a cookie
Test_Cookie to the value Test_Value and a [Redirect_URL] tag which sends the
client to the page cookie_check.lasso.

[Cookie_Set: 'Test_Cookie'='Test_Value',
 -Domain='example.com',
 -Path='/']
[Redirect_URL: 'http://www.example.com/cookie_check.lasso']

The page cookie_check.lasso checks to see if the cookie is set using the
[Array->Find] tag on [Client_Cookies]. If it is set, it redirects the user to the
default page of the Web site default.lasso. If cookies are not supported then
the user is redirected to the page error.lasso which contains a warning
message.

[If: (Client_Cookies)->(Find: 'Cookie_Name') != Null]
 [Redirect_URL: 'http://www.example.com/default.lasso']
[Else]
 [Redirect_URL: 'http://www.example.com/error.lasso']
[/If]

Caching Tags
New content caching tags in Lasso Professional 7 allow a portion of a
page to be cached either to a global variable or to a session. Lasso is able
to cache the output of dynamic LDML code and data source queries, as
well as the values of named LDML variables for later use. These tags allow
developers to reduce database and server load by having Lasso only recal-
culate various portions of a page periodically.

The first time a page with [Cache] ... [/Cache] tags is hit, the contents of the
tags are remembered for a specified period of time. The Lasso cache can be
set to refresh itself at scheduled time intervals, or when certain conditions
are met.

4 9 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

Important: When using the cache tags, it is important to know that any
dynamic changes that occur in cached LDML code will be ignored, and only
the original cached values will be output until the cache expires.

Caching Output Values
Lasso allows the values output by dynamic LDML code to be cached so
that the dynamic operations (such as a data query) are not performed
again until the cache expires or is dumped. This is accomplished by
surrounding the code to cache with the [Cache] ... [/Cache] container tags,
which are described below.

Table 8: [Cache] Tag

Tag Description

[Cache] ... [/Cache] Container tag used for caching elements on a page in
Lasso's internal cache. Requires a -Name parameter
which specifies the name of the cache, and several
optional parameters may be used as shown in the
following table.

The optional parameters for the [Cache] ... [/Cache] container tags are
described in Table 9: [Cache] Tag Parameters.

Table 9: [Cache] Tag Parameters

Tag Description

-Name Specifies the name of the cache. The name of the
cache identifies the cached contents so it can be
referenced on several pages. This is the only required
parameter.

-Expires Specifies how many seconds the cached contents
should last. If the cached contents is older than the
time interval specified, then new content values will be
cached on the next page load.

-Condition Allows arbitrary refresh conditions to be specified.
Accepts a boolean value of True or False and refreshes
the contents immediately when True. Conditional
expressions may be used to output the required True or
False value. For example, -Condition=((Action_Param:
'Refresh') == 'Yes') refreshes the cache if the action
param is equal to Yes.

-Session Specifies the name of a session that the cached content
should be stored in. This allows the cached content to be
user specific. If no -Session parameter is specified, then
the content will be stored in a global variable instead.

4 9 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

-UseGlobal Can be used in concert with -Session to store cached
data in both a global variable and a session. All caches
are stored in a global variable by default if neither
-Session or -UseGlobal is specified.

-Key Can be used to secure a cache on a server. Requires a
password string value. Once a cache has been created
with a -Key parameter and value, the cache will only
be returned if subsequent [Cache_...] tags contain the
same -Key parameter and value. Optional.

Restart Note: Caches stored in global variables do not persist between
restarts. They must be refreshed the first time they are hit on a Lasso page.
Global variables are used by default unless a -Session parameter is specified.

To cache content with an expiration:

Surround the portion of your page that you wish to cache with the
[Cache] ... [/Cache] container tags using the -Expires parameter. In the
example below, the output of the data source query surrounded by the
[Cache] ... [/Cache] tags will be stored in a global variable, and then output
consistently with each page refresh (without performing the data source
query again) until the cache expires 3600 seconds later.

[Cache:
 -Name='Cache_Name',
 -Expires=3600]

 [Inline: -Database='Contacts', -SQL='Select * from people where ID < 3']
 [Field:'First_Name'] [Field:'Last_Name'] - [Field:'Company']

 [/Inline]

[/Cache]

➜ John Doe - OmniPilot
 Jane Doe - OmniPilot

To cache content with no expiration:

Use the [Cache] ... [/Cache] tags without the -Expires parameter. The example
below shows a cached data source query that never expires. This means
that the first result set out put by the contained [Inline] ... [/Inline] tags will be
the results that are always output.

[Cache:
 -Name='Cache_Name']

 [Inline: -Database='Contacts', -SQL='Select * from Contacts.People']
 [Field:'First_Name'] [Field:'Last_Name'] - [Field:'Company']

 [/Inline]

4 9 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

[/Cache]

➜�John Doe - OmniPilot
 Jane Doe - OmniPilot

To cache content to a session instead of a global variable:

Use the [Cache] ... [/Cache] tags with the -Session parameter. This stores the
cached data in a session instead of a global variable, which means that the
cached data will expire when the session expires. In the example below, a
[Date] tag cached will expire in three hours when the session expires.

[Session_Start: -Name='Session_Name', -Expires=3600]

[Cache:
 -Name='Cache_Name',
 -Session='Session_Name']

[Date]

[/Cache]

➜ �9/29/2003 19:13:00

To cache content to both a session and a global variable:

Use the [Cache] ... [/Cache] tags with both the -Session and -UseGlobal param-
eters. This will store the data in both a session and a global variable for
maximum control over the cache. In the example below, a [Date] tag cached
will never expire unless both the cache is dumped in Lasso Administration
and the end-user deletes their session cookie..

[Session_Start: -Name='Session_Name']

[Cache:
 -Name='Cache_Name',
 -Session='Session_Name',
 -UseGlobal]

[Date]

[/Cache]

➜ �9/29/2003 19:13:00

To conditionally refresh a page:

Use the [Cache] ... [/Cache] tags with the -Condition parameter. The
example below conditionally refreshes the cache if the value
of [Action_Param:'Cache'] is equal to Yes.

4 9 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

[Cache:
 -Name='Cache_Name',
 -Condition=((Action_Param:'Cache') == 'Yes')]

[Date]

[/Cache]

➜ �9/29/2003 21:57:00

To create a secure cache:

Use the [Cache] ... [/Cache] tags with the optional -Key parameter. The
example below creates a cache named Cache_Name with a key value
of password. Only subsequent cache tags containing the parameter
-Key='password' will be able to access this cache.

[Cache:
 -Name='Cache_Name',
 -Expires=3600,
 -Key='password']

 [Inline: -Database='Contacts', -SQL='Select * from people where ID < 3']
 [Field:'First_Name'] [Field:'Last_Name'] - [Field:'Company']

 [/Inline]

[/Cache]

Caching LDML Objects
LDML 7 also includes tags that can cache LDML variables directly without
having to use a container tag. When these tags are used, all instances of the
LDML variable will be replaced by its cached value until the cache expires
or is dumped.

Table 10: LDML Object Cache Tags

Tag Description

[Cache_Object] Caches the value of a named LDML variable. Uses the
same parameters as the [Cache] ... [/Cache] tags, but
requires a -Content parameter that specifies the name
of an LDML object variable to be cached. This tag
always returns the object value to the page.

[Cache_Store] Works the same as [Cache_Object], except it does not
return a value to the page. Also, the optional -Conditional
parameter cannot be used with [Cache_Store].

5 0 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

To cache an LDML object and return its value to the page:

Use the [Cache_Object] tag. The example below adds a variable named Data
to the cache. Whenever the Data variable is called while the cache is not
expired, any instance of the Data variable will be replaced with its cached
value.

[Var:'Data'='This is some data']
[Cache_Object: -Name='Cache_Name', -Expires=3600, -Content=$Data]

➜ This is some data

To cache an LDML object without returning its value to the page:

Use the [Cache_Store] tag. The example below adds a variable named Data
to the cache. Whenever the Data variable is called while the cache is not
expired, any instance of the Data variable will be replaced with its cached
value.

[Var:'Data'='This is some data']
[Cache_Store: -Name='Cache_Name', -Expires=3600, -Content=$Data]

Cache Control Tags
Additional cache control tags allow values stored in caches to be program-
matically fetched and emptied. These tags are described in Table 11: Cache
Control Tags.

Table 11: Cache Control Tags

Tag Description

[Cache_Fetch] Outputs the contents of a Lasso cache. Requires a
-Name parameter, which specifies the name of the
cache. An optional -Session parameter specifies the
session that contains the cache, if applicable.

[Cache_Empty] Clears a specified cache. The cached contents will be
forced to reload at the next page load. Requires a
-Name parameter which specifies the name of the
cache. An optional -Session parameter specifies the
session that contains the cache, if applicable.

To return the contents of a cache:

Use the [Cache_Fetch] tag, where the name of the cache to return is specified
in the -Name parameter. The example below returns the value of a cached
[Date] tag in a cache named Cache_Name.

[Cache_Fetch: -Name='Cache_Name']

5 0 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

➜ 09/29/2003 19:13:00

To empty a cache:

Use the [Cache_Empty] tag, where the name of the cache to empty is speci-
fied in the -Name parameter.

[Cache_Empty: -Name='Cache_Name']

Controlling Caches in Lasso Administration
The Lasso global administrator has global control over all caches stored
on the Lasso Professional 7 server. The Utility > Cache section of Lasso
Administration provides information about all current caches, allows
caches to be reset, and allows preferences for the caching mechanism to be
set.

For more information, see Chapter 9: Administration Utilities in the Lasso
Professional 7 Setup Guide.

Note: Caches stored in sessions are not visible in Lasso Administration and
do not maintain statistics.

Server Push
The [Server_Push] tag can be used to progressively download HTML content
to a client that supports progressive downloads. All data in the format
file up until the location of the [Server_Push] tag is sent to the client, but
processing of the page continues normally. Multiple [Server_Push] tags can
be used to send a page to a client in as many segments as desired.

Note: Some Web servers do not support [Server_Push]. These Web servers
buffer all output from Lasso and stream it to the Web clients themselves.

Most Web browsers will accept progressive downloads only if the
[Server_Push] tag is placed outside of any HTML container tags (except for
<html> … </html> and <body> … </body>). In particular, the [Server_Push] tag
should not be used within <table> … </table> tags.

Lasso buffers the output of container tags such as [Loop] … [/Loop],
[If] … [Else] … [/If] and [Records] … [/Records]. The [Sever_Push] tag can only be
used outside of any container tags.

Warning: The [Server_Push] tag is incompatible with the [Header] … [/Header],
[Content_Type], [Redirect_URL], [Cookie_Set], and [Session_Start: -UseCookie] tags.
These tags should not be used on pages which are being sent progressively
using [Server_Push].

5 0 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

Table 12: Server Push Tag

Tag Description

[Server_Push] Instructs Lasso to send as much of the current format
file to the client as possible.

To progressively download a page:

Use the [Server_Push] tag to send sections of the page as they are finished
processing. The following example uses a [Server_Push] to force the first part
of the page to download, then performs a search using [Inline] … [/Inline] tags.
The header of the page should be visible while the search completes.

<h2>Search Results</h2>
[Server_Push]
[Inline: -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 -FindAll]
 [Records]

[Field: 'First_Name'] [Field: 'Last_Name']
 [/Records]
[/Inline]

Header Tags
The header tags allow the contents of the HTTP response header to be
modified before the results of the current format file are served to the
visitor. In addition to the tags described in Table 13: Header Tags, the
[Cookie_Set] tag, [Redirect_URL] tag, and [Server_Push] tag also alter the HTTP
response header.

The [Content_Type] and [Header] … [/Header] tags should be included as the
first tags in a format file whenever possible. This ensures that any addi-
tional tags that modify the HTTP response header will modify the header
defined by these tags.

Lasso uses the character set specified in the [Content_Type] tag to determine
how to encode the results of processing a format file before transmitting
them to the client’s Web browser. By default Lasso will transmit all results
in the Unicode single-byte standard UTF-8. See below for examples of how
to set the character set to something different.

5 0 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

Table 13: Header Tags

Tag Description

[Content_Type] Sets the MIME type of the current HTTP response.

[Header] … [/Header] Sets the HTTP header of the response to the contents
of the container tags.

Content Type
Use the [Content_Type] tag to set the MIME type for a format file and to
set the character set which will be used to transmit the results to the
client. The client’s Web browser will use this content type and character
set to determine how to display the returned data to the client. The
[Content_Type] tag should be one of the first tags within a format file.

To set the content type of a format file:

 • The following example shows how to return HTML data in a format file
encoded using UTF-8. This is the default state for the [Content_Type] tag.

[Content_Type: 'text/html; charset=UTF-8']

 • The following example shows how to return HTML data using the Latin-
1 (ISO 8859-1) character set. Some older browsers or other Web clients
may expect data to be in this character set..

[Content_Type: 'text/html; charset=iso-8859-1']

 • The following example shows how to return XML data in a format file
with the text/xml MIME type and UTF-8 character set. See Chapter 29:
XML for more information.

[Content_Type: 'text/xml; charset=utf-8']

 • The following example shows how to return WML data in a format file
with the text/vnd.wap.wml MIME type and UTF-8 character set. This tag is
used when serving data to WAP browsers. See Chapter 28: Wireless
Devices for more information.

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']

Header Tag
If the [Header] … [/Header] tags are used within a format file, then the HTTP
response header will be set to the contents of the tags. This is a low-level
tag that should only be used by developers who are familiar with the struc-
ture of HTTP response headers.

5 0 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

The [Content_Type], [Redirect_URL], [Server_Push] and [Cookie_Set] tags can all be
used to modify portions of the HTTP response header. These tags are the
preferred method for modifying the portions of the header that they affect.

Rules for use of the [Header] … [/Header] tags:

 • The literal string HTTP must appear within the [Header] … [/Header] tags.
Everything before this literal string will be removed from the HTTP
response header.

 • The first line of a header is a status line that has the following form,
HTTP/Version Status_Code Status_Message. For example a soft redirect using
the HTTP/1.0 standard is specified as follows.

HTTP/1.0 302 FOUND

 • Carriage returns within the [Header] … [/Header] tags will be replaced by
carriage return/line feed pairs.

 • All [Header] … [/Header] tags must end with an empty line. No empty lines
are allowed within the [Header] … [/Header] tags except for the required last
line.

 • No spaces are allowed at the start of any line within the
[Header] … [/Header] tags.

Headers set using the [Header] … [/Header] tags must follow the standards
defined by the World Wide Web Consortium. Please see their documenta-
tion of the HTTP standard for more information.

http://www.w3c.org/

To redirect a user to another URL:

Use the [Header] … [/Header] tags. The following header will redirect the
client to the URL specified on the Location line. The URI line is included for
compatibility with older browsers. Notice that the destination is U R I, not
U R L.

[Header]
HTTP/1.0 302 FOUND
Location: http://www.example.com/default.lasso
URI: http://www.example.com/default.lasso
Server: Lasso Professional 7

[/Header]

Note: The [Redirect_URL] tag, documented earlier in this chapter, can also be
used to redirect a visitor to a different URL.

5 0 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

To submit a form without reloading the page:

Use the [Header] … [/Header] tags with a 204 partial content response. The
204 response instructs the client’s Web browser that an action has been
taken, but that the current rendered page should not be altered. The user
can then enter another item into the form and submit it again.

[Header]
HTTP/1.0 204
Server: Lasso Professional 7

[/Header]

To request authentication information from a client:

Use the [Header] … [/Header] tags with a 401 unauthorized response. The
401 response instructs the client’s Web browser that authentication is
required to access the desired resource. The WWW-Authenticate line in the
header names the realm which the user is attempting to access so subse-
quent requests for authentication information will properly retrieve stored
passwords as defined by the features of the client’s Web browser. The
following code asks for authentication for a realm named Example.

[Header]
HTTP/1.0 401
WWW-Authenticate: Basic realm="Example"
Server: Lasso Professional 7

[/Header}

The first time a client’s Web browser receives this response it will check
for a stored password or prompt the client to enter a username and pass-
word for the specified realm. If the client’s Web browser receives the same
response again (or sometimes after several authentication attempts) it will
assume that the user is not authorized to access the page in question.

Note: See the Authentication Tags section of Chapter 22: Control Tags for
information about LDML tags that automatically prompt for authentication
information.

Request Tags
Lasso includes a number of tags that return information about the current
HTTP request. These tags can be used to inspect the URL, GET arguments,
POST arguments, form method, or even the raw HTTP request. These tags
are summarized in Table 14: Request Tags.

5 0 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

Table 14: Request Tags

Tag Description

[Client_ContentLength] Returns the length in characters of the current POST
parameters.

[Client_ContentType] Returns the MIME type requested by the current HTTP
request.

[Client_FormMethod] Returns the method used to load the current page, either
GET or POST.

[Client_GETArgs] Returns a string containing all the arguments passed
along with the URL in the current request.

[Client_GETParams] Returns a pair array containing an element for each
parameter passed along with the URL in the current
request.

[Client_Headers] Returns the text of the HTTP request which called this
page.

[Client_Password] Returns the password specified by the current client.

[Client_POSTArgs] Returns a string containing all the arguments passed
along with the URL as a POST parameter in the current
request.

[Client_POSTParams] Returns a pair array containing an element for each
parameter passed along with the URL as a POST
parameter in the current request.

[Client_Username] Returns the username specified by the current client.

[Response_FilePath] Returns the path to the file which is being served from
the Web server root.

[Response_LocalPath] Returns the path to the Web server root.

[Response_Path] Returns the folder from which the current file is being
served relative to the Web server root.

[Response_Realm] Returns the name of the current realm reported by the
Web server.

To provide a link to the current Web page:

The [Response_FilePath] tag can be used to provide a link that reloads the
current Web page. The following example provides a simple link that
reloads the current Web page without any GET or POST parameters.

 Reload this page

To display the current GET parameters:

Use the [Loop] … [/Loop] tags and the [Array->Get] tag to loop through the
[Client_GetParams] array. The results are shown for the following URL:
http://www.example.com/default.lasso?name1=value1&name2=value2.

5 0 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

[Loop: (Client_GetParams)->Size]
 [Variable: 'GET_Variable' = (Client_GetParams)->(Get: (Loop_Count))]

[Output: $GET_Variable->First] = [Output: $GET_Variable->Second]
[/Loop]

➜
name1 = value1

name2 = value2

The same methodology can be used for the output of the
[Client_PostParams] tag.

To accept only POST parameters:

Check the [Client_FormMethod] tag to see whether it equals GET or POST. If
it is not set to the desired value then redirect the client to another page.
The following code redirects the user to error.lasso if the current page is not
loaded with POST parameters.

[If: (Client_FormMethod) != 'POST']
 [Redirect_URL: 'http://www.example.com/error.lasso']
[/If]

Note: It is possible to load a page with both POST and GET parameters so
a complete solution needs to check that a POST form method was used and
scan the GET parameters.

Client Tags
Lasso includes a number of tags that return information about the current
client including what type of browser they are using and where their client
machine is located. These tags are summarized in Table 15: Client Tags.

Table 15: Client Tags

Tag Description

[Client_Address] Returns the host name of the current client.

[Client_Browser] Returns the type of browser used by the current client.

[Client_IP] Returns the IP address of the current client.

[Client_Type] Returns the type of browser used by the current client.

Note: Lasso also includes a set of [WAP_…] tags that return information about
clients using WAP browsers. See Chapter 28: Wireless Devices for more
information.

5 0 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

To check whether a client is using a specific browser:

The [Client_Browser] tag can be used to return the type of browser the client
is using. The following example checks whether the browser type contains
Netscape and displays an appropriate message if it does.

[If: (Client_Browser) >> 'Netscape']

You are using a supported Netscape browser.
[Else]

You are using an unsupported browser of type: [Client_Browser].
[/If]

Server Tags
Lasso provides a number of tags which return information about the
current Web server. The information returned by the tags in Table 16:
Server Tags can be used to determine whether a page is being served
normally or securely or to output information to log files.

Table 16: Server Tags

Tag Description

[Server_Name] Returns the name of the current server.

[Server_Port] Returns the port which the current request is being
served. Usually 80 for normal HTTP requests or 443 for
secure HTTPS requests.

To check whether a page is being served securely:

Check the output of the [Server_Port] tag. Most Web servers serve normal
HTTP traffic on port 80 and secure, SSL encrypted HTTPS traffic on port 443.
The following example displays a reassuring message if the page is being
served securely or a warning if the page is not being served securely.

[If: (Server_Port) == 80]
 <p>Warning: this page is not being served securely.
[Else: (Server_Port) == 443]
 <p>Don't panic: this page was served securely.
[Else]
 <p>Caution: this page is served from an unknown port.
[/If]

To log information about server requests to a log file:

Use the [Server_…] and [Client_…] tags to return information about the
current visitor and what page they are visiting. The following code will log
the current date and time, the visitor’s IP address, the name of the server

5 0 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

and the page they were loading, and the GET and POST parameters that
were specified.

[Log: 'E://Logs/LassoLog.txt']
[Date]
[Client_IP] [Server_Name] [Response_FilePath]
[Client_GETArgs] [Client_POSTArgs]
[/Log]

See Chapter 20: Files and Logging for more information a about the
[Log] … [/Log] tags.

5 1 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 7 – H T T P / H T M L C O N T E N T A N D C O N T R O L S

28
Chapter 28

Wireless Devices

This chapter describes how to create pages in the Wireless Markup
Language (WML) which can be served to clients using Wireless Application
Protocol (WAP) browsers.

 • Overview introduces wireless devices.

 • Formatting WML describes how to specify the MIME type and encode
data for wireless browsers.

 • WAP Tags describes the tags in LDML that allow the characteristics of a
WAP client to be returned.

 • WML Example shows how to create a page which a WAP client can use
to search a database and retrieve the results.

Overview
Lasso provides support for serving data to cellular phones and personal
digital assistants that support the Wireless Application Protocol (WAP) and
the Wireless Markup Language (WML). Serving data to WAP devices (e.g.
WAP browsers) is conceptually the same as serving pages to Web browsers,
but there are some special considerations that need to be taken into
account.

WAP devices require pages to be formatted using the XML-based Wireless
Markup Language. Documentation of this language is beyond the scope of
this manual. Please consult a book on WAP/WML for more information
about how to create pages in WML. Since WML is based on XML, many
XML books also contain information about WML.

Lasso does not serve pages to WAP browsers directly. Instead, most WAP
browsers communicate with a gateway that contacts Lasso for WML pages

5 1 1

L A S S O 7 . 1 L A N G U A G E G U I D E

and images. The gateway is responsible for performing some manipulation
of WML pages and images to ensure they are formatted properly for the
WAP browser. A WML-based Web site built using the tags described in this
chapter will produce code that is very friendly to the gateway and ensures
high fidelity of the site when it is viewed using a WAP browser.

Note: Since WML is based on XML all of the techniques in the following
chapter on XML can be used on WML content.

Formatting WML
WAP browsers require pages to be sent using the MIME type of
text/vnd.wap.wml and a UTF-8 character set. The [Content_Type] tag can be used
to set the MIME type and character set of a page served by Lasso. This tag
simply adjusts the header of the page served by Lasso, it does not perform
any conversion of the data on the page.

To specify a format file contains WML:

Use the following tag as the very first line of any files which will be served
to WAP browsers. Notice that the tag accepts only a single parameter, the
charset argument which is appended to the MIME type argument with a
semi-colon ;.

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']

To serve WML:

WML data can be served using the [XML_Serve] tag with the optional
-Type parameter set to text/vnd.wap.wml. When the [XML_Serve] tag is used
all processing of the current page halts and the parameter of the tag is
returned as the contents of the page. This is useful to prevent any stray
comments or characters from being sent to WML browsers.

The following example serves some simple WML data in place of the
current format file. No tags after the [XML_Serve] tag will be processed.

[Variable: 'WMLData' = '<?xml version="1.0" encoding="utf-8" ?>
 <wml>
 <card name="card_one">
 <p>Hello WAP user!</p>
 </card>
 </wml>']

[XML_Serve: $WMLData, -Type='text/vnd.wap.wml']

5 1 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 8 – W I R E L E S S D E V I C E S

To format WML:

The data served by Lasso should be formatted using WML. Most WML
pages have the following format, an <?XML … ?> declaration followed by
<wml> … </wml> tags that surround one or more <card> … </card> tags. The
contents of the <card> … </card> tags are formatted like tiny HTML pages.
The following example shows a WML file with a single card.

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']
<?xml version="1.0" encoding="utf-8" ?>
<wml>
 <card name="card_one">
 <p>Hello WAP user!</p>
 </card>
</wml>

Most HTML text-formatting tags can be used to format WML pages
although the actual set of tags supported may differ from browser to
browser. Tables can be used to format data into columns. All tags in WML
have an opening and a closing tag. All paragraph tags <p> … </p> must be
closed. A tag which opens and then closes immediately can be written with
a slash before the trailing angle bracket,
</br> can be written
.

Every parameter of a tag must have a value. For example, the <input>
tag for a check box takes a parameter checked="" rather than the simple
checked parameter which HTML allows.

<input type="checkbox" name="Field_Name" value=”Value” checked="">

To specify WML links:

Links can be included using the anchor convention to link to cards within
the same document or a different document. The following code would
create a link to the card defined above if it were inserted into another card
in the same document.

 Link to card one

If the card defined above was saved in a document named
default_wml.lasso then the following link inserted into a card in another
document would link directly to it. Both the name of the document and
the name of the card are included in the link.

 Link to card one

To specify WML forms:

Forms can be included in WML documents using most of the form input
tags. Since WAP browser screens are usually very small, only a few form
elements can usually be shown on screen at the same time. Also, since
most WAP browsers have limited text capabilities it is often desirable to

5 1 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 8 – W I R E L E S S D E V I C E S

place options in <select> … </select> tags rather than having the client type
them in. The following code shows a form that contains a single button.
When the form is submitted, the card Card_One in default_wml.lasso is
returned as the result.

<form action="default_wml.lasso#card_one" method="POST">
 <p><input type="submit" name="-Nothing" value="Submit Form"></p>
</form>

To encode data for WML:

The data displayed in WML pages should be XML encoded. The
[Encode_Set] … [/Encode_Set] tags can be used to change the default encoding
for all substitution tags in an entire WML page. The following example
shows a WML page with an enclosing set of [Encode_Set] … [/Encode_Set]
tags. The value of the [Variable] tag will be XML encoded, ensuring that it
displays properly in a WAP browser.

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']
<?xml version="1.0" encoding="utf-8">
[Encode_Set: -EncodeXML]
 <wml>
 <card name="card_one">
 <p>[Variable: 'WML_Data']</p>
 </card>
 </wml>
[/Encode_Set]

Tags which return XML tags should not have their values encoded. Tags
which return XML data require an -EncodeNone encoding keyword in
order to ensure that the angle brackets and other markup characters are
not encoded into XML entities. The following example shows a vari-
able that returns an entire <card> … </card>. The [Variable] tag has an
-EncodeNone keyword so the angle brackets within the WML data are not
encoded.

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']
[Variable: 'WML_Data' = '<card name="card_one"><p>Hello WAP user!</card>']
<?xml version="1.0" encoding="utf-8">
[Encode_Set: -EncodeXML]
 <wml>
 [Variable: 'WML_Data', -EncodeNone]
 </wml>
[/Encode_Set]

5 1 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 8 – W I R E L E S S D E V I C E S

WAP Tags
LDML 7 includes a set of tags that return information about WAP clients.
These tags allow a Lasso developer to determine if the current client is
using a WAP browser and to determine the size of the screen and how
many buttons the browser supports.

The tags are summarized in Table 1: WAP Tags. None of the tags return
a value if the current client is not using a WAP browser or if the WAP
browser does not report the appropriate information in their WAP request.
The [WAP_IsEnabled] tag should always be used first to determine if the
client is a WAP browser before the other tags are used.

Table 1: WAP Tags

Tag Description

[WAP_IsEnabled] Returns True if the current client is using a WAP
enabled browser.

[WAP_MaxButtons] Returns the number of buttons supported by the current
client's WAP browser.

[WAP_MaxColumns] Returns the number of text columns in the screen of the
current client's WAP browser.

[WAP_MaxHorzPixels] Returns the width of the screen in pixels of the current
client's WAP browser.

[WAP_MaxRows] Returns the number of text lines in the screen of the
current client's WAP browser.

[WAP_MaxVertPixels] Returns the height of the screen in pixels of the current
client's WAP browser.

[XML_Serve] Returns WML data in place of the current format file.
The first parameter is the WML data to be served. -Type
parameter should be set to text/vnd.wap.wml

To display a different page if a client is WAP enabled:

Use the [WAP_IsEnabled] tag to check whether a client is using a WAP
browser or not. The following code returns the file default_wml.lasso if the
user is using a WAP browser or the file default_html.lasso if they are using a
normal Web browser.

[If: (WAP_IsEnabled)]
 [Content_Type: 'text/vnd.wap.wml; charset=utf-8']
 [Include: 'default_wml.lasso']
[Else]
 [Include: 'default_html.lasso']
[/If]

5 1 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 8 – W I R E L E S S D E V I C E S

To choose a graphic based on the size of a WAP browser screen:

Use the [WAP_MaxHorzPixels] and [WAP_MaxVertPixels] tags to determine
the size of the client’s screen. The following example displays a different
graphic if the client’s screen is less than 72 pixels in height or width, if it is
less than 144 pixels in height or width, or if it is larger.

[if: (WAP_MaxHorzPixels) <= 72 || (WAP_MaxVertPixels) <= 72]

[Else: (WAP_MaxHorzPixels) <= 144 || (WAP_MaxVertPixels) <= 144]

[Else]

[/If]

WML Example
The following example shows how to create a page that allows a client to
search a database through a WAP browser. The client will be able to search
a database named Contacts for either the First_Name or Last_Name and will
receive a list of Phone_Numbers in response.

The example is given first in a square bracket version using marked up
WML code. The second version uses LassoScript and the [XML_Serve] tag to
serve programmatically created WML.

Square Bracket Version
The initial page default.lasso includes a check to see whether the client is
using a WAP browser or not. If they are not using a WAP browser then they
are forwarded to an error page using the [Redirect_URL] tag.

[If: (WAP_IsEnabled) == False]
 [Redirect_URL: 'errror.lasso']
[/If]

The remainder of the initial page is a card called form that contains an
HTML form which allows the user to search the database for either a
First_Name or a Last_Name. When the form is submitted the results card of
response.lasso is returned.

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']
<?xml version="1.0" encoding="utf-8">
[Encode_Set: -EncodeXML]
 <wml>
 <card name="form">
 <form action="response.lasso#results" method="POST">
 First: <input type="text" name="First_Name" value=""/>

5 1 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 8 – W I R E L E S S D E V I C E S

Last: <input type="text" name="Last_Name" value=""/>

<input type="submit" name="-Nothing" value="Submit"/>
 </form>
 </card>
 </wml>
[/Encode_Set]

The results page response.lasso contains an [Inline] … [/Inline] that
performs the actual search. It retrieves the values for First_Name and
Last_Name using [Action_Param] tags. The search results are sorted first by
Last_Name, then by First_Name. None of the [Field] tags require encoding
keywords since the default encoding for the page is set to XML encoding
using [Encode_Set] … [/Encode_Set] tags. An error message is returned if
no records are found. A link is provided to return to the search page
default.lasso so a new search can be performed.

[Content_Type: 'text/vnd.wap.wml; charset=utf-8']
<?xml version="1.0" encoding="utf-8">
[Encode_Set: -EncodeXML]
 <wml>
 <card name="results">
 [Inline: -Database='Contacts',
 -Table='People',
 -KeyField='ID',
 'First_Name' = (Action_Param: 'First_Name'),
 'Last_Name' = (Action_Param: 'Last_Name'),
 -SortField='Last_Name',
 -SortField='First_Name',
 -Search]
 [If: (Found_Count) <= 0]

No phone numbers were found.
 [/If]
 [Records]

[Field: 'First_Name'] [Field: 'Last_Name'] [Field: 'Phone_Number']
 [/Records]
 [/Inline]

 Search Again
 </card>
 </wml>
[/Encode_Set]

LassoScript Version
The initial page default.lasso includes a check to see whether the client is
using a WAP browser or not. If they are not using a WAP browser then they
are forwarded to an error page using the [Redirect_URL] tag.

5 1 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 8 – W I R E L E S S D E V I C E S

<?LassoScript
 If: (WAP_IsEnabled) == False;
 Redirect_URL: 'errror.lasso';
 /If;
?>

The remainder of the initial page is a card called form that contains an
HTML form which allows the user to search the database for either a
First_Name or a Last_Name. When the form is submitted the results card of
response.lasso is returned.

<?LassoScript
 Variable: 'WML_Content' = <?xml version="1.0" encoding="utf-8">
 $WML_Content += '<wml><card name="form">';
 $WML_Content += '<form action="response.lasso#results" method="POST">';
 $WML_Content += 'First: <input type="text" name="First_Name" value=""/>';
 $WML_Content += '
Last: <input type="text" name="Last_Name" value=""/>';
 $WML_Content += '
<input type="submit" name="-Nothing" value="Submit"/>';
 $WML_Content += '</form></card></wml>';

 XML_Serve: $WML_Content, -Type='text/vnd.wap.wml';
?>

The results page response.lasso contains an [Inline] … [/Inline] that performs the
actual search. The actual response is collected in the WML_Content variable.
The [Field] tags have encoding explicitly set.

<?LassoScript
 Variable: 'WML_Content' = <?xml version="1.0" encoding="utf-8">';
 $WML_Content += '<wml><card name="results">';
 Inline: -Search, -Database='Contacts', -Table='People', -KeyField='ID',
 'First_Name' = (Action_Param: 'First_Name'),
 'Last_Name' = (Action_Param: 'Last_Name'),
 -SortField='Last_Name', -SortField='First_Name';
 If: (Found_Count) <= 0;
 $WML_Content += '
No phone numbers were found.';
 /If;
 Records;
 $WML_Content += '
' + (Field: 'First_Name', -EncodeXML) + ' ';
 $WML_Content += (Field: 'Last_Name', -EncodeXML) + ' ';
 $WML_Content += (Field: 'Phone_Number', -EncodeXML);
 /Records;
 /Inline;
 $WML_Content += '
 Search Again ';
 $WML_Content += '</card></wml>';

 XML_Serve: $WML_Content, -Type='text/vnd.wap.wml';
?>

5 1 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 8 – W I R E L E S S D E V I C E S

29
Chapter 29

XML

This chapter describes how to parse and create Extensible Markup
Language (XML) data and how to communicate using XML Remote
Procedure Calls (XML-RPC).

 • Overview introduces Lasso’s XML support.

 • XML Glossary introduces XML specific terms.

 • XML Data Type describes how to parse and create XML data using the
XML data type.

 • XPath Extraction describes how to use XPath parameters to extract
specific data from an XML file.

 • XSLT Style Sheet Transforms describes how to transform XML data
using XSLT style sheets.

 • XML Stream Data Type describes how to parse XML documents using a
stream model similar to a SAX parser.

 • XML-RPC describes how to send and process remote procedure calls for
communication between servers.

 • SOAP describes how to send and process SOAP remote procedure calls
for communication between servers.

 • Serving XML describes how to serve XML data in place of the current
format file.

 • Formatting XML describes how to specify the MIME type and encode
data for XML clients.

 • XML Templates describes the XML templates included with Lasso and
how to use them to format database action results as XML data.

5 1 9

L A S S O 7 . 1 L A N G U A G E G U I D E

Overview
Lasso provides support for a number of different XML standards which
make parsing, validating, creating, transforming, and serving XML easy.

Lasso includes an XML data type that automatically parses XML from string
values. The XML data type represents XML data as a tree data structure and
includes member tags for manipulating the individual tags which make
up the XML data. Changes can be made to the XML data type and will be
automatically converted to proper XML syntax when output to the Web
browser.

Lasso can validate XML data according to a Document Type Definition
(DTD). If the XML data does not correspond to the structure defined by the
DTD then an error will be returned to the user.

Lasso supports automatic transformations of XML data using the XSLT style
sheets. An XSLT transform can be applied to XML data stored in a variable,
database field, or file. In addition, a single format file can be repurposed
for many different clients through the use of a stylesheet transform just
prior to serving.

Lasso supports extracting individual XML elements from XML data using
XPath parameters. The XPath language complements Lasso’s built-in XML
data type allowing sophisticated queries on XML data. The [XML_Extract] tag
can be used to work with large XML documents.

XML-RPC support allows Lasso to communicate between servers. Lasso
supports incoming XML-RPC requests through custom XML-RPC tags that
are automatically processed or allows incoming requests to be processed
by any format file. XML-RPC requests can be easily generated and sent to
other servers on the Internet for processing.

Finally, Lasso can serve XML data which conforms to any Document Type
Definition (DTD) or XML Schema using the same tools which allow Lasso
to serve any style of HTML, WML, or other browser-based languages.

XML data needs to be formatted according to the rules defined by the
World Wide Web Consortium. Documentation of this language is beyond
the scope of this manual. Please consult a book on XML for more informa-
tion about how to create properly formatted XML data.

Note: The XML data type should not generally be used to process XML
documents larger than about 3 megabytes depending on their complexity.
The [XML_Extract] tag can be used to parse much larger XML documents and
extract specific elements for further processing.

5 2 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

XML Glossary
Here is a short glossary of essential terms which will help you understand
the rest of this documentation if you are new to XML.

 • HTML – HyperText Markup Language (HTML) is the language in which
the World Wide Web is formatted and is characterized by markup tags
enclosed in angle brackets. HTML is a subset of SGML.

 • XML – Extensible Markup Language (XML) is the universal format for
structured documents and data on the Web. XML is a subset of SGML.

 • SGML – Standard Generalized Markup Language (SGML) is a system for
defining markup languages. Authors mark up their documents by repre-
senting structural, presentational, and semantic information alongside
content. HTML and XML are both based on SGML.

 • DTD – A Document Type Definition (DTD) is a type of file associated
with SGML and XML documents that defines how the markup tags
should be interpreted by the application presenting the document.

 • Schema – An XML-based method of specifying the structure of an XML
document. Basically, a replacement for a DTD, but specified in XML
syntax. This is an emerging standard which is yet to be ratified by the
World Wide Web Consortium (W3C) at the time of this writing.

 • XPath – A language which is used to define the location of one or more
tags or attributes within XML data. XPaths can be used to extract tags or
attributes from XML data and are used in XSLT style sheets. XPaths are
used to extract specific elements from a larger XML document.

 • XSL – Extensible Stylesheet Language (XSL) is a language for expressing
stylesheets. An XSL stylesheet specifies the presentation of a class of XML
documents by describing how an instance of the class is transformed
into an XML document that uses the formatting vocabulary.

 • XSLT – XSL Transformations (XSLT) is a language for transforming XML
documents into other XML documents. XSLT is designed for use as part
of XSL, which is a stylesheet language for XML.

 • XML-RPC – XML Remote Procedure Call (XML-RPC) allows actions
to be performed on another server on the Internet and for data to be
returned.

 • WML – Wireless Markup Language (WML) is an XML-based language in
which “cards” for display on cellular phones and other wireless devices
are created.

5 2 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

XML Data Type
The XML data type in Lasso automatically parses XML data which is stored
in a variable. The member tags of the XML data type can then be used to
inspect and change the XML data. Table 1: XML Data Type Tag describes
the tag which is used to convert string data to the XML data type.

Lasso also provides an alternate method of parsing XML data that may be
more efficient for very large XML documents. This method is described in
the XML Stream Data Type section below.

Table 1: XML Data Type Tag

Tag Description

[XML] Requires a single parameter which is a string containing
validly formatted XML data.
Optional -DTD parameter specifies a DTD against
which the XML should be validated or optional -Schema
parameter specifies an XML schema against which the
XML should be validated.
Optional -Validation parameter specifies whether the
validation errors should be reported. Proper values
include 'always', 'never', and 'auto'. The default is 'auto'
which reports errors only if a schema or DTD was
specified.
Optional -Namespaces parameter specifies whether
XML namespaces should be processed. Defaults to
false.
Optional -FullCheck parameter specifies whether full
schema checking should be performed. This check can
be very time consuming. Defaults to false.

XML data from any source can be parsed and manipulated using Lasso by
first storing the XML data in a variable and then casting it to the XML data
type using the [XML] tag. Lasso can work with XML data from a database
field, XML file, remote Web application server, XML-RPC request, FTP site,
etc. Or, Lasso can work with XML data that is created programmatically
within a variable.

To parse XML data:

Use the [XML] tag to cast a string variable to the XML data type and parse
the XML data which is contained within the variable. The following
example stores a string of XML data in a variable, then casts it to XML.

5 2 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

[Variable: 'XML_String' = '<?xml version="1.0" encoding="UTF-8" ?>
 <ROOT>
 <RECORD>
 <FIELD name="First Name">John</FIELD>
 <FIELD name="Last_Name">Doe</FIELD>
 </RECORD>
 </ROOT>']
[Variable: 'XML_Data' = (XML: $XML_String)]

The variable XML_Data now contains a parsed representation of the
data from XML_String. If the variable XML_Data is output the value of
XML_String will simply be returned, but if the type of the variable is checked
it will be XML.

[Variable: 'XML_Data']

Type: [Output: $XML_Data->Type]

➜ <?xml version="1.0" encoding="UTF-8" ?>
 <ROOT>
 <RECORD>
 <FIELD name="First_Name">John</FIELD>
 <FIELD name="Last_Name">Doe</FIELD>
 </RECORD>
 </ROOT>

Type: XML

The parts of the parsed XML data can be accessed using the member tags of
the XML data type which are detailed in Table 2: XML Member Tags.

Table 2: XML Member Tags

Tag Description

[XML->Attributes] An array of pairs for each of the attributes of the root
tag.

[XML->Name] The name of the root tag.

[XML->Children] An array of XML objects for each of the children tags of
the root tag.

[XML->Contents] The contents of the root tag.

[XML->Document] Returns the root tag of the current XML document.

[XML->Extract] Returns the value for an XPath. Requires a single
parameter which is the XPath to be evaluated. Returns
different values depending on the XPath.

[XML->ExtractOne] Works the same as [XML->Extract] but only returns the
first element found by the XPath.

5 2 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

[XML->NameSpaces] Returns an array of namespaces for the namespaces
declared for this node. The array has pairs in which the
first element is the namespace prefix and the second
element is the URI of the namespace.

[XML->NextSibling] Returns the next sibling of the current node.

[XML->NodeType] Returns the type of the current node.

[XML->Parent] Returns the parent for the current node.

[XML->Path] Returns the path to the current node from the root of the
document.

[XML->PreviousSibling] Returns the previous sibling for the current node.

[XML->Transform] Performs an XSLT style sheet transformation on the
current XML object. Requires a string which contains a
valid XSLT style sheet. Returns a new XML object with
the results of the transformation.

These member tags can be used to inspect the attributes and children of an
XML tag.

To find specific children of an XML tag:

Use the [XML->Children] tag to get an array of children of an XML tag. For
example, the children of the <ROOT> tag in XML_Data can be returned as
follows. The result is always an array even if there is only one child of the
root XML tag.

[$XML_Data->Children]

➜ (Array: (<RECORD> … </RECORD>))

The children of the <RECORD> tag can be found by extracting the
<RECORD> tag from the array of children using [Array->Get] and then using
[XML->Children] to return an array of <FIELD> tags..

[Variable: 'XML_Record' = $XML_Data->Children->(Get: 1)]
[$XML_Record->Children]

➜ (Array: (<FIELD name="First_Name">John</FIELD>),
 (<FIELD name="Last_Name">Doe</FIELD>))

To display the attributes of an XML tag:

Use the [XML->Attributes] tag. The following example returns the attributes of
the first element from the XML_Record variable in the previous example. The
[Iterate] … [/Iterate] tags are used to cycle through the array of attributes and
the elements of each attribute pair are displayed.

5 2 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

[Variable: 'XML_Attributes' = $XML_Record->Attributes]
[Iterate: $XML_Attributes, (Variable: 'Attribute')]

[$Attribute->First] = [$Attribute->Second]
[/Iterate]

➜
Name = First_Name

To display the contents of an XML tag:

Use the [XML->Contents] tag. The following example returns the contents of
the first element from the XML_Record variable in the example above.

[Output: $XML_Record->Contents]

➜ John

XPath Extraction
XPath is a language that allows XML data to be searched for specific tags or
attributes. An XPath expression instructs how to get to a specific tag or tags
within XML data similarly to how a file system path instructs how to get to
a specific file within a hard drive.

This is the preferred method of processing large XML documents. An XPath
can be used to extract the relevant elements from the large XML document
and then those individual elements can be converted to the XML data type
for further processing.

For example, the Lasso Service application on Mac OS X is represented by
the following path. The path says to go to the root of the file system /, enter
the Applications folder then the Lasso Professional 7 folder, and look for the file
named LassoService.

/Applications/Lasso Professional 7/LassoService

Similarly, an XPath to navigate through the following XML data can be
constructed.

[Variable: 'XML_String' = '<?xml version="1.0" encoding="UTF-8" ?>
 <ROOT>
 <RECORD>
 <FIELD name="First Name">John</FIELD>
 <FIELD name="Last_Name">Doe</FIELD>
 </RECORD>
 </ROOT>']

The following XPath starts at the root of the XML data, the <ROOT> tag
represented by /ROOT. It enters the <RECORD> tag and returns the <FIELD>
tag which has a name attribute equal to First_Name.

/ROOT/RECORD/FIELD[@name="First_Name"]

5 2 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

The [XML_Extract] tag allows an XPath to be applied to XML data within
Lasso and for the results to be returned.

Table 3: [XML_Extract] Tag

Tag Description

[XML_Extract] Accepts two parameters and returns an array of string.
-XML is the XML source data or -File specifies the path
to a file that contains the XML source data. -XPath is the
XPath that describes what data to return.

Note: The [XML_Extract] tag will read XML data from a -File parameter if it is
present. This is the preferred method of working with large XML documents
since Lasso can parse the file without reading it into memory. If no -File param-
eter is specified then the data passed directly to the -XML parameter is used
instead.

The XPath from above would be applied to the XML data in this way.

[XML_Extract: -XML=$XML_String,
 -XPath='/ROOT/RECORD/FIELD[@name=First_Name]']

The return value is an array containing a single string representing the tag
which was found.

➜ (Array: (<FIELD name="First_Name">John</FIELD>))

File paths generally only allow inspecting the names of files and directo-
ries. XML tags have a name, children, attributes, contents, etc. The XPath
allows any of these different aspects of XML tags to be used in specifying a
path to a specific tag or set of tags.

Table 4: Simple XPath Expressions includes the basic elements of an
XPath. These can be be combined with the conditional functions detailed
in Table 5: Conditional XPath Expressions to create sophisticated queries
allowing very specific sets of tags and sub tags to be extracted from XML
data.

Note: A full discussion of XPath syntax is beyond the scope of this book.
Please consult a book about XML for full details about XPath syntax.

5 2 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

Table 4: Simple XPath Expressions

Expression Description

/ Selects the root element of the XML data. The first XML
tag in the XML data is a child of the root element.

/* Selects all children elements from the current element
including XML tags and text elements. /node() is a
synonym.

/tagname Selects all XML tag children with the specified tag name
from the current element.

/text() Selects all text element children from the current
element .

//* Selects all descendents starting from the current
element including XML tags and text elements. //node()
is a synonym.

//tagname Selects all XML tags descendents with the specified tag
name starting from the current element.

//text() Selects all text element descendents starting from the
current element.

/@* Selects all attributes of the current tag.

/@attribute Selects all attributes of the current tag with the specified
attribute name.

These expressions are assembled into a path by placing them in the appro-
priate order depending on the tags or attributes that need to be extracted.
The following are some examples of XPaths and what tags they would
extract from the XML data specified on the previous page.

 • Select all <ROOT> tags.

/ROOT

 • Select all <RECORD> tags which are contained in the <ROOT> tag.

/ROOT/RECORD/

 • Select all <FIELD> tags which are children of a <ROOT> and <RECORD> tag.

/ROOT/RECORD/FIELD

 • Select the text contents of all <FIELD> tags which are children of a
<ROOT> and <RECORD> tag.

/ROOT/RECORD/FIELD/text()

 • Select all <FIELD> tags no matter what the name of their parent tag was.

//FIELD

 • Select the name attributes from all <FIELD> tags.

//FIELD/@name

5 2 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

 • Select all attributes from all <FIELD> tags.

//FIELD/@*

 • Select all text elements from the XML data.

//text()

To extract tags from XML data using simple XPath expressions:

The simple XPath expressions can be used to find a specific set of nodes
within XML data. For example, using the same XML data as for the
example above the following XPaths return the specified results.

[Variable: 'XML_String' = '<?xml version="1.0" encoding="UTF-8" ?>
 <ROOT>
 <RECORD>
 <FIELD name="First Name">John</FIELD>
 <FIELD name="Last_Name">Doe</FIELD>
 </RECORD>
 </ROOT>']

 • The root tag of the XML data and all of its contents can be returned
using /ROOT/. The <ROOT> tag and all its contents are returned.

[XML_Extract: -XML=$XML_String, -XPath='/ROOT/']

➜ (Array: (<ROOT> … </ROOT>))

 • All children of the root tag can be returned using /ROOT/*. The <RECORD>
tag and all its contents are returned.

[XML_Extract: -XML=$XML_String, -XPath='/ROOT/*']

➜ (Array: (<RECORD> … </RECORD>))

 • All <FIELD> tags in the XML data can be returned using //FIELD. The two
<FIELD> tags and all of their contents are returned.

[XML_Extract: -XML=$XML_String, -XPath='//FIELD']

➜ (Array: (<FIELD name="First_Name">John</FIELD>),
 (<FIELD name="Last_Name">Doe</FIELD>))

 • The name parameter from all <FIELD> tags in the XML data can be
returned using //FIELD/@name. The name parameters of the <FIELD> tags
are returned.

[XML_Extract: -XML=$XML_String, -XPath='//field/@name']

➜ (Array: (First_Name), (Last_Name))

Many complex queries can be created using the simple XPath parameters.
In addition, XPath allows for conditional expressions to be used on the
simple XPath expressions. These are detailed in Table 5: Conditional XPath
Expressions.

5 2 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

Table 5: Conditional XPath Expressions

Expression Description

[n] A number selects one specific element from an array of
returned tags or parameters.

[last()] Returns the last element from an array of returned tags
or parameters.

[tagname] Returns only tags which have one or more children with
the specified tag name.

[@attribute] Returns only those tags which have the specified
attribute.

[@attribute=value] Returns only those tags which have the specified
attribute equal to the value.

[.=value] Returns only those tags which have their contents equal
to the specified value.

[expression = value] Returns only those tags for which the expression is
equal to the specified value. Can also use < <= > >= or
!= for numeric comparisons.

[starts-with(expression, value)] Returns only those tags which have an attribute or child
tag that starts with the specified value.

[contains(expression, value)] Returns only those tags which have an attribute or child
tag that contains the specified value.

[count(expression)] Returns the number of elements in an array of returned
tags or parameters.

In addition to the expressions detailed in this table it is possible to use
numeric functions + - * div mod, boolean operations and or or, and paren-
theses to create more complex expressions.

To extract tags from XML data using conditional XPath expressions:

The conditional XPath expressions can be used to find a specific set of
nodes within XML data. For example, using the same XML data as the
example above, the following XPaths return the specified results.

[Variable: 'XML_String' = '<?xml version="1.0" encoding="UTF-8" ?>
 <ROOT>
 <RECORD>
 <FIELD name="First Name">John</FIELD>
 <FIELD name="Last_Name">Doe</FIELD>
 </RECORD>
 </ROOT>']

 • The first <FIELD> tag in the XML data can be returned using //FIELD[1]. The
first <FIELD> tag and all of its contents are returned.

[XML_Extract: -XML=$XML_String, -XPath='//FIELD[1]']

5 2 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

➜ (Array: (<FIELD name="First_Name">John</FIELD>))

 • The last <FIELD> tag descendant of the root tag can be returned using
//FIELD[last()]. The second <FIELD> tag and all of its contents are returned.

[XML_Extract: -XML=$XML_String, -XPath='//FIELD[last()]']

➜ (Array: (<FIELD name="Last_Name">Doe</FIELD>))

 • All <FIELD> tag descendants of the root tag which have their contents
equal to John can be returned using //FIELD[.="John"]. The . in the expres-
sion represents the current tag that is being examined. The first <FIELD>
tag and all of its contents are returned.

[XML_Extract: -XML=$XML_String, -XPath='//FIELD[.="John"]']

➜ (Array: (<FIELD name="First_Name">John</FIELD>))

 • All <FIELD> tag descendants of the root tag which have a
name parameter that contains the word Name can be returned using
//FIELD[contains(@name, "Name")]. Both <FIELD> tags and all of their contents
are returned.

[XML_Extract: -XML=$XML_String, -XPath='//field[contains(@name, "Name")]']

➜ (Array: (<FIELD name="First_Name">John</FIELD>),
 (<FIELD name="Last_Name">Doe</FIELD>))

XSLT Style Sheet Transforms
XML style sheets allow one set of XML data to be transformed to a different
set. A single base XML document can be converted so it can be used
in many different situations. For example, a single document could be
converted to HTML for display in a Web browser and to WML for display
in a wireless device.

Lasso allows XSLT transforming style sheets to be applied to XML data
using the [XML_Transform] tag. The input of the tag is a string containing
XML source data and a string containing a valid XSLT style sheet. The result
is the string that is generated by applying the style sheet to the data.

Note: A full discussion of XSLT syntax is beyond the scope of this book.
Please consult a book about XML for full details about XML style sheets.

5 3 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

Table 6: [XML_Transform] Tag

Tag Description

[XML_Transform] Accepts two parameters and returns a string. -XML is
the XML source data. -XSL is the XSLT style sheet to be
applied.

Note: It is important to include version and xmlns:xsl parameters in the opening
<xsl:stylesheet> tag passed to Lasso so the XSLT processor knows what version
of XSL is being used and what namespace to use when parsing the XSLT style
sheet.

To transform XML data using an XSLT style sheet:

Use the [XML_Transform] tag. The following example uses an XSLT style sheet
stored in XSLT_String to transform XML data stored in XML_String and output
an HTML table.

The XSLT style sheet is an XML document that uses XPath expressions
to select portions of the XML data and transform them into a different
format. In this case, XML data is transformed into HTML for display in a
Web browser.

The <xsl:template> tag specifies what XML element the style sheet will
transform. The <xsl:for-each> tags accept an XPath that specifies a specific
set of elements to iterate through. The contents of the tags is repeated for
each iteration. The <xsl:value-of> tag returns the value of an XPath. In this
example, it used both to return the name parameter from each <FIELD> tag
and to return the value of the <FIELD> tag itself.

[Variable: 'XSLT_String' = '<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="//ROOT">
 <TABLE>
 <TR>
 <xsl:for-each select="RECORD[1]/FIELD/@name">
 <TD><xsl:value-of select="self()"/></TD>
 </xsl:for-each>
 </TR>
 <xsl:for-each select="RECORD">
 <TR>
 <xsl:for-each select="FIELD">
 <TD><xsl:value-of select="self()"/></TD>
 </xsl:for-each>
 </TR>
 </xsl:for-each>
 </TABLE>
 </xsl:template>
</xsl:stylesheet>']

5 3 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

The XML data is stored in XML_String.

[Variable: 'XML_String' = '<?xml version="1.0" encoding="UTF-8" ?>
 <ROOT>
 <RECORD>
 <FIELD name="First Name">John</FIELD>
 <FIELD name="Last_Name">Doe</FIELD>
 </RECORD>
 </ROOT>']

The transformation is performed using the [XML_Transform] tag and the
results are shown.

[XML_Transform: -XML=$XML_String, -XSL=$XSLT_String]

➜ <TABLE>
 <TR>
 <TD>First_Name</TD>
 <TD>Last_Name</TD>
 </TR>
 <TR>
 <TD>John</TD>
 <TD>Doe</TD>
 </TR>
</TABLE>

XML Stream Data Type
The XML stream data type in Lasso automatically parses XML data which
is stored in a variable. The member tags of the XML stream data type can
then be used to inspect and change the XML data. Table 7: XML Stream
Data Type Tag describes the tag which is used to convert string data to the
XML stream data type.

The XML stream data type treats XML data as a stream of objects which
will be consumed one by one until the end of the document is reached.
This method of parsing XML documents is comparable to the SAX method-
ology.

The member tags of the XML data type can also be used to parse XML data.
These methods are describes in the preceding XML Data Type section.

Table 7: XML Stream Data Type Tag

Tag Description

[XMLStream] Accepts a single parameter which is a string containing
validly formatted XML data.

5 3 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

XML data from any source can be parsed and manipulated using Lasso
by first storing the XML data in a variable and then casting it to the XML
stream data type using the [XMLStream] tag. Lasso can work with XML data
from a database field, XML file, remote Web application server, XML-RPC
request, FTP site, etc. Or, Lasso can work with XML data that is created
programmatically within a variable.

Navigating an XML Stream
An XML stream is made up of many objects called nodes. A node is a
opening XML tag, a closing tag, an attribute of an XML tag, a string of text,
CDATA, a processing instruction, a comment, or others. All of the available
node types are detailed in Table 8: XML Stream Node Types.

Table 8: XML Stream Node Types

Type Description

startElement An opening XML tag. Opening XML tags are the only
nodes that have attributes.

endElement A closing XML tag.

attributes An attribute of an opening XML tag.

text The text contents of an XML tag.

cdata The CDATA contents of an XML tag.

entityref An entity reference. Often used for extended characters
like & representing the ampersand &.

entitydecl An entity declaration.

pi A processing instruction. LassoScript embedded in
an XML document would be considered a processing
instruction. <? … ?>

comment A comment. These are formatted the same as HTML
comments <!-- … -->

document The root of the XML document.

dtd A document type declaration.

documentfrag A fragment of a document.

notation A notation.

The member tags which are used to set the current node of the XML
stream are detailed in Table 9: XML Stream Navigation Member Tags.
All of these tags return a boolean value if the desired operation could be
performed. The current node for the stream is changed and the member
tags in Table 10: XML Stream Member Tags can then be used to inspect
the current node.

5 3 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

Table 9: XML Stream Navigation Member Tags

Tag Description

[XMLStream->Next] Advances to the next node of the XML stream. Returns
True if successful or False if there are no more nodes.

[XMLStream->NextSibling] Advances to the next sibling node, bypassing any child
notes. Returns True if successful or False if there are no
more sibling nodes.

[XMLStream->MoveToAttribute] Moves the position to the specified attribute. Requires
a single parameter which is the attribute name to be
moved to or an integer index to move to each attribute
in order. Returns True if the current node could be
changed.

[XMLStream->MoveToAttributeNamespace]

 Moves the position to the specified attribute. Requires
two parameters. The first parameter is the name of the
attribute to be moved to. The second parameter is the
URI of the namespace to be used. Returns True if the
current node could be changed.

[XMLStream->MoveToFirstAttribute]

 Moves the position to the first attribute associated with
the current node. Returns True if successful or False if
the current node has no attributes.

[XMLStream->MoveToNextAttribute]
Moves the position to the next attribute of the current
node. Returns True if successful or False if there are no
more attributes of the current node.

[XMLStream->MoveToElement] Moves the position to the current node. Returns True if
successful. This tag can be used to return to the node
after moving to one or more attributes.

Navigation through an XML stream occurs only forward through the
nodes. Each XML opening tag, closing tag, and other node types is visited
in order using [XMLStream->Next]. The nodes are presented in the order they
appear in the document without respect for the nesting of XML tags in the
docuemnt.

<alpha name="value"> Some Text <beta> More Text </beta> </alpha>

For example, in the above XML document the following nodes will
be visited in order: Starting at the document node. The startElement node
representing the opening <alpha> tag. The text node Some Text. The
startElement node representing the opening <beta> tag. The text node
More Text. The endElement node representing the closing </beta> tag. And
finally, the endElement node representing the closing </alpha> tag.

5 3 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

Node Attributes
As each node is visited its attributes can be fetched using one of the
member tags detailed in Table 10: XML Stream Member Tags. These tags
provide tools for inspecting the attributes and contents of a tag.

Table 10: XML Stream Member Tags

Tag Description

[XMLStream->AttributeCount] Returns the number of attributes of the current node.

[XMLStream->BaseURI] Returns the base URI of the current node.

[XMLStream->Depth] Returns the depth of the current node in the tree.

[XMLStream->GetAttribute] Returns the value of an attribute of the current node.
Requires one parameter which is the name of an
attribute or an integer index to retrieve the attributes in
order.

[XMLStream->GetAttributeNamespace]

 Returns the value of an attribute of the current node.
Requires two parameters. The first is the name of a
parameter. The second is the URI for a namespace.

[XMLStream->HasAttributes] Returns True if the current node has any attributes.

[XMLStream->HasValue] Retturns True if the current node can have a text value.

[XMLStream->isEmptyElement] Returns True if the current node is empty.

[XMLStream->LocalName] Returns the local name of the current node.

[XMLStream->LookupNamespace]
Returns the namespace for a prefix. Requires a single
parameter which is the prefix to be looked up.

[XMLStream->NodeType] Returns the type of the current node. The node types
are identified in the following table.

[XMLStream->ReadAttributeValue]
Parses an attribute value into one or more Text and
EntityReference nodes. Returns True if successful.

[XMLStream->ReadString] Returns the text of the current node as a string.

[XMLStream->Name] Returns the qualified name of the current node: "Prefix:
LocalName".

[XMLStream->NamespaceURI] Returns the URI defining the namespace associated with
the current node.

[XMLStream->Prefix] Returns the namespace prefix for the current node.

[XMLStream->Value] Returns the text value of the current node if present.

[XMLStream->XMLLang] Returns the xml:lang scope within which the current
node resides.

5 3 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

XML Stream Example
The use of the XML stream tags depends largely on what type of XML
document needs to be parsed. This example shows how a simple XML
structure can be parsed and its attributes output to the browser.

This is the example XML data that will be processed for the example.

<xml>
 XML Data
 <tag param=”value”>
 A Tag
 _{A Sub-Tag}
 </tag>
</xml>

To prepare to process the XMl document it must be stored in a variable
and then an [XMLStream] object is initialized.

[var: 'xml' = '<xml> … </xml>']
[var: 'stream' = (xmlstream: $xml)]

The following code advances through the XML stream using
[XMLStream->Next]. It prints out various attributes of the current node and
then advanced through the node’s attributes (if any).

<?LassoScript
 while: $stream->next;
 output: $stream->nodetype + ': ' +
 '"' + $stream->name + '" = "' $stream->value + '"';
 '
';
 if: ($stream->attributecount > 0) && ($stream->movetofirstattribute);
 var: 'more' = true;
 while: $more;
 output:loop_count + ' ' + $stream->nodetype + ': ' + '
 '"' + $stream->name + '" = "' $stream->value + '"';
 '
';
 var: 'more' = $stream->movetonextattribute;
 /while;
 $stream->(movetoelement);
 /if;

/while;
?>

The results of running the code on the example XML document are shown
below. Each node is output with its type, name, and value. The node
for the opening <tag> has an attribute which is shown with a preceding
numeral.

5 3 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

➜ startElement: "xml" = ""
text: "#text" = "XML Data"
startElement: "tag" = ""
1 attributes: "param" = "value"
text: "#text" = "A Tag"
startElement: "Sub" = ""
text: "#text" = "A Sub-Tag"
endElement: "sub" = ""
endElement: "tag" = ""
endElement: "xml" = ""

This same code can be run on more complex XML documents to see how
the XML stream tags report information about the different nodes. By
adding actions when certain node types are encountered, this code can also
be adapted into a tool that will parse XML and perform actions based on
the contents.

XML-RPC
XML-RPC is a standard which allows remote procedure calls to be made
between different servers on the Internet. A remote procedure call is similar
to a CGI call (i.e. via [Include_URL]) to a different machine on the Internet,
but by passing the parameters of the procedure call and results in a stan-
dard XML format, XML-RPC is more flexible than traditional CGIs.

One way to think of XML-RPC in Lasso is that it is a method of calling an
LDML tag which happens to be located on a different Web server. Lasso
can act as both ends of an XML-RPC call, enabling two Lasso servers to
communicate with each other, or communication can be established
between a Lasso server and another server that supports XML-RPC.

The first part of this section documents how to use the [XML_RPCCall] tag
to make remote procedure calls. This technique is sufficent to make use of
XML-RPC methods that are available on other servers. The second part of
this section documents the low-level [XML_RPC] object and its methods for
calling and responding to XML-RPC requests.

Note: The Extending Lasso 7 Guide contains additional information about
how to create custom tags to respond to incoming remote procedure calls.

Calling a Remote Procedure
A remote procedure can be called using the [XML_RPCCall] tag. This tag uses
the low-level XML-RPC data type to create a remote procedure call and to
evaluate the results.

5 3 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

Table 11: [XML_RPCCall] Tag

Tag Description

[XML_RPCCall] Calls a remote procedure and returns the result. Accepts
three parameters. -Host is the URL of the remote host.
-Method is the method to be called. -Params is an array
of parameters to be passed to the remote server.

The -Host parameter defaults to the current host. The -Method parameter is
required, but defaults to Test.Echo for testing purposes. The -Params param-
eter is only required if the method requires parameters.

Errors are returned from the tag through the [Error_CurrentError]. This tag
will report [Error_NoError] if no error occured. Otherwise it will print out a
detailed error message. The result of the [XML_RPCCall] tag when an error
occurs is always Null.

To call a remote procedure:

Use the [XML_RPCCall] tag. In the following example the Test.Echo method
on the current Lasso server is called. This method simply echoes its param-
eters back to the caller. The path to have Lasso process an incoming XML-
RPC request is /Lasso/RPC.LassoApp.

[XML_RPCCall: -Host='http://127.0.0.1/Lasso/RPC.LassoApp',
 -Method='Test.Echo', -Params='Hello World!']

➜ Hello World!

To list all available methods on a server:

Lasso supports a number of built-in XML-RPC methods. These are listed in
Table 12: XML-RPC Built-In Methods. A list can be obtained direct from
Lasso using the XML-RPC method System.ListMethods. Sample output is
shown below.

[XML_RPCCall: -Host='http://127.0.0.1/Lasso/RPC.LassoApp',
 -Method='System.ListMethods']

➜ (Array: (System.ListMethods), (System.MethodHelp), (System.MethodSignature),
(System.MultiCall), (Test.Echo),

To call multiple methods on a server:

The System.MultiCall method can be used to call multiple methods on a
remote server in a single request. This enables several XML-RPC methods
to be called without the overhead of making individual HTTP connections
to the remote server.

The following example performs two Test.Echo calls in a single
System.MultiCall method.

5 3 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

[XML_RPCCall: -Host='http://127.0.0.1/Lasso/RPC.LassoApp',
 -Method='System.MultiCall', -Params=(Array:
 (Map: 'MethodName'='Test.Echo', 'Params'='Hello World!'),
 (Map: 'MethodName'='Test.Echo', 'Params'='Hello Again.'))]

➜ (Array: (Array: 'Hello World!'), (Array: 'Hello Again.'))

Note that the results are returned as an array with the return value of each
particular method as an element.

Built-In Methods
Lasso supports a number of built-in XML-RPC methods which most XML-
RPC processors are expected to have available. These built-in methods are
implemented in Startup.LassoApp located in the LassoStartup folder.

Table 12: XML-RPC Built-In Methods

Method Description

System.ListMethods Returns an array of method names available on the
server.

System.MethodHelp Requires a method name as parameter. Returns a
description of what the method does.

System.MethodSignature Returns an error message since Lasso does not support
message signatures.

System.MultiCall Requires an array of maps each with a MethodName
and a Params element. Returns an array of results for
each of the individual methods.

Test.Echo Echoes the parameters back to the caller.

Note: Lasso also defines a series of validator methods used to test the XML-
RPC functionality for proper adherence to the standard.

XML-RPC and Built-In Data Types
Lasso automatically translates between XML-RPC data types and Lasso’s
built-in data types. Table 13: XML-RPC and Built-In Data Types provides
details about how data types are converted. Since Lasso performs two way

5 3 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

conversions XML-RPC calls to a Lasso server can be made without concern
for data type conversions.

Table 13: XML-RPC and Built-In Data Types

XML-RPC Data Type Lasso Equivalent

<i4> or <int> Integer. XML-RPC supports only 32-bit signed integers.

<double> Decimal. Double precision floating point number.

<boolean> Boolean.

<dateTime.iso8601> Date. Lasso automatically parses and formats XML-RPC
date/times.

<string> or <base64> String. Lasso stores both character and binary data in
the string data type.

<struct> Map. Individual <member> tags become elements of the
map with <name> as the key and <value> as the value.

<array> Array. Each <value> becomes an element of the array.

Note: Lasso supports 64-bit signed integers and greater floating point preci-
sion than many XML-RPC servers.

XML-RPC Data Type

Table 14: XML-RPC Data Type

Tag Description

[XML_RPC] Creates an XML_RPC object. Accepts an array of
parameters for an outgoing XML_RPC call or for an
incoming XML_RPC call that is to be processed.

Lasso supports calling a remote procedure through the [XML_RPC] data
type. An instance of the [XML_RPC] data type is created with the parameters
for the XML-RPC call, then the [XML_RPC->Call] tag is used to initiate the
call and retrieve the results.

Table 15: [XML_RPC] Call Tag

Tag Description

[XML_RPC->Call] Calls a remote procedure. Requires two parameters.
-URI is the location of the remote server. -Method is the
name of the method to call on the remote server. The
parameters of the request come from the XML_RPC
object.

5 4 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

Note: The -URI parameter stands for Universal Resource Identifier.

To call a remote procedure using XML-RPC:

This example calls a remote procedure GetPrice which is available on a
remote Lasso server at http://rpc.example.com/RPC.LassoApp. The remote proce-
dure returns the price for a product based on name. The example has three
steps: creating the [XML_RPC] object, calling the remote procedure, and
interpreting the results.

 1 Store the parameters for the remote procedure call in an [XML_RPC]
parameter. The GetPrice procedure requires a single parameter which is
the name of a product.

[Variable: 'MyRPC' = (XML_RPC: 'Widget')]

 2 Call the GetPrice remote procedure on the desired server. The results are
stored in a variable MyResults.

[Variable: MyResults= $MyRPC->(Call: -Method='GetPrice',
 -URI='http://rpc.example.com/RPC.LassoApp')]

 3 Process the results. The first element of the returned array will be the
price for the product. Finally, the price is displayed.

[Variable: 'Price' = $myResults->(Get: 1)]
$[Variable: 'Price']

➜ $35.95

Processing an Incoming Remote Procedure Call
Lasso can processing incoming remote procedure calls in two ways.

 • A custom tag can be created using the [Define_Tag] … [/Define_Tag] tags with
the -RPC parameter. The custom tag will be automatically made available
through the RPC.LassoApp.

 • Any Lasso format file can be used as the target for remote procedure
calls. The methods of the [XML_RPC] data type can be used to interpret
and process incoming calls.

The use of custom tags is the easiest way to process incoming
remote procedure calls. Lasso handles the process of interpreting the
method and parameters of each call and automatically returns the
results to the caller. All XML-RPC calls are made to a single URL, i.e.
http://www.example.com/RPC.LassoApp, making it easy to document what
remote procedure calls the server supports.

Note: The creation of custom tags is covered in detail in Chapter 3: Custom
Tags in the Extending Lasso 7 Guide.

5 4 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

To process remote procedure calls using a custom tag:

This example demonstrates how to create the GetPrice procedure used in
the calling example. A custom tag named [GetPrice] will be created which
accepts a single parameter, searches the Products table of a Store database,
and returns the result. The -RPC parameter in the opening [Define_Tag] tag
ensures that this procedure will be available through RPC.LassoApp.

[Define_Tag: 'GetPrice', -RPC, -Requires='Product']
 [Inline: -Search,
 -Database='Store',
 -Table='Products',
 'Product'=#Product]
 [Return: (Field: 'Price')]
 [/Inline]
[/Define_Tag]

The tag can be called from a remote Lasso Professional 7 server using the
[XML-RPC] tags. A call to the GetPrice remote procedure on the server at
http://rpc.example.com/ would look like as follows.

[Variable: MyResults= (XML_RPC: 'Widget')->(Call: -Method='GetPrice',
 -URI='http://rpc.example.com/RPC.LassoApp')]
[Variable: 'Price' = $myResults->(Get: 1)]
$[Variable: 'Price']

➜ $35.95

If more control is required beyond that provided by the built-in XML-RPC
processing capabilities of Lasso then a custom format file can be created
which processes incoming XML-RPC requests using the method of the
[XML_RPC] data type directly.

An incoming XML-RPC request appears as a CGI call with POST param-
eters. An [XML_RPC] object should be initialized with the array of POST
parameters from the [Client_POSTArgs] tag. The method and parameters of
the incoming XML-RPC request can then be fetched with the member tags
detailed in Table 16: [XML_RPC] Processing Tags.

5 4 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

Table 16: [XML_RPC] Processing Tags

Tag Description

[XML_RPC->GetMethod] Returns the method for an incoming XML_RPC request.

[XML_RPC->GetParams] Returns an array of parameters for an incoming XML_
RPC request.

[XML_RPC->Response] Returns a response to an incoming [XML_RPC] request.
Accepts two parameters. -Full is either True or False and
determines whether full headers should be returned.
-Fault is either True or False and determines whether an
error response is returned.

To process an incoming XML-RPC request on a custom format file:

There are three steps to process an incoming XML-RPC request. First, the
incoming request is parsed and the method and parameters are extracted.
Second, the method and parameters are processed. Finally, the results are
formatted and returned to the caller.

 1 The incoming XML-RPC request is processed by passing [Client_POSTArgs]
to the [XML_RPC] tag. The method and parameters of the incoming
request are then extracted with the [XML_RPC->GetMethod] and
[XML_RPC->GetParams] tags.

[Variable: 'myRPC' = (XML_RPC: (Client_POSTArgs))]
[Variable: 'myMethod' = $myRPC->GetMethod]
[Variable: 'myParameters' = $myRPC->GetParameters]

 2 Since a single format file might process many different XML-RPC
methods [Select] … [Case] … [/Select] tags are used to determine what code
to process.

[Select: $myMethod]
 [Case: 'GetPrice']
 [Inline: -Search,
 -Database='Store',
 -Table='Products',
 'Product'=$MyParameters]
 [Variable: 'Response'=(Field: 'Price')]
 [/Inline]
[/Select]

 3 The response is sent back to the caller of the remote procedure by
outputting the result of the [XML_RPC->Response] tag with the results of
the remote procedure. -Full is set to True so full HTTP headers will be

5 4 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

returned to the caller and -Fault is set to False indicating that the XML-
RPC call was successful.

[Variable: 'myRPC' = (XML_RPC: $Result)]
[$myRPC->(Response: -Full=True, -Fault=False)]

SOAP
The Simple Object Access Protocol (SOAP) is a standard which allows
remote procedure calls to be made between different servers on the
Internet. A remote procedure call is similar to a CGI call (i.e. via
[Include_URL]) to a different machine on the Internet, but by passing the
parameters of the procedure call and results in a standard XML format,
SOAP is more flexible than traditional CGIs.

Lasso provides built-in support for incoming SOAP requests by allowing
properly defined custom tags to respond to these requests automatically.
Lasso does not provide built-in support for calling remote SOAP services,
but the XML tools in this chapter and [Include_URL] can be used to easily
handcraft formatted XML for a SOAP request and to parse the return value.

The first part of this section documents how to use the [Include_URL] tag
to make remote procedure calls using SOAP and how to parse the results.
The second part of this section documents how to create custom tags that
automatically respond to incoming SOAP requests and how to create
format files that respond to incoming SOAP requests using either GET or
POST methodology.

Note: The Extending Lasso 7 Guide contains additional information about
how to create tags to respond to incoming remote procedure calls.

Calling a Remote SOAP Procedure
A remote procedure can be called using the [Include_URL] tag with an
appropriatly formated XML SOAP envelope. The SOAP envelope should
be included in the documentation of the SOAP service and can be easily
modified to include different parameters using Lasso’s string tools.

To call a remote SOAP procedure:

This example calls a spell checking procedure that is available as a SOAP
service. The input to the SOAP service are the words to be spell checked
and the response includes one or more suggestions for proper spellings.

 1 Format the SOAP envelope according to the documentation for the
service. There is a lot of XML in the envelope, but only one part needs to

5 4 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

be customized in order to craft different spell check requests. The words
bleu wrld in the <phrase> … </phrase> tags will be spell checked. Additional
spell check requests can be created by changing these words and no
other parts of the envelope.

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=\'http://schemas.xmlsoap.org/soap/envelope/\'
 xmlns:xsi=\'http://www.w3.org/1999/XMLSchema-instance\'
 xmlns:xsd=\'http://www.w3.org/1999/XMLSchema\'>
 <SOAP-ENV:Body>
 <ns1:doSpellingSuggestion
 xmlns:ns1=\'urn:GoogleSearch\'
 SOAP-ENV:encodingStyle=\'http://schemas.xmlsoap.org/soap/encoding/\'>
 <phrase xsi:type=\'xsd:string\'>bleu wrld</phrase>
 </ns1:doSpellingSuggestion>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

 2 Store the envelope in a variable. Here the envelope is simply placed in
a variable. Different SOAP requests can be constructed using search/
replace on a template envelope or by appending the start of the enve-
lope, the phrase to be checked, and the end of the envelope together.

[Variable: 'SOAP_Envelope' = '<SOAP-ENV:Envelope … ']

 3 Use [Include_URL] to send the SOAP envelope to the appropriate URL. The
SOAP envelope must be sent as a POST like form parameters using the
-PostParams parameter of [Include_URL]. The content-type of the request must
be set to text/xml using the -ExtraMIMEHeaders parameter. The result will be
stored in a variable.

[Variable: 'Result' = (Include_URL: 'http://soap.example.com/SpellCheck/',
 -PostParams=$SOAP_Envelope,
 -ExtraMIMEHeaders=(Array: 'content-type'='text/xml'))]

 4 The result will either include a fault code or proper response. First,
check to see if it is a fault code and display an appropriate error
message. The code below uses the [XML->Extract] tag with an XPath of
//faultcode and //faultstring to extract these XML entities if they exist. The
[Protect] … [/Protect] tags will ensure that if there is no fault code the error
is suppressed.

[Variable: 'XMLResult' = (XML: $Result)]
[Protect]
 [Variable: 'FaultCode' = $XMLResult->(Extract: '//faultcode')->(Get:1)->Contents]
 [Variable: 'FaultString' = $XMLResult->(Extract: '//faultstring')->(Get:1)->Contents]
[/Protect]
[Output: $FaultString + ' (' + $FaultCode ')']

5 4 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

If an error occurs this will result in an error message like the following.
This error indicates that one of the namespace entries in the SOAP enve-
lope is missing.

➜ Unable to determine object id from call: is the method element namespaced?
(SOAP-ENV:Server.BadTargetObjectURI)

 5 Finally, the results of a successful operation are formatted for output.
The results are extracted from the <return> tag using the [XML->Extract] tag
with an XPath of //return. The resulting array is looped through to pull the
contents out of each return tag and create the final output for the client.

[Variable: 'XMLResult' = (XML: $Result)]
[Variable: 'Output' = '']
[Protect]
 [Iterate: $XMLResult->(Extract: '//return'), (Var: 'temp')]
 [$Output += $Temp->Contents + ' ']
 [/Iterate]
[/Protect]
[Output: 'Suggestions: ' + $Output]

T�� results of a successful SOAP call are displayed below. The suggested
spelling is correct.

➜ Suggestions: OmniPilot

Note: This example is based on the Google spell checking service, but has
been simplified to provide a more concise example.

Processing an Incoming SOAP Call
Lasso can processing incoming SOAP remote procedure calls in two ways.

 • A custom tag can be created using the [Define_Tag] … [/Define_Tag] tags
with the -SOAP parameter. The custom tag will be automatically made
available through the RPC.LassoApp. All parameters of the tag must have
explicit types defined using -Type parameters and the return type of the
tag must be defined using the -ReturnType parameter.

 • Any Lasso format file can be used as the target for remote procedure calls
through the GET method. The URL parameters are interpreted normally
and a SOAP envelope is returned as a result.

The use of custom tags is the easiest way to process incoming SOAP
remote procedure calls. Lasso handles the process of interpreting
the method and parameters of each call and automatically returns
the results to the caller. All SOAP calls are made to a single URL, i.e.
http://www.example.com/RPC.LassoApp, making it easy to document what
remote procedure calls the server supports.

5 4 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

Note: The creation of custom tags is covered in detail in Chapter 3: Custom
Tags in the Extending Lasso 7 Guide.

To process SOAP remote procedure calls using a custom tag:

This example demonstrates how to create a GetPrice procedure. A custom
tag named [GetPrice] will be created which accepts a single parameter,
searches the Products table of a Store database, and returns the result.

The -SOAP parameter in the opening [Define_Tag] tag ensures that this proce-
dure will be available through RPC.LassoApp as a SOAP procedure. The
-Type parameter is required to specify the type of the Product parameter. The
-ReturnType parameter specifies what type the return value of the tag will be.

[Define_Tag: 'GetPrice', -SOAP,
 -Requires='Product', -Type='String',
 -ReturnType='String']
 [Inline: -Search,
 -Database='Store',
 -Table='Products',
 'Product'=#Product]
 [Return: (Field: 'Price')]
 [/Inline]
[/Define_Tag]

The tag can be called from a remote Lasso Professional 7 server using the
techniques documented earlier.

To process an incoming SOAP request in a custom format file:

If more control is required beyond that provided by the built-in XML-RPC
processing capabilities of Lasso then a custom format file can be created
which processes incoming SOAP requests directly. An incoming SOAP
request appears either as a GET request with URL parameters or as a CGI
call with a SOAP envelope in the POST parameters.

 • SOAP procedures can be called using GET parameters in a URL. These
parameters can be processed using [Action_Param] just like any URL
parameters. The response to the SOAP procedure should be a properly
formated SOAP envelope or SOAP fault code with a content type of
text/xml.

In the following code the GetPrice method is implemented for the
following URL. In this example the price for a Widget will be returned.

http://www.example.com/SOAP/GetPrice.Lasso?Product=Widget

The code of the page performs the database search and returns a SOAP
envelope with a <return> tag if the result is good or fault tags if the result
is undefined.

5 4 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

[Content_Type: 'text/xml']
[Inline: -Search,
 -Database='Store',
 -Table='Products',
 'Product'=(Action_Param: 'Product')]
 [Variable: 'Response'=(Field: 'Price')]
[/Inline]
<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
 xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/1999/XMLSchema”>
<SOAP-ENV:Body>
[If: $Response != '']
 <ns1:GetPrice
 xmlns:ns1=”http://www.example.com/SOAP/GetPrice.Lasso”
 SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
 <return xsi:type=”xsd:string”>[Variable: 'Response']</return>
 </ns1:doSpellingSuggestionResponse>
[Else]
 <SOAP-ENV:Fault>
 <faultcode>ERROR</faultcode>
 <faultstring>No Price Found</faultstring>
 <faultactor>[Response_FilePath]</faultactor>
 </SOAP-ENV:Fault>
[/If]
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

 • SOAP procedures can be called by embedding a SOAP enveloped as
the POST parameter in a Web request. The raw POST parameter can be
fetched using [Client_PostArgs]. This returns a string that can be fed into
the [XML] tag for further processing.

In the following example this SOAP envelope will be considered a valid
request. The product is contained in <product> tags and in this example
the price for a Widget should be returned.

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=\'http://schemas.xmlsoap.org/soap/envelope/\'
 xmlns:xsi=\'http://www.w3.org/1999/XMLSchema-instance\'
 xmlns:xsd=\'http://www.w3.org/1999/XMLSchema\'>
<SOAP-ENV:Body>
 <ns1:GetPrice
 xmlns:ns1s=\'http://www.example.com/SOAP/GetPrice.Lasso\'
 SOAP-ENV:encodingStyle=\'http://schemas.xmlsoap.org/soap/encoding/\'>

5 4 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

 <product xsi:type=\'xsd:string\'>Widget</product >
 </ns1:GetPrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The incoming request is parsed using the following code. At the end, the
variable Product contains the name of the product whose price should be
returned. The [Protect] … [/Protect] tags ensure that the absence of <product>
tags does not cause a syntax error.

[Variable: 'SOAPEnvelope' = (Client_PostArgs)]
[Variable: 'XMLEnvelope' = (XML: $SOAPEnvelope)]
[Varialbe: 'Price' = '']
[Protect]
 [Variable: 'Price' = $XMLEnvelope->(Extract: '//product')->(Get:1)->Contents]
{/Protect]

The rest of the page performs the database search and returns a SOAP
envelope with a <return> tag if the result is good or fault tags if the result
is undefined.

[Content_Type: 'text/xml']
[Inline: -Search,
 -Database='Store',
 -Table='Products',
 'Product'=(Variable: 'Product')]
 [Variable: 'Response'=(Field: 'Price')]
[/Inline]
<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
 xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/1999/XMLSchema”>
<SOAP-ENV:Body>
[If: $Response != '']
 <ns1:GetPrice
 xmlns:ns1=”http://www.example.com/SOAP/GetPrice.Lasso”
 SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
 <return xsi:type=”xsd:string”>[Variable: 'Response']</return>
 </ns1:doSpellingSuggestionResponse>
[Else]
 <SOAP-ENV:Fault>
 <faultcode>ERROR</faultcode>
 <faultstring>No Price Found</faultstring>
 <faultactor>[Response_FilePath]</faultactor>
 </SOAP-ENV:Fault>
[/If]
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

5 4 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

Serving XML
XML data which is created within a variable, stored in a database, or
read from a file on the Web serving machine can be served in place of
the current format file using the [XML_Serve] tag. When this tag is called
processing of the current format file is aborted and the specified XML data
is served to the site visitor.

The visitor’s Web browser will determine how the XML data is formatted.
Many Web browsers will show XML data in outline form where the indi-
vidual tags can be collapsed or expanded to view different portions of the
data.

Table 17: [XML_Serve] Serving Tags

Tag Description

[XML_Serve] Returns XML data in place of the current format file. The
first parameter is the XML data to be served. Optional
-File parameter allows the name of the XML data to be
specified. Optional -Type parameter allows the MIME
type to be overridden from the default of text/xml.

To serve XML data:

Use the [XML_Serve] tag. The following example serves some simple XML
data in place of the current format file. No tags after the [XML_Serve] tag will
be processed.

[Variable: 'XMLData' = '<?xml version="1.0" encoding="UTF-8" ?>
 <ROOT>
 <ROW>
 This is XML data.
 </ROW>
 </ROOT>']

[XML_Serve: $XMLData]

Formatting XML
XML data should be served using the MIME type of text/xml and a UTF-8
character set. The [Content_Type] tag can be used to set the MIME type and
character set of a page served by Lasso. This tag simply adjusts the header
of the page served by Lasso, it does not perform any conversion of the data
on the page.

5 5 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

To specify that a format file contains XML:

Use the following tag as the very first line of any files which contain XML
data. Notice that the tag accepts only a single parameter, the charset argu-
ment is appended to the MIME type argument with a semi-colon ;.

[Content_Type: 'text/xml; charset=UTF-8']

To format XML:

Most XML pages have the following format, an <?XML … ?> declaration
followed by a root tag that surrounds the entire contents of the file. This
is similar to the <html> tag that typically surrounds an entire HTML page.
The following example shows a <ROOT> … </ROOT> tag with a single
<ROW> … </ROW> tag inside.

[Content_Type: 'text/xml; charset=UTF-8']
<?xml version="1.0" encoding="UTF-8" ?>
<ROOT>
 <ROW>
 This is XML data.
 </ROW>
</ROOT>

To encode data within XML:

The data within XML tags and tag parameters should be XML encoded. The
[Encode_Set] … [/Encode_Set] tags can be used to change the default encoding
for all substitution tags in an entire XML page. The following example
shows an XML page with an enclosing set of [Encode_Set] … [/Encode_Set]
tags. The value of the [Variable] tag will be XML encoded, ensuring that it is
recognized properly by an XML parser.

[Content_Type: 'text/xml; charset=UTF-8']
<?xml version="1.0" encoding="UTF-8" ?>
[Encode_Set: -EncodeXML]
 <ROOT>
 <ROW>
 [Variable: 'XML_Data']
 </ROW>
 </ROOT>
[/Encode_Set]

Tags which return XML tags should not have their values encoded. Tags
which return XML data require an -EncodeNone encoding keyword in
order to ensure that the angle brackets and other markup characters are
not encoded into XML entities. The following example shows a vari-
able that returns an entire <ROW> … </ROW> tag. The [Variable] tag has an
-EncodeNone keyword so the angle brackets within the XML data are not
encoded.

5 5 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

[Content_Type: 'text/xml; charset=UTF-8']
[Variable: 'XML_Data' = '<ROW><p>This is XML data.<ROW>']
<?xml version="1.0" encoding="UTF-8" ?>
[Encode_Set: -EncodeXML]
 <wml>
 [Variable: 'XML_Data', -EncodeNone]
 </wml>
[/Encode_Set]

XML Templates
Lasso includes a collection of XML templates that you can incorporate into
your own Web site or customize to use a different DTD or schema. In order
to use the templates, you must construct a Lasso action which uses the
XML template as its response.

The templates are contained in Documentation/4-LanguageGuide/Examples/XML/
folder within the Lasso Professional 7 application folder. In order to use
these examples, the entire XML folder should be copied into the Web server
root. The examples in this section assume the XML folder can be reached at
the root of the Web server by the following URL.

http://www.example.com/XML/

 • FileMaker Pro templates allow data to be published using the same
formats as those provided with FileMaker Pro Data Source Object (DSO)
and FileMaker Pro (FileMaker) templates are provided including versions
with DTDs and schemas. Each of the templates is described in Table 18:
FileMaker Pro XML Templates. All of the templates are included in the
folder FileMaker within the XML folder.

 • SQL Server templates allow data to be published using some of the
formats provided with Microsoft SQL Server. Templates are provided for
Raw SQL results and for results structured as Auto Elements (Elem). Each
of the templates includes versions with DTDs and schemas. They are
described in Table 19: SQL Server XML Templates. All of the templates
are included in the folder SQLServer within the XML folder.

Each template can be used as the response to a Lasso action that returns
records. The templates are written in a database-independent fashion and
build their DTD or schema based on the actual field names which define
the results that they are formatting.

5 5 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

Table 18: FileMaker Pro XML Templates

Template Description

dso_xml.lasso Data Source Object template uses the name of each
field in the database as the name of an XML tag. Root
tag is <FMPDSORESULT> which contains <ROW> tags
that contain individual field tags.

dso_xml_dtd.lasso Includes a dynamically generated DTD.

dso_xml_schema.lasso Includes a dynamically generated Schema.

fmp_layout_xml.lasso FileMaker Pro Layout template includes <LAYOUT>,
<FIELD>, and <VALUELIST> tags which describe a
FileMaker Pro layout. Root tag is <FMPXMLLAYOUT>
which contains <ERRORCODE> <PRODUCT> and
<LAYOUT> tags.

fmp_layout_xml_dtd.lasso Includes a dynamically generated DTD.

fmp_layout_xml_schema.lasso Includes a dynamically generated Schema.

fmp_xml.lasso FileMaker Pro results template includes database
structure and <RESULTS> tag with <ROW> and <COL>
sub-tags. Root tag is <FMPXMLRESULT> which
contains <ERRORCODE> <PRODUCT> <DATABASE>,
<METADATA> and <RESULTS> tags.

fmp_xml_dtd.lasso Includes a dynamically generated DTD.

fmp_xml_schma.lasso Includes a dynamically generated Schema.

Table 19: SQL Server XML Templates

Template Description

sql_xml_raw.lasso Includes each record in a single <ROW> tag. Root tag
is <ROOT> which contains <ROW> tags. Each field is
specified as a parameter of the <ROW> tags.

sql_xml_raw_dtd.lasso Includes a dynamically generated DTD.

sql_xml_raw_schema.lasso Includes a dynamically generated Schema.

sql_xml_elem.lasso Includes each record in a single <ROW> tag. Root tag
is <ROOT> which contains <ROW> tags. Each field is
specified as a tag named the same as the field name
within the <ROW> tags.

sql_xml_elem_dtd.lasso Includes a dynamically generated DTD.

sql_xml_elem_schema.lasso Includes a dynamically generated Schema.

To use a template with an [Inline] … [/Inline] action:

Specify a search within [Inline] … [/Inline] tags and use an [Include] tag to insert
the desired template to format the results. A [Content_Type] tag is required

5 5 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

at the top of the file containing the [Inline] … [/Inline] tags so the MIME type
of the returned data will be properly specified. The following example
finds all records in a Contacts database and formats the results using the
FileMaker DSO template stored at /XML/FileMaker/dso_xml.lasso.

[Content_Type: 'text/xml; charset=UTF-8']
[Inline: -Database='Contacts', -Table='People', -KeyField='ID', -FindAll]
 [Include: '/XML/FileMaker/dso_xml.lasso']
[/Inline]

To use a template with an HTML form-based action:

Specify a search within an HTML form. The -Response to the form
should be a template file. The following example finds all records in a
Contacts database and formats the results using the FileMaker DSO template
stored at /XML/FileMaker/dso_xml.lasso.

<form action=”/Action.Lasso” method=”POST”>
 <input type=”hidden” name=”-Database” value=”Contacts”>
 <input type=”hidden” name=”-Table” value=”People”>
 <input type=”hidden” name=”-KeyField” value=”ID”>
 <input type=”hidden” name=”-Response”
 value=”/XML/FileMaker/dso_xml.lasso”>
 <input type=”submit” name=”-FindAll” value=”Find All Contacts”>
</form>

To use a template with a URL-based action:

Specify a search within a URL. The -Response specified in the URL should
be a reference to a template file. The following example finds all records
in a Contacts database and formats the results using the FileMaker DSO
template stored at /XML/FileMaker/dso_xml.lasso.

<a href=”/Action.lasso?-Datasource=Contacts&
 -Table=People&
 -KeyField=ID&
 -Response=/XML/FileMaker/dso_xml.lasso&
 -FindAll”>
 Find All Contacts

How to Customize
The XML templates are good examples of data source-independent design
and can be used as the starting point of an automatic publishing system
based on XML.

The templates are also a good starting point to create XML format files that
are industry specific or to a particular database structure. Starting with a

5 5 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

DTD or schema, an XML format file can be created that outputs data from
a data source in precisely the format required.

Custom XML templates will need to be created in order to take advantage
of relationships, repeating fields, stored images, or portals specific to any
given data source.

5 5 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

5 5 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 2 9 – X M L

30
Chapter 30

Portable Document Format

This chapter describes how to create files in Portable Document Format
(PDF) using LDML 7.

 • Overview introduces PDF support in Lasso Professional 7.

 • Creating PDF Documents describes how to create PDF documents using
LDML tags, and how to use existing PDF documents as templates.

 • Creating Text Content describes how to add text to a PDF variable
using LDML tags.

 • Creating and Using Forms describes how to add forms to a PDF vari-
able using LDML tags, and also discusses how PDF forms can be used to
submit data to a database using Lasso.

 • Creating Tables describes how to create and insert tables in a PDF vari-
able using LDML tags.

 • Creating Graphics describes how to create and insert graphics in a PDF
variable using LDML tags.

 • Creating Barcodes describes how to create and insert barcodes in a PDF
variable using LDML tags.

 • Example PDF Files provides complete examples of using LDML to create
PDF files with text, forms, tables, graphics, and barcodes.

 • Serving PDF Files describes how to display a PDF file within the context
of a Lasso format file.

5 5 7

L A S S O 7 . 1 L A N G U A G E G U I D E

Overview
Lasso Professional 7 provides support for Portable Document Format
(PDF) files, allowing PDF documents to be created using LDML. The PDF
file format is a widely-accepted standard for electronic documentation,
and facilitates superb printer-quality documents from simple graphs to
complex forms such as tax forms, escrow documents, loan applications,
stock reports, and user manuals. For more information on PDF technology,
see the following URL.

http://www.adobe.com/products/acrobat/adobepdf.html

Implementation Note: The [PDF_...] tags in LDML 7 are implemented in
LJAPI, and based on the iText Java library. For more information on the iText
Java library, visit http://www.lowagie.com/iText.

Introduction to Creating PDF Files
PDF files are created in LDML by setting a variable as a [PDF_Doc] object,
and using various member tags and other [PDF_...] tags to add data to the
variable. The PDF is then written to file when the format file containing all
code is served by the Web server.

To create a basic PDF file using LDML:

The following shows an example of creating and outputting a PDF file
named MyFile.pdf using the [PDF_...] tags.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf',
 -Size='A4',
 -Margin=(Array: 144.0, 144.0, 72.0, 72.0))]
[Var: 'Font'=(PDF_Font: -Face='Helvetica', -Size=36)]
[Var: 'Text'=(PDF_Text:'I am a PDF document', -Font=$Font)]
[$MyFile->(Add: $Text)]
[$MyFile->Close]

In the example above, a variable named MyFile is set to a [PDF_Doc] type for
a file named MyFile.pdf. A single font type is defined for the document using
the [PDF_Font] tag. Then, the text I am a PDF document is defined using the
[PDF_Text] tag, and added using the [PDF_Doc->Add] member tag. The PDF is
then written to file upon execution of the [$MyFile->Close] tag.

This chapter explains in detail how these and other tags are used to create
and edit PDF files. This chapter also shows how to output a PDF file to a
client browser within the context of a format file, which is described in the
Serving PDF Files section of this chapter.

5 5 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

File Permissions
This section describes the file permission requirements for creating PDF
files on a Web server using LDML 7. In order to successfully create PDF
files, the following conditions must be met.

 • When creating PDF files using the [PDF_...] tags, the current user must
have Create Files, Read Files, and Write Files permissions allowed in the
Setup > Security > Files section of Lasso Administration, and the folder
in which the PDF will be created must be available to the user within the
Allow Path field.

 • Any file extensions being used by the [PDF_...] tags must be allowed in
the Setup > Global Settings > Settings section of Lasso Administration.
This can include .pdf, .jpg, and .gif.

 • When creating files, Lasso Service must be allowed to write to the folder
by the operating system (i.e. the Lasso system user in Mac OS X and
Linux). For more information, see Chapter 20: Files and Logging.

Creating PDF Documents
PDF documents are initialized and created using the [PDF_Doc] tag. This
is the basic tag used to create PDF documents with Lasso, and is used in
concert with all tags described in this chapter.

Table 1: [PDF_Doc] Tag and Parameters

Tag Description

[PDF_Doc] Initializes a PDF document. Uses optional parameters
which set the basic specifications of the file to be
created. Data is added to the variable using [PDF_Doc]
member tags, which are described throughout this
chapter.

-File Defines the file name and path of the PDF document.
If omitted, the PDF document is created in RAM (see
the Serving PDF Files section of this chapter for
more information). If a file name is specified without a
folder path, the file is created in the same location as the
format file containing the [PDF_...] tags.

-Size Define the page size of the document. Values for this
parameter are standard print sizes, and can be A0,
A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, B0, B1, B2,
B3, B4, B5, ARCH_A, ARCH_B, ARCH_C, ARCH_D,
ARCH_E, FLSA, FLSE, HALFLETTER, LEDGER,
LEGAL, LETTER, NOTE, and TABLOID. Defaults to A4
if not used. Optional.

5 5 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

-Height Defines a custom page height for the document. Accepts
a decimal value which represents the size in points. This
can be used with the -Width parameter instead of the
-Size parameter. Optional.

-Width Defines a custom page width for the document. Requires
a decimal value which represents the size in points. This
can be used with the -Height parameter instead of the
-Size parameter. Optional.

-Margins Defines the margin size for the page. Requires an array
of four decimal values, which define the left, right, top,
and bottom margins for the page (Left, Right, Top,
Bottom). Optional.

-Color Defines the initial text color of the PDF document.
Requires a hex color string. Defaults to '#000000' if not
used. Optional.

-UseDate Adds the current date and time to the file header.
Optional.

-NoCompress Produces a PDF without compression to allow PDF code
to be viewed. PDF files are compressed by default if not
used. Optional.

-PageNo Sets the starting page number for the PDF document.
Requires an integer value, which is the page number of
the first page. Optional.

-PageHeader Sets text that will be displayed at the top of each page in
the PDF. Requires a text string as a value. Optional.

'Header'='Content' Adds defined file headers to the PDF document. 'Header'
is replaced with the name of the file header (e.g. Title,
Author), and 'Content' is replaced with the header value.
Optional.

The examples below show creating basic PDF files, however these files
contain little or no data. Various types of data can be added to these files
using the tags described in the remainder of this chapter.

To start a basic PDF file:

Use the [PDF_Doc] tag to create a PDF file to a hard drive location on the
Web server. Use the -File parameter to define the location and file name,
and the -Size parameter to define a pre-defined standard size. This basic
example creates a blank, one-page PDF document.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf', ,
 -Size='A4')]

5 6 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

To start a PDF file with a custom page size:

Use the [PDF_Doc] tag with the -Height and -Width parameters to define a
custom page size in points. One inch is equal to 72 points.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf',
 -Height='648.0',
 -Width='468.0')]

To start a PDF file with custom margins:

Use the [PDF_Doc] tag with the -Margin parameter to define a custom page
size (in points). The following example adds a margin of 72 points (one
inch) to the left and right sides of the page, but adds no margin to the top
and bottom. This example also adds the date and time of creation to the
file header using the -UseDate parameter.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf',
 -Size='A4',
 -Margin=(Array: 72.0, 72.0, 0.0, 0.0),
 -UseDate)]

To start an uncompressed PDF file:

Use the [PDF_Doc] tag with the -NoCompress parameter.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf',
 -Size='A4',
 -NoCompress)]

To start a PDF file with custom file headers:

Use the [PDF_Doc] tag with appropriate 'Header'='Content' parameters.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf',
 -Size='A4',
 'Title'='My PDF File',
 'Subject'='How to create PDF files',
 'Author'='John Doe')]

Adding Content to PDFs
In LDML 7, there are several different types of data that can be added to a
PDF document. Many of these types are first defined as objects using tags
such as [PDF_Text], [PDF_List], [PDF_Image], [PDF_Table], or [PDF_BarCode], and
then added to a [PDF_Doc] variable using the [PDF_Doc->Add] member tag.
Each data type object is described separately in subsequent sections of this
chapter.

5 6 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Table 2: [PDF_Doc->Add] Tag and Parameters

Tag Description

[PDF_Doc->Add] Adds a PDF content object to a document. This can
be used to add [PDF_Text], [PDF_List], [PDF_Image],
[PDF_Table], or [PDF_BarCode] objects. If no position
information is specified then the object is added to the
flow of the page, otherwise it is drawn at the specified
location. Requires one parameter, which is the object to
be added. Optional parameters are described below.

-Align Sets the alignment of the object in the page ('Left',
'Center', or 'Right'). Defaults to 'Left'. Works only for
[PDF_Image] and [PDF_BarCode] objects. Optional.

-Wrap Keyword parameter specifies that text should flow
around the embedded object. Works only for [PDF_
Image] and [PDF_BarCode] objects. Optional.

-Left Specifies the placement of the object relative to the
left side of the document. Requires a decimal value,
which is the placement offset in points. Works only for
[PDF_Image] and [PDF_BarCode] objects. Optional.

-Top Specifies the placement of the object relative to the top
of the document. Requires a decimal value, which is the
placement offset in points. Works only for [PDF_Image]
and [PDF_BarCode] objects. Optional.

-Height Scales the object to the specified height. Requires a
decimal value which is the desired object height in
points. Works only for [PDF_Image] and [PDF_BarCode]
objects. Optional.

-Width Scales the object to the specified width. Requires a
decimal value which is the desired object width in points.
Works only for [PDF_Image] and [PDF_BarCode]
objects. Optional.

For examples of using the [PDF_Doc->Add] tag to add text, image, table, and
barcode PDF objects to a [PDF_Doc] variable, see the corresponding sections
in this chapter.

Adding Pages
If the content of a PDF document will span more than one page, addi-
tional pages can be added using special [PDF_Doc] member tags. These
tags signal where pages start and stop within the flow of the LDML PDF
creation tags.

5 6 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Table 3: PDF Page Tags

Tag Description

[PDF_Doc->AddPage] Adds additonal blank pages to the [PDF_Doc] variable.
When used, this tag ends in the current page and starts
a new page.

[PDF_Doc->AddChapter] Adds a page with a named chapter title (and bookmark)
to a [PDF_Doc] variable. Requires a text string or
[PDF_Text] object as a parameter, which specifies the
chapter title. An additonal -Number parameter sets an
integer chapter number for the chapter. An optional
-HideNumber parameter specifies that no number will be
shown.

[PDF_Doc->SetPageNumber] Sets a page number for a new page. Requires an integer
value.

[PDF_Doc->GetPageNumber] Returns the current page number.

To start a new page:

Use the [PDF_Doc->AddPage] tag. The following example ends a preceding
page, and starts a new page.

[$MyFile->(Add:'Thus, ends the discussion on page 1.')]
[$MyFile->AddPage]
[$MyFile->(Add:'On page 2, we will discuss something else.')]

To add a chapter title:

Use the [PDF_Doc->AddChapter] tag. The following example adds a page with
the text 30. Important Chapter to the [PDF_Doc] variable with a defined chapter
number of 30.

[$MyFile->(AddChapter:'Important Chapter', -Number=30)]

To set the page number for a page:

Use the [PDF_Doc->SetPageNumber] tag. The following example sets a page
number of 5 for the current page.

[$MyFile->(SetPageNumber: 5)]

To return the current page number:

Use the [PDF_Doc->GetPageNumber] tag. The following example returns a
page number of 1 when used within the first page of the document.

[$MyFile->GetPageNumber] ➜ 1

5 6 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Adding Pages from Existing PDFs
Pages in existing PDF documents can be added to a [PDF_Doc] variable
using the [PDF_Read] tag. This tag makes it possible to use existing PDF
documents as templates.

Note: Lasso cannot change existing text or graphics that are contained within
a PDF document read in using [PDF_Read]. Instead, Lasso is able to overlay
text, graphics, and other elements on the PDF.

Table 4: PDF Read Tags

Tag Description

[PDF_Read] Casts an existing PDF document on the server as an
LDML object. This object can be added to a [PDF_Doc]
variable using the [PDF_Doc->InsertPage] tag, and then
modified. Requires a -File parameter, which specifies the
name and path to a PDF file on the server to read.

[PDF_Read->PageCount] Returns the integer number of pages in the document.

[PDF_Read->PageSize] Returns the dimensions of the first page in the PDF as
an array of width and height point values (Array: Width,
Height). An optional integer parameter specifies the page
number in the document to return the size of.

To read in an existing PDF document:

In order to work with an existing PDF document, it must first be cast as a
Lasso variable using the [PDF_Read] tag.

[Var:'Old_PDF'=(PDF_Read:-File='/documents/somepdf.pdf')]

To determine the attributes of an existing PDF document:

The number of pages and the dimensions of an existing PDF document
can be returned using the [PDF_Read->PageCount] and [PDF_Read->PageSize]
tags on a defined [PDF_Read] variable.

[Var:'Old_PDF'=(PDF_Read:-File='/documents/somepdf.pdf')]
Number of pages: [$Old_PDF->PageCount]

Page size: [$Old_PDF->(PageSize: 1)]

Once an existing PDF document has been cast as a Lasso object
using [PDF_Read], it may be added to a [PDF_Doc] variable using the
[PDF-Doc->InsertPage] tag.

5 6 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Table 5: Page Insertion Tag and Parameters

Tag Description

[PDF_Doc->InsertPage] Inserts a page from a [PDF_Read] object into a [PDF_
Doc] variable. Requires the name of a [PDF_Read]
variable, followed by a comma and the number of the
page to insert. This tag has many optional parameters
for specifying how an existing page should be insterted
into a [PDF_Doc] variable. These parameters are
explained below.

-NewPage Keyword parameter specifying that the new page should
be appended at the end of the document. Otherwise
the page is drawn over the first page in the [PDF_Doc]
variable by default.

-Top If the page being inserted is shorter than the current
pages in the [PDF_Doc] variable, this parameter may be
used to specifiy the offset of the new page from the top
of the current page frame in points.

-Left If the page being inserted is not as wide the current
pages in the [PDF_Doc] variable, this parameter may be
used to specifiy the offset of the new page from the left
of the current page frame in points.

-Width Scales the inserted page by width. Requires either a
point width value, or a percentage string (e.g. 50%).

-Height Scales the inserted page by height. Requires either a
point height value, or a percentage string (e.g. 50%).

To insert an existing page into a new PDF document:

Use the [PDF_Doc->InsertPage] tag with a defined [PDF_Read] variable. The
example below makes the first page of the somepdf.pdf PDF the first page of
the [PDF_Doc] variable. Content may then be overlaid on top of the new
page using the tags described in the rest of this chapter.

[Var:'New_PDF'=(PDF_Doc: -File='MyFile.pdf',
 -Size='A4')]
[Var:'Old_PDF'=(PDF_Read:-File='/documents/somepdf.pdf')]
[$New_PDF->(InsertPage: $Old_PDF, 1)]

To insert an existing page at the end of a new PDF document:

Use the [PDF_Doc->InsertPage] tag with the optional -NewPage parameter. The
example below adds the first page of the somepdf.pdf PDF after all existing
pages in the [PDF_Doc] variable.

5 6 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

[Var:'New_PDF'=(PDF_Doc: -File='MyFile.pdf',
 -Size='A4')]
[Var:'Old_PDF'=(PDF_Read:-File='/documents/somepdf.pdf')]
[$New_PDF->(InsertPage: $Old_PDF, 1, -NewPage)]

To place an inserted page:

Use the [PDF_Doc->InsertPage] tag with the optional -Top and/or -Width
parameters. The example below places the inserted page 50 points away
from the top and left sides of the new document page frame.

[Var:'New_PDF'=(PDF_Doc: -File='MyFile.pdf',
 -Size='A4')]
[Var:'Old_PDF'=(PDF_Read:-File='/documents/somepdf.pdf')]
[$New_PDF->(InsertPage: $Old_PDF, 1, -Width=50, -Height=50)]

Accessing PDF File Information
Parameter values of a [PDF_Doc] variable can be returned using special
accessor tags. These tags return specific values such as the page size, margin
size, or the value of any other [PDF_Doc] variable described in the previous
section. All PDF accessor tags in LDML 7 are defined in Table 6: PDF
Accessor Tags.

Table 6: PDF Accessor Tags

Tag Description

[PDF_Doc->GetMargins] Returns the current page margins as an array data type
(Array: Left, Right, Top, Bottom).

[PDF_Doc->GetSize] Returns the current page size as an array of width and
height point values (Array: Width, Height).

[PDF_Doc->GetColor] Returns the current color as a hex string.

[PDF_Doc->GetHeaders] Returns all document headers as a map data type (Map:
'Header1'='Content1', 'Header2'='Content2', ...).

[PDF_Doc->SetFont] Sets a font for all following text. The value is a [PDF_
Font] object.

To return PDF page margins:

Use the [PDF_Doc->GetMargins] tag. The following example returns the
current margins of a defined [PDF_Doc] variable.

[$MyFile->GetMargins] ➜ (Array: 72.0, 72.0, 72.0, 72.0)

5 6 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

To return a PDF page size:

Use the [PDF_Doc->GetSize] tag. The following example returns the current
sizes of a defined [PDF_Doc] variable.

[$MyFile->GetSize] ➜ (Array: 468.0, 648.0)

To return a PDF base font color:

Use the [PDF_Doc->GetColor] tag. The following example returns the base
font color of a defined [PDF_Doc] variable.

[$MyFile->GetColor] ➜ #333333

Saving PDF Files
Once a [PDF_Doc] variable has been filled with the desired content, the
[PDF_Doc->Close] tag must be used to signal that the PDF file is finished and
is ready to be written to file or served.

Table 7: [PDF_Doc->Close] Tag

Tag Description

[PDF_Doc->Close] Closes [PDF_Doc] variable and commits it to file after all
desired data has been added to it. Additional data may
not be added to the specified variable after this tag is
used.

To close a PDF file:

Use the [PDF_Doc->Close] tag after all desired modifications have been
performed on the [PDF_Doc] variable.

[Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf',
 -Size='A4',
 -Margin=(Array: 144.0, 144.0, 72.0, 72.0))]
[Var: 'Font'=(PDF_Font: -Face='Helvetica', -Size=36)]
[Var: 'Text'=(PDF_Text:'I am a PDF document', -Font=$Font)]
[$MyFile->(Add: $Text)]
[$MyFile->Close]

Creating Text Content
Text content is the most basic type of data within a PDF document. PDF
text is first defined as a [PDF_Text] object, and then added to a PDF variable
using the [PDF_Doc->Add] tag.

5 6 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

[PDF_Text] objects may be positioned within the current PDF page using
the -Left and -Top parameters of the [PDF_Doc->Add] tag. Otherwise, if no
positioning parameters are specified, the text will be added to the top left
corner of the page by default.

Using Fonts
Before adding text, it is important to first define the font and style for the
text to determine how it will appear. This is done using the [PDF_Font] tag.

Table 8: PDF Font Tag and Parameters

Tag Description

[PDF_Font] Stores all the specifications for a font style. This include
font family, size, style, and color. Parameters are used
with the [PDF_Font] tag that define the font family, size,
color, and specifications. The following parameters may
be used with the [PDF_Font] tag.

-Face Specifies the font by its family name. Allowed font names
are Courier, Courier-Bold, Courier-Oblique, Courier-
BoldOblique, Helvetica, Helvetica-Bold, Helvetica-
Oblique, Helvetica-BoldOblique, Symbol, Times-Roman,
Times-Bold, Times-Italic, Times-BoldItalic, and
ZapfDingbats.

-File Creates a font from a local font file. The file name and
path to the font must be specified (e.g /Fonts/Courier.ttf).
This parameter may be used instead of the -Face
parameter. Optional.

-Size Sets the font size in points. Requires an integer point
value as a parameter (e.g 14). Optional.

-Color Sets the font color. Require a hex color string as a
parameter (e.g '#550000'). Defaults to '#000000' if not
used. Optional.

-Encoding Sets the desired font encoding. The font encoding
defaults to 'CP1252' if not specified. TrueType fonts can
be asked to return an array of supported encodings via
the [PDF_Font->GetSupportedEncodings] member tag.
Optional.

-Embed Embeds the fonts used within the PDF document as
opposed to relying on the client PDF reader for font
information. Optional.

The following examples show how to set variables as [PDF_Font] types that
define the font styles that are used in a PDF document.

5 6 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

To set a basic font style:

Set a variable as a [PDF_Font] tag. The following example sets a style to be a
standard Helvetica font with a size of 14 points. The font color is green.

[Var:'Font1'=(PDF_Font: -Face='Helvetica',
 -Size=14,
 -Color='#005500')]

Individual parameters may be viewed and changed in a [PDF_Font] vari-
able using [PDF_Font] member tags. These parameters are most useful for
retrieving information about a [PDF_Font] object that was defined using the
-File parameter, and are summarized in Table 9: [PDF_Font] Member Tags.

Table 9: [PDF_Font] Member Tags

Tag Description

[PDF_Font->SetFace] Changes the font face of the [PDF_Font]
variable to one of the allowed font names.

[PDF_Font->SetColor] Changes the font color of the [PDF_Font]
variable.

[PDF_Font->SetSize] Changes the font size of the [PDF_Font]
variable.

[PDF_Font->SetEncoding] Changes the encoding of the [PDF_Font]
variable.

[PDF_Font->SetUnderline] Sets the [PDF_Font] variable style to
underlined. Requires a boolean parameter of
'True' if used.

[PDF_Font->GetFace] Returns the current font face of a [PDF_Font]
variable.

[PDF_Font->GetColor] Returns the current font color of a [PDF_
Font] variable.

[PDF_Font->GetSize] Returns the current font size of a [PDF_Font]
variable.

[PDF_Font->GetEncoding] Returns the current encoding of a [PDF_
Font] variable.

[PDF_Font->GetPSFontName] Returns the exact Postscript font name of the
current font of a [PDF_Font] variable (e.g.
AdobeCorIDMinBd).

[PDF_Font->IsTrueType] Returns True if the current font is a True Type
font.

[PDF_Font->GetSupportedEncodings] Returns an array of all supported encodings
for a current True Type font face (Array:'1252
Latin 1','1253 Greek').

5 6 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

[PDF_Font->GetFullFontName] Returns the full True Type name of the
current font of a [PDF_Font] variable (e.g
Comic Sans MS Negreta).

[PDF_Font->TextWidth] Returns an integer value representing how
wide (in pixels) the text would be using the
current [PDF_Font] variable. Requires a string
value, which is the text to return the width of.

To change a font face:

Use the [PDF_Font->SetFace] tag. The following example sets a defined
[PDF_Font] variable to a standard Courier font.

[$MyFont->(SetFace:'Courier')]

To change a font color:

Use the [PDF_Font->SetColor] tag. The following example sets a defined
[PDF_Font] variable to the color red.

[$MyFont->(SetColor:'#990000')]

To underline a font:

Use the [PDF_Font->SetUnderline] tag. The following example sets a predefined
[PDF_Font] variable to use an underlined style.

[$MyFont->(SetUnderline: 'True')]

To return a font face:

Use the [PDF_Font->GetFace] tag. The following example returns the current
font face of a defined [PDF_Font] variable.

[$MyFont->GetFace] ➜ Courier

To return a font encoding:

Use the [PDF_Font->GetEncoding] tag. The following example returns the
encoding of the current font face of a defined [PDF_Font] variable.

[$MyFont->GetEncoding] ➜ CP1252

Adding Text
PDF text content is constructed using the [PDF_Text] tag, which is then
added to a [PDF_Doc] variable using the [PDF_Doc->Add] tag. The [PDF_Text]
constructor tag and parameters are described below.

5 7 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Table 10: [PDF_Text] Tag and Parameters

Tag Description

[PDF_Text] Creates a text object to be added to a [PDF_Doc]
variable. Requires the text string to be added to the PDF
document as the first parameter. Optional parameters
are listed below.

-Type Specifies the text type. This can be 'Chunk', 'Phrase',
or 'Paragraph'. Different parameters are available for
each of these types, as described below. Defaults to
the 'Paragraph' type if no -Type parameter is specified.
Optional.

-Color Sets the font color. Requires a hex color string as a
parameter (e.g '#550000'). Defaults to '#000000' if not
used. Optional.

-BackgroundColor Sets the text background color. Require a hex color
string as a parameter (e.g '#550000'). Optional.

-Underline Keyword parameter underlines the text. Optional.

-TextRise Sets the baseline shift for superscript. Requires a
decimal value that specifies the text rise in points.
Optional.

-Font Sets the font for the specified text. The value is a [PDF_
Font] variable, which is described in the Using Fonts
section of this chapter. The font defaults to the current
inherited font if no -Font parameter is specified.

-Anchor Links the specified text to a URL. The value
of the parameter is the URL string (e.g. 'http://
www.example.com'). Optional.

-Name Sets the name of an anchor destination within a page.
The value of the parameter is the anchor name
(e.g. 'Name'). Optional.

-GoTo Links the specified text to a local anchor destination to
go to. The value of the parameter is the local anchor
name (e.g. 'Name'). Optional.

-File Links the specified text to a PDF document. The value
of the parameter is a PDF file name (e.g. 'Somefile.pdf').
The -Goto parameter can be used concurrently to
specify an anchor name within the destination document.
Optional.

-Leading Sets the paragraph leading space in points (the space
above and below the text), and requires a decimal value.
For 'Phrase' and 'Paragraph' types only.

-Align Sets the alignment of the text in the page ('Left', 'Center',
or 'Right'). Optional.

5 7 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

-IndentLeft Sets the left indent of the text object. Requires a decimal
value which is the number of points to indent the text.
Optional. Available for 'Paragraph' types only.

-IndentRight Sets the right indent of the text object. Requires a
decimal value which is the number of points to indent
the text. Optional. Available for 'Paragraph' types only.

The following examples show how to add text to a defined PDF variable
named MyFile that has been initialized previously using the [PDF_Doc] tag.

To add a chunk of text:

Use the [PDF_Text] tag with the -Type='Chunk' parameter. The following
example adds the text OmniPilot to the [PDF_Doc] variable with a predefined
font. The text is positioned in the top left corner of the page by default.

[Var:'Text'=(PDF_Text:'OmniPilot', -Type='Chunk', -Font=$MyFont)]
[$MyFile->(Add: $Text)]

To add a paragraph of text:

Use the [PDF_Text] tag with the -Type='Paragraph' parameter. The following
example adds three sentences of text to the [PDF_Doc] variable with a
predefined font.

[Var:'Text'=(PDF_Text:'The mysterious file cabinet in orbit has been successfully
lassoed. The file cabinent had been traveling at a velocity of 300 meters per second.
Top scientists suspect that the cabinet had been in orbit for some time.',
-Type='Paragraph', -Font=$MyFont, -Leading=10.0, -IndentLeft=20.0)]

To add a linked phrase:

Use the [PDF_Text] tag with the -Anchor parameter. The following example
adds the text Click here to go somewhere to the [PDF_Doc] variable with a
predefined font, and links the phrase to http://www.example.com.

[Var:'Text'=(PDF_Text:'Click here to go somewhere', -Type='Chunk', -Font=$MyFont,
-Anchor='http://www.example.com', -Underline=true)]
[$MyFile->(Add: $Text, -Left=100.0, -Top=100.0)]

Adding Floating Text
Instead of adding text to the flow of the page, text can also be positioned
on a page using the [PDF_Doc->DrawText] tag. The [PDF_Doc->Drawtext] tag
accepts coordiates that allow the text to be placed at an absolute position
on the page.

5 7 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Table 11: [PDF_Doc->DrawText] Tag

Tag Description

[PDF_Doc->DrawText] Adds specified text that is positioned on a page using
point coordinates. A required -Leading parameter sets
the text leading space in points (the space above and
below the text), and requires a decimal value. A -Left
parameter specifies the placement of the left side of the
text from the left side of the page in points, and a -Top
parameter specifies the placement of the bottom of the
image from the bottom of the page in points (decimal
value).

To add floating text:

Use the [PDF_Doc->DrawText] tag. The following example adds the text
Some floating text to the [PDF_Doc] variable with a predefined font at the coor-
dinates specified in the -Top and -Left parameters. The coordinates represent
the distance in points from the lower and left sides of the page.

[$MyFile->(DrawText:'Some floating text', -Font=$MyFont,
 -Left=144.0, -Top=480.0)

Adding Lists
A list of items can be constructed using the [PDF_List] tag, which can be
added to a [PDF_Doc] variable. The [PDF_List] constructor tag and parameters
are described below.

Table 12: [PDF_List] Tags and Parameters

Tag Description

[PDF_List] Creates a list object to be added to a [PDF_Doc]
variable. Text list items are added to this object using the
[PDF_List->Add] tag. Optional parameters for this object
are described below.

-Format Specifies whether the list is numbered, lettered, or
bulleted. Requires a value of 'Number', 'Letter', 'Bullet'.
Defaults to 'Bullet' if no -Format parameter is specified.
Optional.

-Bullet Specifies a custom character to use as the bullet
character. Requires a character as a parameter (e.g. 'x').
Defaults to '•' if not specified. Optional.

-Indent Sets the space between the bullet and the list item.
Requires a decimal or integer parameter which is the
width of the indentation in points. Optional.

5 7 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

-Font Sets the font for the specified text. The value is a [PDF_
Font] variable, which is described in the Using Fonts
section of this chapter. The font defaults to the current
inherited font if no -Font parameter is specified.

-Align Sets the alignment of the list in the page ('Left', 'Center',
or 'Right'). Optional.

-Color Sets the font color. Requires a hex color string as a
parameter (e.g '#550000'). Defaults to '#000000' if not
used. Optional.

-BackgroundColor Sets the text background color. Require a hex color
string as a parameter (e.g '#550000'). Optional.

-Leading Sets the list leading space in points (the space above
and below the text), and requires a decimal value.
Optional.

[PDF_List->Add] Add objects to the list. Requires a text string or a [PDF_
Text] object as a parameter.

To add a numbered list:

Use the [PDF_List] tag with the -Format='Number' parameter to define the list,
and the [PDF_List->Add] tag to add items to the list. The example below
creates a numbered list with three items.

[Var:'List'=(PDF_List: -Format='Number', -Align='Center', -Font=$MyFont)]
[$List->(Add:'This is item one')]
[$List->(Add:'This is item two')]
[$List->(Add:'This is item three')]
[$MyFile->(Add: $List, -Top=400.0)]

To add a bulleted list:

Use the [PDF_List] tag with the -Format='Number' parameter to define the list,
and the [PDF_List->Add] tag to add items to the list. The example below adds
a numbered list with four items, where a hyphen (-) is used as the bullet
character.

[Var:'List'=(PDF_List: -Format='Bullet', -Bullet='-', -Font=$MyFont)]
[$List->(Add:'This is item one')]
[$List->(Add:'This is item two')]
[$List->(Add:'This is item three')]
[$List->(Add:'This is item four')]
[$MyFile->(Add: $List, -Top=400.0)]

5 7 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Special Characters
When adding text to a [PDF_Doc] object, special characters can be used to
designate lines breaks, tabs, and more. These characters are summarized in
Table 13: Special Characters.

Table 13: Special Characters

Character Description

\n Line break character (Mac OS X and Linux).

\r\n Line break character (Windows).

\t Tab character.

\" Double quote character.

\' Single quote character.

\\ Backslash character.

To use special characters in a text string:

The following example shows how to use special characters within a
[PDF_Doc] text tag.

[$MyFile->(Add: '\\ \t \'Single Quotes\', \"Double Quotes\" \t \\', -Font=$MyFont)]

Creating and Using Forms
Forms can be created in PDF documents for submitting information to a
Web site. PDF forms use the same attributes as HTML forms, making them
useful for submitting information to a Web site in place of an HTML form.
This section describes how to create form elements within a PDF file, and
also how PDF forms can be used to submit data to a Lasso-enabled data-
base.

Note: Due to the iText implementation of PDF support in Lasso Professional
7, PDF documents created may contain one form only.

Creating Forms
Form elements are created in [PDF_Doc] variables using [PDF_Doc] form
member tags, which are listed in Table 14: [PDF_Doc] Form Member
Tags.

5 7 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Table 14: [PDF_Doc] Form Member Tags

Tag Description

[PDF_Doc->AddTextField] Adds a text field to a form. A required -Name parameter
specifies the name of the text field, and a required
-Value parameter specifies the default value entered.
A required -Font parameter is used to specify a [PDF_
Font] variable forthe text font.

[PDF_Doc->AddPasswordField] Adds a password field to a form. A required -Name
parameter specifies the name of the password field, and
a required -Value parameter specifies the default value
entered. A required -Font parameter is used to specify a
[PDF_Font] variable for the text font.

[PDF_Doc->AddTextArea] Adds a text area to a form. A required -Name parameter
specifies the name of the text area, and a required
-Value parameter specifies the default value entered.
A required -Font parameter is used to specify a [PDF_
Font] variable for the text font.

[PDF_Doc->AddCheckBox] Adds a check box to a form. A required -Name
parameter specifies the name of the checkbox, and a
required -Value parameter specifies the value for the
checkbox. An optional -Checked parameter specifies that
the checkbox is checked by default.

[PDF_Doc->AddRadioGroup] Adds a radio button group to a form. A required -Name
parameter specifies the name of the radio button group.
Radio buttons must be assigned to the group using the
[PDF_Doc->AddRadioButton] tag.

[PDF_Doc->AddRadioButton] Adds a radio button to a form. A required -Group
parameter specifies the name of the radio button group,
and a required -Value parameter specifies the value of
the radio button.

[PDF_Doc->AddComboBox] Adds a pull-down menu to a form. A required -Name
parameter specifies the name of the pull-down menu,
and a required -Values parameter specifies the array of
values contained in the menu (Array: 'Value1', 'Value2').
An -Options parameter may be used instead of the
-Values parameter that specifies a pair for each value.
The first element in the pair is the value to be used upon
form submission, and the second element is the human-
readable label to be used for display only. An optional
-Default parameter specifies the name of a default value
selected. An optional -Editiable parameter specifies that
the user may edit the values on the menu. A required
-Font parameter is used to specify a [PDF_Font] variable
for the text font.

5 7 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

[PDF_Doc->AddSelectList] Adds a select list to a form. A required -Name parameter
specifies the name of the select list, and a required
-Values parameter specifies the array of values
contained in the select list (Array: 'Value1', 'Value2'). An
-Options parameter may be used instead of the -Values
parameter that specifies a pair data type for each value.
The first element in the pair is the value to be used upon
form submission, and the second element is the human-
readable label to be used for display only. An optional
-Default parameter specifies the name of a default value
selected. A required -Font parameter is used to specify a
[PDF_Font] variable for the text font.

[PDF_Doc->AddHiddenField] Adds a hidden field to a form. A required -Name
parameter specifies the name of the hidden field, and a
-Value parameter specifies the default value entered.

[PDF_Doc->AddSubmitButton] Adds a submit button to a form. Also specifies the URL
to which the form data will be submitted. A required
-Name parameter specifies the name of the button,
and a required -Value parameter specifies the name
displayed on the button. A required -URL parameter
specifies the URL of the response page. A -Font
parameter is used to specify a [PDF_Font] variable for
the button text font, and an optional -Caption parameter
specifies a caption (displayed name) for the button.

[PDF_Doc->AddResetButton] Adds a reset button to a form. A required -Name
parameter specifies the name of the button, and a
required -Value parameter specifies the name displayed
on the button. A -Font parameter is used to specify
a [PDF_Font] variable for the button text font, and
an optional -Caption parameter specifies a caption
(displayed name) for the button.

Field Label Note: With the exception of the [PDF_Doc->AddSubmitButton] and
[PDF_Doc->AddSubmitButton] tags, no form input element tags include captions
or labels with the field elements. Field captions and labels can be applied
using the [PDF_Text] and [PDF_Doc->Add] tags to position text appropriately. See
the Creating Text Content section for more information.

All [PDF_Doc] form member tags, with the exception of
[PDF_Doc->AddHiddenField], require placement parameters for specifying the
exact positioning of form elements within a page. These parameters are
summarized in Table 15: Form Placement Parameters.

5 7 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Table 16: Form Placement Parameters

Tag Description

-Left Specifies the placement of the left side of the form
element from the left side of the current page in points.
Requires a decimal value. Optional.

-Top Specifies the placement of the bottom of the form
element from the bottom of the current page in points.
Requires a decimal value. Optional.

-Width Specifies the width of the form element in points.
Requires a decimal value. Optional.

-Height Specifies the height of the form element in points.
Requires a decimal value. Optional.

To add a text field:

Use the [PDF_Doc->AddTextField] tag. The example below adds a field named
Field_Name that has Some Text entered by default. The field size is 144.0
points (two inches) wide and 36.0 points high.

[$MyFile->(AddTextField: -Name='Field_Name',
 -Value='Some Text',
 -Font=$MyFont,
 -Left=72.0, -Top=350.0, -Width=144.0, -Height=36.0)]

To add a text area:

Use the [PDF_Doc->AddTextArea] tag. The example below adds a text area
named Field_Name that has the text Insert default text here entered by default.
The field size is 144.0 points wide and 288.0 points high.

[$MyFile->(AddTextArea: -Name='Field_Name',
 -Value='Insert default text here',
 -Font=$MyFont,
 -Left=72.0, -Top=300.0, -Width=144.0, -Height=288.0)]

To add a checkbox:

Use the [PDF_Doc->AddCheckbox] tag. The example below adds a field named
Field_Name with a checked value of Checked_Value that is checked by default.
The checkbox is 4.0 points wide and 4.0 points high, and is positioned
272.0 points from the bottom and left sides of the page.

[$MyFile->(AddCheckBox: -Name='Field_Name',
 -Value='Checked_Value',
 -Checked,
 -Left=272.0, -Top=272.0, -Width=4.0, -Height=4.0)]

5 7 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

To add a group of radio buttons:

Use the [PDF_Doc->AddRadioGroup] and [PDF_Doc->AddRadioButton] tags. The
example below adds a radio button group named Group_Name, and adds
two radio buttons with the values of Yes and No. The radio buttons are 6.0
points wide and 6.0 points high each.

Note: If the [PDF_Doc->AddRadioGroup] tag is not used, then radio buttons will
not appear in the form.

[$MyFile->(AddRadioGroup: -Name='Group_Name')]
[$MyFile->(AddRadioButton: -Group='Group_Name',
 -Value='Yes',
 -Left=72.0, -Top=372.0, -Width=6.0, -Height=6.0)]
[$MyFile->(AddRadioButton: -Group='Group_Name',
 -Value='No',
 -Left=90.0, -Top=372.0, -Width=6.0, -Height=6.0)]

To add an editable pull-down menu:

Use the [PDF_Doc->AddComboBox] tag. The example below adds a pull-down
menu named Menu_Name with the values One, Two, Three, and Four as menu
values. The value One is selected by default, and an -Editable parameter
allows the users to edit the values if desired. The pull-down menu size is
144.0 points wide and 36.0 points high.

[$MyFile->(AddComboBox: -Name='List_Name',
 -Values=(Array: 'One', 'Two', 'Three', 'Four'),
 -Default='One',
 -Editable,
 -Left=72.0, -Top=272.0, -Width=144.0, -Height=36.0)]

To add a pull-down menu with different displayed values:

Use the [PDF_Doc->AddComboBox] tag with the -Options parameter instead of
the -Values parameter. The example below adds a pull-down menu named
Menu_Name with the values 1, 2, 3, and 4 as submitable menu values, but
displays the names One, Two, Three, and Four for each value. No value is
selected by default.

[$MyFile->(AddComboBox: -Name='List_Name',
 -Values=(Array: (Pair: (1)=(One)),
 (Pair: (2)=(Two)),
 (Pair: (3)=(Three)),
 (Pair: (4)=(Four))),
 -Left=72.0, -Top=272.0, -Width=144.0, -Height=36.0)]

5 7 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

To add a select list:

Use the [PDF_Doc->AddSelectList] tag. The example below adds a select list
named List_Name with the values One, Two, Three, and Four as list items. The
select list is 144.0 points wide and 288.0 points high, and is positioned 72.0
points from the bottom and left sides of the page.

[$MyFile->(AddSelectList: -Name='List_Name',
 -Values=(Array: 'One', 'Two', 'Three', 'Four'),
 -Default='One',
 -Left=72.0, -Top=72.0, -Width=144.0, -Height=288.0)]

To add a hidden field:

Use the [PDF_Doc->AddHiddenField] tag. The example below adds a hidden
field named Field_Name with a value of Hidden_Value to a [PDF_Doc] variable
named MyFile. No placement coordinates are needed because the field is
not displayed on the page.

[$MyFile->(AddHiddenField: -Name='Field_Name',
 -Value='Some_Value')]

To add a submit button:

Use the [PDF_Doc->AddSubmitButton] tag. The example below
adds a submit button named Button_Name with a value of
Submited_Value. The -URL parameter specifies that the user will be taken to
http://www.example.com/responsepage.lasso when the button is selected in the
form. A -Caption parameter specifies the displayed name of the button,
which is Submit This Form.

[$MyFile->(AddSubmitButton: -Name='Button_Name',
 -Value='Submited_Value',
 -URL='http://www.example.com/responsepage.lasso',
 -Caption='Submit This Form',
 -Left=72.0, -Top=72.0, -Width=144.0, -Height=36.0)]

To add a reset button:

Use the [PDF_Doc->AddResetButton] tag. The example below adds a submit
button named Button_Name with a value of Submited_Value. A -Caption param-
eter specifies the displayed name of the button, which is Reset This Form.

[$MyFile->(AddResetButton: -Name='Button_Name',
 -Value='Submited_Value',
 -Caption='Reset This Form',
 -Left=72.0, -Top=72.0, -Width=144.0, -Height=36.0)]

5 8 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Submitting Form Data to Lasso-Enabled Databases
In Lasso Professional 7, one has the ability to submit data from a PDF
form to a Lasso-enabled database. PDF forms may be used in the same way
as HTML forms to submit action parameters to an LDML response page,
where database actions can occur via an [Inline] tag.

The following example shows the HTML form example in Chapter 6:
Database Interaction Fundamentals > Inline Method as it would appear
in a [PDF_Doc] variable in a Form.lasso page.

To submit information to database using a PDF form:

 1 In the Form.lasso page, name the PDF form fields to correspond to the
names of fields in the desired database. The names of these fields will be
used in the [Inline] tag in the LDML response page.

[Var:'MyFile'=(PDF_Doc: -File='Form.pdf', -Size='A4')]
[Var:'MyFont'=(PDF_Font: -Face='Helvetica', -Size=12)]
[$MyFile->(DrawText: 'First Name:', -Font=$MyFont, -Left=80.0, -Top=60.0)]
[$MyFile->(DrawText: 'Last Name:', -Font=$MyFont, -Left=80.0, -Top=60.0)]
[$MyFile->(AddTextField: -Name='First Name',
 -Value='Enter First Name',
 -Left=144.0, -Top=72.0, -Width=144.0, -Height=36.0)]
[$MyFile->(AddTextField: -Name='Last Name',
 -Value='Enter Last Name',
 -Left=144.0, -Top=92.0, -Width=144.0, -Height=36.0)]

 2 Create a submit button in the Form.lasso page that contains the name
and URL of the LDML response page.

[$MyFile->(AddSubmitButton: -Name='Search',
 -Value='Search',
 -Caption='Click here to Search',
 -URL='http://www.example.com/Response.lasso',
 -Font=$MyFont)]
[$MyFile->Close]

 After the [PDF_Doc] variable is closed and executed on the server, a
Form.pdf file will be created with a form.

 3 In the Response.lasso page, create an [Inline] tag that uses the action
parameters passed from the PDF form to perform a database action.
This example performs a search on the Contacts database using the
First_Name and Last_Name parameters passed from the PDF form.

[Inline: -Search,
-Database='Contacts',
-Table='People',
-KeyField='ID',
'First_Name'=(Action_Param: 'First_Name'),

5 8 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

'Last_Name'=(Action_Param: 'Last_Name')]
There were [Found_Count] record(s) found in the People table.
[Records]

[Field: 'First_Name'] [Field: 'Last_Name']
[/Records]
[/Inline]

If the user of the PDF form entered Jane for the first name and Doe for the
last name, then the following results would be returned.

➜ There were 1 record(s) found in the People table.
Jane Doe

Creating Tables
Tables can be created in PDF documents for displaying data. These are
created using the [PDF_Table] tag, and added to a PDF variable using
[PDF_Doc] member tags, which are described in this section.

Defining Tables
Tables for organizing data can be defined for use in a PDF document using
the [PDF_Table] tag. This tag is used to set a variable as a [PDF_Table] type,
and the [PDF_Table] variable is then added to a [PDF_Doc] variable.

Table 17: [PDF_Table] Tag and Parameters

Tag Description

[PDF_Table] Creates a table to be placed in a PDF. Uses parameters
which set the basic specifications of the table to be
created.

-Cols Specifies the number of columns in a table. Required.

-Rows Specifies the number of rows in a table. Required.

-Spacing Specifies the spacing around a table cell. Defaults to 0
(no spacing) if not specified. Optional.

-Padding Specifies the padding within a table cell. Defaults to 0
(no padding) if not specified. Optional.

-Width Specifies the width of the table as a percentage of the
current page width. Defaults to the width of the cell
text plus spacing, padding, and borders if not specified.
Optional.

-BorderWidth Specifies the border width of the table in points.
Requires a decimal value. Optional.

5 8 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

-BorderColor Specifies the border color of the table. Requires a hex
color string (e.g. '#000000'). Optional.

-BackgroundColor Specifies the background color of the table. Requires a
hex color string (e.g. '#CCCCCC'). Optional.

-ColWidth Sets the column width for each column in the table.
Requires an array of decimals representing the width
percentage of each column. Optional.

Member tags can be used to set additional specifications for a [PDF_Table]
variable, as well as access parameter values from [PDF_Table] variables. These
tags are summarized in Table 18: [PDF_Table] Member Tags.

Table 18: [PDF_Table] Member Tags

Tag Description

[PDF_Table->GetColumnCount] Returns the number of columns in a [PDF_Table]
variable.

[PDF_Table->GetRowCount] Returns the number of rows in a [PDF_Table] variable.

[PDF_Table->GetAbsWidth] Returns the total [PDF_Table] variable width in pixels.

To create a basic table:

Use the [PDF_Table] tag. The example below creates a table with two
columns and five rows, with table cell spacing of one point and cell
padding of two points. The width of the table is set at 75 percent of the
current page width.

[Var:'MyTable'=(PDF_Table: -Cols=2,
 -Rows=5,
 -Spacing=1,
 -Padding=2,
 -Width=75,
 -BackgroundColor='#CCCCCC')]

To create a table with a border:

Use the [PDF_Table] tag with the -Border... parameters. The example below
creates a basic table, and then adds a black border with a width of 3 points
to the table.

[Var:'MyTable'=(PDF_Table: -Cols=2,
 -Rows=5,
 -Spacing=1,
 -Padding=2,
 -BorderWidth=3,
 -BorderColor='#000000')]

5 8 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

To rotate a table:

Use the [PDF_Table] tag with the -Rotate parameter The example below
creates a basic table, and then rotates it by 90 degrees clockwise.

[Var:'MyTable'=(PDF_Table: -Cols=2,
 -Rows=5,
 -Spacing=1,
 -Padding=2,
 -Rotate=90)]

To create a table with pre-specified column widths:

Use the [PDF_Table] tag with the -ColWidth parameter The example below
creates a basic table with percentage widths for three columns.

[Var:'MyTable'=(PDF_Table: -Cols=2,
 -Rows=5,
 -Spacing=1,
 -Padding=2,
 -ColWidth=(Array: '50.0', '25.0', '25.0'))]

Adding Content to Table Cells
Content is added to table cells using additional [PDF_Table] member tags
These tags are summarized in Table 19: Cell Content Tags.

Table 19: Cell Content Tags

Tag Description

[PDF_Table->Add] Inserts text content or a new nested table into a cell.
Requires a text string or a new [PDF_Table] variable to
be inserted as a parameter. Also requires parameters
described in the following table.

-Col Specifies the column number starting from 0 (numbered
from left to right) of the cell to add or remove. Requires
an integer value. Required.

-Row Specifies the row number starting from 0 (numbered
from top to bottom) of the cell to add or remove.
Requires an integer value. Required.

-Colspan Specifies the number of columns a cell should span.
Requires an integer value. Required.

-Rowspan Specifies the number of rows a cell should span.
Requires an integer value. Required.

-VerticalAlignment Vertical alignment for text within a cell. Accepts a value
of 'Top', 'Center', or 'Bottom'. Defaults to 'Center' if not
specified. Optional.

5 8 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

-HorizontalAlignment Horizontal alignment for text within a cell. Accepts a
value of 'Left', 'Center', or 'Right'. Defaults to 'Center' if
not specified. Optional.

-BorderColor Specifies the border color for the cell (e.g. '#440000').
Defaults to '#000000' if not specified. Optional.

-BorderWidth Specifies the border width of the cell in points. Requires
a decimal value. Defaults to 0 if not specified. Optional.

-Header Specifies that the cell is a table header. This is typically
used for cells in the first row. Optional.

-NoWrap Specifies that the text contained in a cell should not wrap
to conform to the cell size specifications. If used, the cell
will expand to the right to accomodate longer text strings.
Optional.

To add a cell to a table:

Use the [PDF_Table->Add] tag. The example below adds a cell to the first row
and column in a table. Note that the first row and column are numbered 0.

[$MyTable->(Add: 'This is the first cell in my table', -Col=0, -Row=0, -Colspan=0, -
Rowspan=0]

To add a multi-column cell to a table:

Use the [PDF_Table->Add] tag with the number of columns to span for the
-Column parameter. The example below adds a cell to the first row that
spans three columns. The -NoWrap parameter is used to indicate that the
added text will not be wrapped into multiple lines.

[$MyTable->(Insert: 'This text will only stay on one line regardless of the table size',
-Col=0, -Row=0, -Colspan=3, -Rowspan=1, -NoWrap)]

To add a header cell to a table:

Use the [PDF_Table->Add] tag with the -Header parameter. The example below
adds the header My Column Title to the first column of the table.

[$MyTable->(Add: 'My Column Title', -Col=0, -Row=0, -Colspan=0, -Rowspan=0, -
Header]

To add a cell with a border to a table:

Use the [PDF_Table->Add] tag with the -BorderWidth and -BorderColor parameter.
The example below adds a cell with a red border to the first column of the
table.

[$MyTable->(Add: 'This cell has a border', -Col=0, -Row=0, -Colspan=0,
-Rowspan=0, -BorderWidth=45.0, -BorderColor='#440000']

5 8 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Adding Tables
Once a [PDF_Table] object is completely defined and has cell content, it may
then be added to a [PDF_Doc] objects using the [PDF_Doc->Add] tag.

To add a table to a [PDF_Doc] variable:

Use the [PDF_Doc->Add] tag. The following example adds a predefined
[PDF_Table] variable named MyTable to a [PDF_Doc] variable named MyFile.

[$MyFile->(Add: $MyTable)]

Creating Graphics
This section describes how to draw custom graphic objects and insert
image files within a PDF document.

Inserting Images
Image files can be placed within PDF pages via the [PDF_Doc->AddImage] tag,
which is summarized in Table 20: [PDF_Doc] Image Tag.

Table 20: [PDF_Image] Tag and Parameters

Tag Description

[PDF_Image] Casts an image file as an LDML object so it can be
placed in a PDF file. Requires either a -File, -URL, or
-Raw parameter, as described below. Only images in
JPEG, GIF, PNG, and WMF formats may be used.

-File Specifies the local path to an image file. Required if the
-URL or -Raw parameters are not used.

-URL Specifies a URL to an image file. Required if the -File or
-Raw parameters are not used.

-Raw Inputs a raw string of bits representing the image.
Required if the -URL or -File parameters are not used.

-Height Scales the image to the specified height. Requires a
decimal value which is the desired image height in
points. Optional.

-Width Scales the image to the specified width. Requires a
decimal value which is the desired image width in points.
Optional.

-Proportional Keyword parameter specifying that all scaling should
preserve the aspect ratio of the inserted page. Optional.

-Rotate Rotates the image by the specified degrees clockwise.
Optional.

5 8 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

To add an image file to a [PDF_Doc] variable:

Use the [PDF_Image] tag. The following example adds a file named Image.jpg
in a /Documents/Images/ folder to a [PDF_Doc] variable named MyFile.

[Var:'Image'=PDF_Image: -File='/Documents/Images/Image.jpg')]
[$MyFile->(Add: $Image, -Left=144.0, -Top=300.0)]

To scale image file:

Use the [PDF_Image] tag with the -Height or -Width parameter. The following
example proportionally reduces the size of the added image by 50%.

[Var:'Image'=PDF_Image: -File='/Documents/Images/Image.jpg', -Height=50.0)]
[$MyFile->(Add: $Image, -Left=144.0, -Top=300.0)]

To rotate an image file :

Use the [PDF_Image] tag with the -Rotate parameter. The following example
rotates the added image by 90 degrees clockwise.

[Var:'Image'=PDF_Image: -File='/Documents/Images/Image.jpg', -Rotate=90.0)]
[$MyFile->(Add: $Image, -Left=144.0, -Top=300.0)]

Drawing Graphics
To draw custom graphics, Lasso uses a coordinate system to determine the
placement of each graphical object. This coordinate system is a standard
coordinate plane with horizontal (X) vertical (Y) axis, where a point on
a page is defined by an array containing horizontal and vertical position
values (X, Y). The base point of the coordinate plane (0, 0) is located in the
lower left corner for the current page. Increasing an X-Value moves a point
to the right in the page, and increasing the Y-Value moves the point up in
the page. The maximum X and Y values are defined by the current width
and height of the page in points.

Custom graphics may be drawn in PDF pages using [PDF_Doc] drawing
member tags. These member tags operate by controlling a “virtual pen”
which draws graphics similar to a true graphics editor. These member tags
are summarized in Table 21: [PDF_Doc] Drawing Member Tags.

5 8 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Table 21: [PDF_Doc] Drawing Member Tags

Tag Description

[PDF_Doc->SetColor] Sets the color and style for subsequent drawing
operations. A required 'Type' parameter specifies
whether the drawing action is of type Stroke, Fill, or
Both. A required 'Color' parameter specifies a color type
of Gray, RGB, or CMYK. If Gray is specified, a decimal
specifies a color strength value. If RGB is specified,three
decimal values specifiy red, green and blue values,
respectively. If CMYK is specified, four decimal values
specifiy cyan, magenta, yellow, and black values,
respectively. Color values are specified as decimals
ranging from 0 to 1.0.

[PDF_Doc->SetLineWidth] Sets the line width for subsequent drawing actions in
points. Requires a decimal point value.

[PDF_Doc->MoveTo] Moves the virtual pen to the specified coordinates. This
tag is required to move the virtual pen into the correct
position before drawing a line or a curve. Requires
a string of integer X-axis and Y-axis coordinates to
designate the starting point (X, Y).

[PDF_Doc->Line] Draws a line. Requires a string of integer points which
specifies the starting point and ending point of the line
(X1, Y1, X2, Y2).

[PDF_Doc->CurveTo] Draws a curve. Requires a string of integer points which
specifies the starting point, middle point, and ending
point of the curve (X1, Y1, X2, Y2, X3, Y3).

[PDF_Doc->Rect] Draws a rectangle. Requires a string of X and Y integer
points which specifies the lower right corner of the
rectangle, and the height and width of the rectangle
sides from that coordinate (X, Y, Width, Height).

[PDF_Doc->Circle] Draws a circle. Requires a string of integer points for the
center coordinates and a radius length value (X, Y, R).

[PDF_Doc->Arc] Draws an arc. Requires a string of integer points for the
center coordinates and radius of the invisible circle to
which the arc belongs, a starting degree which specifies
the degrees of the circle at which the arc starts, and
an ending degree which specifies the circle degrees at
which the arc ends (X, Y, R, Start, End). Angles start
with 0 to the right of the center and increase counter-
clockwise.

To set the color and style for a drawing action:

Use the [PDF_Doc->SetColor] tag. The example below sets a color of red for
all subsequent drawing action until another [PDF_Doc->SetColor] tag is set.

5 8 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

[$MyFile->(SetColor: 'Stroke', 'RBG', 0.9, 0.1, 0.1)]

To set the line width of a drawing action:

Use the [PDF_Doc->SetLineWidth] tag. The example below sets a line
width of 5 points for all subsequent drawing action until another
[PDF_Doc->SetLineWidth] tag is set.

[$MyFile->(SetLineWidth: 5.0)]

To draw a line:

Use the [PDF_Doc->Line] tag. The example below draws a horizontal line
from points (8, 8) to points (32, 32). The [PDF_Doc->MoveTo] tag must first be
used to move the virtual pen to the starting point coordinates.

[$MyFile->(MoveTo: 8, 8)]
[$MyFile->(Line: 8, 8, 32, 32)]

To draw a curve:

Use the [PDF_Doc->CurveTo] tag. The example below draws a curve starting
from points (8, 8), peaking at points (32, 32), and ending at points (56, 8).
The [PDF_Doc->MoveTo] tag must first be used to move the virtual pen the
starting point coordinates.

[$MyFile->(MoveTo: 8, 8)]
[$MyFile->(CurveTo: 8, 8, 32, 32, 56, 8)]

To draw a rectangle:

Use the [PDF_Doc->Rect] tag. The example below draws a rectangle whose
lower left corner is at coordinates (10, 60), has left and right sides that are
50 points long, and has top and bottom sides that are 20 point long.

[$MyFile->(Rect: 10, 60, 20, 50)]

To draw a circle:

Use the [PDF_Doc->Circle] tag. The example below draws a circle whose
center is at coordinates (50, 50) and has a radius of 20 points.

[$MyFile->(Circle: 50, 50, 20)]

To draw an arc:

Use the [PDF_Doc->Arc] tag. The example below draws an arc whose center is
at coordinates (50, 50), has a radius of 20 points, and runs from 0 degrees to
90 degrees from the center.

[$MyFile->(Arc: 50, 50, 20, 0, 90)]

5 8 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Creating Barcodes
Barcodes are special device-readable images that can be created in PDF
documents using the [PDF_Barcode] tag, and added to a PDF variable
using [PDF_Doc] member tags, which are described in this section. Lasso
Professional 7 can be used to create the following industry-standard
barcodes:

 • Code 39 (alphanumeric, ASCII subset)

 • Code 39 Extended (alphanumeric, escaped text)

 • Code 128

 • Code 128 UCC/EAN

 • Code 128 Raw

 • EAN (8 digits)

 • EAN (13 digits)

 • POSTNET

 • PLANET

Creating Bar Codes
Barcodes can be defined for use in a PDF file using the [PDF_Barcode]
tag. This tag is used to set a variable as a [PDF_Barcode] type, and the
[PDF_Barcode] variable is added to a [PDF_Doc] variable using member tags.

Table 22: [PDF_Barcode] Tag and Parameters

Tag Description

[PDF_Barcode] Creates a barcode image to be placed in a PDF. Uses
parameters which set the basic specifications of the
barcode to be created.

-Type Specifies the type of barcode to be created. Available
parameters are CODE39, CODE39_EX, CODE128,
CODE128_UCC, CODE128_RAW, EAN8, EAN13,
POSTNET, and PLANET. Defaults to CODE39 if not
specified.

-Code Specifies the numeric or alphanumeric barcode data.
Some formats require specific data strings: EAN8
requires an 8-digit integer, EAN13 requires a 13-digit
integer, POSTNET requires a zip code, and Code39
requires uppercase characters. Required.

-Color Specifies the color of the bars in the barcode. Requires
a hex string color value. Defaults to '#000000' if not
specified. Optional.

5 9 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

-Supplemental Adds an additional two or five digit supplemental barcode
to EAN8 or EAN13 barcode types. Requires a two or five
digit integer as a parameter. Optional.

-GenerateChecksum Generates a checksum for the barcode. Optional.

-ShowCode39StartStop Displays start and stop characters (*) in the text for Code
39 barcodes. Optional.

-ShowEANGuardBars Show the guard bars for EAN barcodes. Optional.

-BarHeight Sets the height of the bars in points. Requires a decimal
value.

-BarWidth Sets the width of the bars in points. Requires a decimal
value.

-BaseLine Sets the text baseline in points. Requires a decimal
value.)

-ShowChecksum Keyword parameter sets the generated checksum to be
shown in the text

-Font Sets the text font. Requires a [PDF_Font] variable.

-BarMultiplier Sets the bar multiplier for wide bars. Requires a decimal
value.

-TextSize Sets the size of the text. Requires a decimal value.

To create a barcode:

Use the [PDF_Barcode] tag. The example below creates a basic Code 39
barcode with the data 1234567890, and uses the optional Code 39 start and
stop characters (*). The barcode is then added to a [PDF_Doc] variable using
[PDF_Doc->Add].

[Var:'Barcode'=(PDF_Barcode:
-Type='CODE39',
-Code='1234567890',
-ShowCode39StartStop)]
[$MyPDF->(Add: $Barcode, -Left=150.0, -Top=100.0)]

To create a barcode with a specified bar width:

Use the [PDF_Barcode] tag with the -BarWidth parameter. The following
example sets a [PDF_Barcode] variable with a bar width of 0.2 points.

[Var:'Barcode'=(PDF_Barcode:
-Type='CODE39',
-Code='1234567890',
-BarWidth=0.2)]
[$MyPDF->(Add: $Barcode, -Left=150.0, -Top=100.0)]

5 9 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

To create a barcode with a specified bar multiplier:

Use the [PDF_Barcode] tag with the -BarMultiplier parameter. The following
example sets a [PDF_Barcode] variable with a bar multiplier constant of 4.0.
The barcode is then added to a [PDF_Doc] variable using [PDF_Doc->Add].

[Var:'Barcode'=(PDF_Barcode:
-Type='CODE39',
-Code='1234567890',
-BarMultiplier=4.0)]
[$MyPDF->(Add: $Barcode, -Left=150.0, -Top=100.0)]

To create a barcode with a specified text size:

Use the [PDF_Barcode] tag with the -TextSize parameter. The following
example sets a [PDF_Barcode] variable with a text size of 6 points. The
barcode is then added to a [PDF_Doc] variable using [PDF_Doc->Add].

[Var:'Barcode'=(PDF_Barcode:
-Type='CODE39',
-Code='1234567890',
-TextSize=6)]
[$MyPDF->(Add: $Barcode, -Left=150.0, -Top=100.0)]

To create a barcode with a specified font:

Use the [PDF_Barcode] tag with the -Font parameter. The following example
sets a [PDF_Barcode] variable font specified in a [PDF_Font] variable
named MyFont. The barcode is then added to a [PDF_Doc] variable using
[PDF_Doc->Add].

[Var:'Barcode'=(PDF_Barcode:
-Type='CODE39',
-Code='1234567890',
-Font=$MyFont)]
[$MyPDF->(Add: $Barcode, -Left=150.0, -Top=100.0)]

Example PDF Files
This section provides complete examples of creating PDF files using the
tags described in this chapter. Examples include a two-page PDF file with
multiple text styles, a PDF file with a form, a PDF file with a table, a PDF
file with drawn graphics, and a PDF file with a barcode.

Special Characters Note: All examples in this section use the Mac OS X line
break character \n in the text sections. If creating PDF files on the Windows
or Linux version of Lasso Professional 7, change all instances of \n to \r\n for
Windows, or \r for Linux.

5 9 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

PDF Text Example
The following example creates a PDF file that contains two pages of text
with multiple text styles.

[Var:'Text_Example'=(PDF_Doc: -File=’Text_Example.pdf', -Size='A4')]
[$Text_Example->AddPage]
[$Text_Example->(SetPageNumber: 1)]
[Var:’Font1’=(PDF_Font: -Face=’Helvetica’, -Size=’24’, -Color=’#990000’)]
[Var:’Font2’=(PDF_Font: -Face=’Helvetica’, -Size=’14’, -Color=’#000000’)]
[Var:’Font3’=(PDF_Font: -Face=’Helvetica’, -Size=’14’, -Color=’#0000CC’)]
[Var:’Title’=(PDF_Text: ‘Lasso Professional 7’, -Type=’Chunk’, -Font=$Font1)]
[$Text_Example->(Add: $Title, -Number=1)]
[Var:’Text1’=(PDF_Text:’\n\nThe Lasso product line consists of authoring and serving
tools that allow Web designers and Web developers to quickly build and serve
powerful data-driven Web sites with maximum productivity and ease. The product
line includes Lasso Professional for building, serving, and administering data-driven
Web sites, and Lasso Studio for building and testing data-driven Web sites within a
graphical editor.\n\nLasso Professional 7 works with the following data sources:’,
-Type=’Paragraph’, -Leading=15, -Font=$Font2)]
[$Text_Example->(Add: $Text1)]
[Var:’List’=(PDF_List: -Format=’Bullet’, -Bullet=’-’, -Font=$Font2, -Indent=30)]
[$List->(Add:’FileMaker Pro’)]
[$List->(Add:’MySQL’)]
[$List->(Add:’Microsoft SQL Server’)]
[$List->(Add:’Frontbase’)]
[$List->(Add:’Sybase’)]
[$List->(Add:’PostgreSQL’)]
[$List->(Add:’DB2’)]
[$List->(Add:’Plus many other JDBC-compliant databases’)]
[$Text_Example->(Add: $List)]
[Var:’Text2’=(PDF_Text:’\nLasso\’s innovative architecture provides an industry first
multi-platform, database-independent and open standards approach to delivering
database-driven Web sites firmly positioning Lasso technology within the rapidly
evolving server-side Web tools market. Lasso technology is used at hundreds of
thousands of Web sites worldwide.\n\n’, -Type=’Paragraph’, -Font=$Font2)]
[$Text_Example->(Add: $Text2)]
[Var:’Text3’=(PDF_Text:’Click here to go to the OmniPilot Web site’, -Type=’Phrase’,
-Font=$Font3, -Underline=’true’, -Anchor=’http://www.blueworld.com’)]
[$Text_Example->(Add: $Text3)]
[$Text_Example->(DrawText: (String: $Text_Example->GetPageNumber),
-Font=$Font2, -Top=30, -Left=560)]
[$Text_Example->AddPage]
[$Text_Example->(SetPageNumber: 2)]
[Var:’Text4’=(PDF_Text:’Lasso Professional 7 is server-side software that adds a suite
of dynamic functionality and administration to your Web server. This functionality
empowers you to build and serve just about any dynamic Web application that can
be built with maximum productivity and ease.\n\n’, -Type=’Paragraph’, -Leading=15,
-Font=$Font2)]

5 9 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

[$Text_Example->(Add: $Text4)]
[Var:’Text5’=(PDF_Text:’Lasso works by using a simple tag-based markup language
(LDML), which can be embedded in Web pages and scripts residing on your Web
server. The details of scripting and programming in LDML are covered in the Lasso
6 Language Guide also included with this product. By default, Lasso Professional 7
is designed to run on the most prevalent modern Web server platforms with the most
popular Web serving applications. In addition, Lasso’s extensibility allows Web Server
Connectors to be authored for any Web server for which default connectivity is not
provided.\n\n’, -Type=’Paragraph’, -Leading=15, -Font=$Font2)]
[$Text_Example->(Add: $Text5)]
[$Text_Example->(DrawText: (String: $Text_Example->GetPageNumber),
-Font=$Font2, -Top=30, -Left=560)]
[$Text_Example->Close]

PDF Form Example
The following example creates a PDF file that contains both text and a
form.

<?LassoScript
Var: ‘Form_Example’ = (PDF_Doc: -File=’Form_Example.pdf’, -Size=’A4’);
Var: ‘myFont’ = (PDF_Font: -Face=’Helvetica’, -Size=’12’);
$Form_Example->(AddText:’This PDF file contains a form. See below.\n’,
 -Font=$myFont);
$Form_Example->(DrawText: ‘Select List’, -Font=$myFont, -Left=90, -Top=116);
$Form_Example->(AddSelectList: -Name=’mySelectList’, -Values=(Array: ‘one’,
 ‘two’, ‘three’, ‘four’), -Default=’one’, -Left=216, -Top=104, -Width=144, -Height=72,
 -Font=$myFont);
$Form_Example->(DrawText: ‘Pull-Down Menu’, -Font=$myFont, -Left=90, -Top=200);
$Form_Example->(AddComboBox: -Name=’myComboBox’, -Values=(Array: ‘one’,
 ‘two’, ‘three’, ‘four’), -Default=’one’, -Left=216, -Top=188, -Width=144, -Height=18,
 -Font=$myFont);
$Form_Example->(DrawText: ‘Text Area’, -Font=$myFont, -Left=90, -Top=238);
$Form_Example->(AddTextArea: -Name=’myTextArea’, -Value=’Some text’, -Left=216,
 -Top=230, -Width=144, -Height=72, -Font=$myFont);
$Form_Example->(DrawText: ‘Password Field’, -Font=$myFont, -Left=90, -Top=334);
$Form_Example->(AddPasswordField: -Name=’myPassword’, -Value=’***’, -Left=216,
 -Top=322, -Width=144, -Height=18, -Font=$myFont);
$Form_Example->(DrawText: ‘Text Field’, -Font=$myFont, -Left=90, -Top=368);
$Form_Example->(AddTextField: -Name=’myTextField’, -Value=’Some More Text’,
 -Left=216, -Top=360, -Width=144, -Height=18, -Font=$myFont);
$Form_Example->(AddHiddenField: -Name=’myHiddenField’, -Value=’Shh’);
$Form_Example->(AddSubmitButton: -URL=’http://www.example.com/response.lasso’,
 -Name=’myButton’, -Value=’Submit’, -Caption=’Submit Form’, -Left=216, -Top=400,
 -Width=100, -Height=26, -Font=$myFont);
$Form_Example->(AddResetButton: -Name=’Reset’, -Value=’Reset’,

5 9 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

 -Caption=’Reset Form’, -Left=365, -Top=400, -Width=100, -Height=26,
 -Font=$myFont);
$Form_Example->Close;
?>

PDF Table Example
The following example creates a PDF file that contains both text and a
table.

[Var:'Table_Example'=(PDF_Doc: -File='Table_Example.pdf',
 -Size='A4')]
[Var:'Font1'=(PDF_Font: -Face='Helvetica',
 -Size='24')]
[Var:'Font2'=(PDF_Font: -Face='Helvetica',
 -Size='12')]
[Var:'Text'=(PDF_Text:'This PDF file contains a table. See below.\n\n',
 -Leading=15,
 -Font=$Font1)]
[Var:'Cell1'=(PDF_Text:'Cell One', -Font=$Font2)]
[Var:'Cell2'=(PDF_Text:'Cell Two', -Font=$Font2)]
[Var:'Cell3'=(PDF_Text:'Cell Three', -Font=$Font2)]
[Var:'Cell4'=(PDF_Text:'Cell Four', -Font=$Font2)]
[$Table_Example->(Add: $Text)]
[Var:'MyTable'=(PDF_Table: -Cols=2,
 -Rows=2,
 -Spacing=4,
 -Padding=4,
 -Width=75,
 -BorderWidth=7)]
[$MyTable->(Add: $Cell1, -Col=0, -Row=0,
 -Colspan=1, -Rowspan=1,
 -VerticalAlignment='Center',
 -HorizontalAlignment='Center',
 -BorderWidth=4)]
[$MyTable->(Add: $Cell2, -Col=0, -Row=1,
 -Colspan=1, -Rowspan=1,
 -VerticalAlignment='Center',
 -HorizontalAlignment='Center',
 -BorderWidth=4)]
[$MyTable->(Add: $Cell3, -Col=1, -Row=0,
 -Colspan=1, -Rowspan=1,
 -VerticalAlignment='Center',
 -HorizontalAlignment='Center',
 -BorderWidth=4)]
[$MyTable->(Add: $Cell4, -Col=1, -Row=1,
 -Colspan=1, -Rowspan=1,
 -VerticalAlignment='Center',

5 9 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

 -HorizontalAlignment='Center',
 -BorderWidth=4)]
[$Table_Example->(Add: $MyTable)]
[$Table_Example->Close]

PDF Graphics Example
The following example shows how to create a PDF file that contains drawn
graphic objects.

[Var:'Graphic_Example'=(PDF_Doc: -File='Graphic_Example.pdf',
 -Height='650',
 -Width='550')]
[Var:'Text'=(PDF_Text:'This PDF file contains lines and circles. See below.\n')]
[$Graphic_Example->(Add: $Text)]
[$Graphic_Example->(Line: 200, 400, 400, 400)]
[$Graphic_Example->(Line: 200, 500, 400, 500)]
[$Graphic_Example->(Line: 266, 333, 266, 566)]
[$Graphic_Example->(Line: 333, 333, 333, 566)]
[$Graphic_Example->(Line: 200, 333, 400, 566)]
[$Graphic_Example->(Circle: 233, 366, 20)]
[$Graphic_Example->(Circle: 300, 452, 20)]
[$Graphic_Example->(Circle: 366, 533, 20)]
[$Graphic_Example->(Line: 220, 432, 240, 472)]
[$Graphic_Example->(Line: 220, 472, 240, 432)]
[$Graphic_Example->(Line: 360, 432, 380, 472)]
[$Graphic_Example->(Line: 360, 472, 380, 432)]
[$Graphic_Example->(Line: 220, 517, 240, 558)]
[$Graphic_Example->(Line: 220, 558, 240, 517)]
[$Graphic_Example->Close]

PDF Barcode Example
The following example shows how to create a PDF file that contains text
accompanied by a barcode.

[Var:'Barcode_Example'=(PDF_Doc: -File='Barcode_Example.pdf',
 -Height=172,
 -Width=300)]
[Var:'Font1'=(PDF_Font: -Face='Courier', -Size='12')]
[Var:'MyBarcode'=(PDF_Barcode: -Type='CODE39',
 -Code='1234567890',
 -GenerateCheckSum,
 -ShowCode39StartStop,
 -TextSize: 6)]

5 9 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

[$Barcode_Example->(DrawText: 'The Shipping Company\n',
 -Font=$Font1, -Left=72, -Top=90)]
[$Barcode_Example->(Add: $MyBarcode, -Left=72, -Top=40)]
[$Barcode_Example->Close]

Serving PDF Files
This section describes how PDF files can be served using Lasso Professional
7. This can be done by supplying a download link to the created PDF file,
or by using the [PDF_Serve] tag described in this chapter.

Syntax Note: When creating PDF files using LDML and serving data to a
browser in the same page, the use of the LassoScript syntax is recommended
as it does not output hard returns in the rendered HTML source code. For
more information on LassoScript, see Chapter 24: LassoScript.

Linking to PDF Files
Named PDF files may be linked to in a format file using basic HTML. Once
a user clicks on a link to a file with a .pdf extension, the client browser
should prompt to download the file or launch the file in PDF reader (if
configured to do so).

To link a PDF file:

The example below shows how a PDF can be created and written to file,
and then linked to in the format file.

<?LassoScript
 Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf',
 -Size='A4');
 Var:'Text'=(PDF_Text: 'Hello World');
 $MyFile->(Add: $Text);
 $MyFile->Close;
?>
<html>
<body>
<p>Click on the following link to download MyFile.pdf.</p>
<p>Click Here</p>
</body>
</html>

5 9 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

Serving PDF Files to Client Browsers
PDF files may also be served directly to a client browser using the
[PDF_Serve] tag. This tag automatically informs the client Web browser that
the data being load is a PDF file, and outputs the file with the correct file
name. If the client Web browser is configured to handle PDF files via a
reader, then the out PDF file will automatically be opened in the clients
configured PDF reader. Otherwise, the client Web browser should prompt
the user to save the file.

Table 23: PDF Serving Tags

Tag Description

[PDF_Serve] Serves a PDF file to a client browser with a MIME type
of application/pdf. Requires a -File parameters which
specifies the name of the file to be output to the browser.
An optional -Type parameter may be used to specify
addtional MIME types.

To serve a PDF file to a client browser:

Use the [PDF_Serve] tag to serve the created PDF file. The file parameter
specifies the file name that should be output.

<?LassoScript
 Var:'MyFile'=(PDF_Doc: -File='MyFile.pdf',
 -Size='A4',
 -NoCompress);
 Var:'Text'=(PDF_Text: 'Hello World');
 $MyFile->(Add: $Text);
 $MyFile->Close;
 PDF_Serve: $MyFile, -File='MyFile.PDF'
?>

To serve a PDF file without writing to file:

PDF files may be served to the client browser without ever writing them
to file on the local server. This is done using the [PDF_Doc] tag without the
-File parameter. This allows a PDF file to be created in the system memory,
but does not the save the file to a hard drive location. The resulting file can
saved by the end user to a location on the end user's hard drive.

<?LassoScript
 Var:'MyFile'=(PDF_Doc: -Size='A4',
 -NoCompress);

5 9 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

 Var:'Text'=(PDF_Text: 'Hello World');
 $MyFile->(Add: $Text);
 $MyFile->Close;
 PDF_Serve: $MyFile, -File='MyFile.pdf';
?>

5 9 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

6 0 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 0 – P O R T A B L E D O C U M E N T F O R M A T

V
Section V

Upgrading

This section contains detailed instructions for developers who are
upgrading solutions developed for Lasso Web Data Engine 3.x to Lasso
Professional 7.

 • Chapter 31: Upgrading Your Solutions includes complete instructions
for upgrading solutions that were built using Lasso Professional 5 or
Lasso Web Data Engine 3.x for compatibility with Lasso Professional 7.

This section should be read in concert with Chapter 13: Upgrading in the
Lasso Professional 7 Setup Guide.

6 0 1

L A S S O 7 . 1 L A N G U A G E G U I D E

6 0 2

L A S S O 7 . 1 L A N G U A G E G U I D E

S E C T I O N V – U P G R A D I N G

31
Chapter 31

Upgrading Your Solutions

This chapter contains important information for users of Lasso
Professional 6, Lasso Professional 5, or Lasso Web Data Engine 3.x who are
upgrading to Lasso Professional 7. Please read through this chapter before
attempting to run solutions in Lasso Professional 7 that were originally
developed for an earlier version of Lasso.

This chapter is split into three main sections. The first covers changes for
those upgrading from Lasso Professional 6. The next covers changes for
those upgrading from Lasso Professional 5. The remainder of the chapter
covers changes for those upgrading from Lasso WDE 3.x.

Topics in this chapter include:

 • Introduction includes general information about what has changed in
Lasso Professional 7.

 • Lasso Professional 7.1 describes changes specific to this update and
subsequent releases.

 • Error Reporting describes the new error reporting customization
features introduced in Lasso Professional 7.0.2.

 • Unicode Support describes how Lasso uses Unicode internally and how
Lasso translated to and from other character encodings automatically.

 • Bytes Type describes the new bytes type in Lasso Professional 7, lists the
tags that return data in the bytes type, and compares the bytes type to
the string type.

 • Syntax Changes (Lasso 6) contains information about what LDML
syntax constructs have changed since Lasso Professional 6.

 • Tag Name Changes (Lasso 5/6) details the tag names which have been
changed in LDML 7 since LDML 6.

6 0 3

L A S S O 7 . 1 L A N G U A G E G U I D E

 • Syntax Changes (Lasso 5) contains information about what LDML
syntax constructs have changed since Lasso Professional 5.

 • Lasso MySQL (Lasso 5) contains information about changes made to
the Lasso Connector for Lasso MySQL since Lasso Professional 5..

 • Syntax Changes (Lasso WDE 3.x) contains information about what
LDML syntax constructs have changed since Lasso WDE 3.x and how to
update format files which use those syntax constructs.

 • Tag Name Changes (Lasso WDE 3.x) details the tag names which have
been changed in LDML 7 since LDML 3.

 • Unsupported Tags (Lasso WDE 3.x) lists the LDML 3 tags that are no
longer supported in Lasso Professional 7.

 • FileMaker Pro (Lasso WDE 3.x) contains information about how to
update a solution which depended on the Apple Event based FileMaker
Pro data source module to the new Lasso Connector for FileMaker Pro.

This chapter does not attempt to cover every issue that users of versions of
Lasso prior to Lasso Web Data Engine 3.x may encounter.

Introduction
OmniPilot has strived to make this upgrade as painless as possible for
existing customers. All Lasso Professional 6 sites which were written using
strict and preferred syntax should run without modifications in Lasso
Professional 7 except for the issues mentioned in this chapter. Lasso
Professional 5 and Lasso WDE 3.x sites generally require some updates in
order to work in Lasso Professional 7.

The goals for improvements to the Lasso product family with Lasso
Professional 7 were to:

 • Improve the speed of Lasso by introducing a new parser and internal
byte code interpreter.

 • Provide Unicode support throughout Lasso. All string manipulations are
now performed using 16-bit Unicode encoding. All string output is in
the UTF-8 character set.

 • Streamline database communication by re-using the same connection
to the data source. New tags make manipulating database results even
easier.

 • Introduce objects for file operations, image operations, and network
operations.

 • Introduce new syntax shortcuts that make writing LDML code easier.
New tags perform common tasks with less code.

6 0 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

 • Extend custom tags and data types with new features. Many limitations
of custom tags have been removed.

Significant effort has been expended to ensure that existing solutions will
continue to run in Lasso Professional 7 with few if any modifications
required. However, please read through this chapter to learn about changes
that may require modifications to your solutions.

Lasso Studio and LDML Updater
Lasso Studio includes an LDML Updater that can be used on code from
earlier versions of Lasso to bring it into compliance with the latest version
of LDML. See the documentation for Lasso Studio for more information.

Lasso Professional 7.1
Lasso Professional 7.1 introduces Lasso Connector for FileMaker SA
providing connectivity with the FileMaker 7 product line through
FileMaker Server Advanced. This release also includes a new method of
accessing container fields in any version of FileMaker.

 • Lasso Connector for FileMaker SA – This new connector provides
connectivity with FileMaker Server Advanced. The new data source
very closely matches the features of the existing Lasso Connector
for FileMaker Pro in terms of administration and supported tags.
This should make transitioning from earlier versions of FileMaker to
FileMaker 7 easy. See the section below or the chapter on FileMaker
Data Sources for more information.

 • FileMaker Container Fields – A new tag [Database_FMContainer] returns
the value of a FileMaker container field as a byte stream. This new tag
does not require that Classic Lasso be enabled so works as a replacement
for the deprecated [Image_URL] and [IMG] functionality when Classic Lasso
is disabled. See the section below for information about how to convert
a site to use [Database_FMContainer] or see the chapter on FileMaker Data
Sources for more information.

 • Referencing FileMaker Fields – The syntax referencing related fields,
fields in portals, and global fields is different when using a FileMaker
Server Advanced data source.

 • [Bytes] Tag (7.1.3) – The [Bytes] tag now accepts an optional second
parameter which specifies in what character set the string should be
imported. See the section below for code examples.

 • -ContentType in Forms – If a hidden input is named -ContentType in an
HTML form then the subsequent parameter will be imported into Lasso

6 0 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

encoded using the specified characters set. See the section below for code
examples.

Lasso Professional 7.1 also includes a number of bug fixes, documentation
update, and feature enhancements. These changes are fully documented in
the change notes for this release.

Lasso Connector for FileMaker SA
FileMaker Server Advanced databases should be compatible with most
Lasso code written for FileMaker Pro databases with the following excep-
tions.

 • A FileMaker 7 database may containg multiple data tables. However,
Lasso still accesses data only through the layouts that are defined in the
database. Lasso can access data from any data table which has a layout
defined for it.

 • FileMaker Server Advanced only supports 9 sort fields per search action.

 • The deprecated [Image_URL] and [IMG] tags do not work with FileMaker
Server Advanced. See the next section for information about how to
convert to using the new [Database_FMContainer] tag instead.

 • The new -LayoutResponse tag allows a different layout from that used to
perform the database action to be used as the response to the database
action. The -Layout must contain all the fields referenced in the database
action. But, the -LayoutResponse parameter allows a different (usually
smaller) set of fields to be returned as a result of the database action.

 • FileMaker Server Advanced does not support the -ReturnField tag. Use the
-LayoutResponse tag instead.

FileMaker Container Fields
In prior versions of Lasso and FileMaker the only way to retrieve data
from FileMaker container fields was to use the [Image_URL] or [IMG]
tags to retrieve image data. These tags have been deprecated and Lasso
Professional 7.1 provides a new tag [Database_FMContainer] that can be used
to fetch image data from FIleMaker Pro (4, 5, or 6) container fields or any
type of data from FIleMaker Server Advanced (7) container fields.

When the [Field] tag is called with the name of a FileMaker Server Advanced
container field a partial URL is returned. For example, the following [Field]
tag returns the partial URL for the stored picture. This data is used by Lasso
to fetch the image data using the [Database_FMContainer] field. You should
never display this information to your site visitors.

[Field: 'Picture']

6 0 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

➜ /fmi/xml/cnt/data.jpg?-db=Contacts&-lay=People&-recid=1&-field=picture(1)

If the [Field] tag is replaced by the [Database_FMContainer] field then the result
will be the actual bytes of the stored image in the container field.

[Database_FMContainer: 'Picture']

The most common use of the byte stream that is returned from
[Database_FmContainer] is to pass it to the [File_Serve] tag. This will deliver the
byte stream as an image file to the site visitor. For example, the following
tag will return the image with the name Picture.jpg to the visitor’s Web
browser.

[File_Serve: (Database_FMContainer: 'Picture'),
 -Type='image/jpeg', -File='Picture.jpg']

See the FileMaker Data Sources chapter for an example of how to replace
the deprecated [Image_URL] or [IMG] tags with a format file containing
[Database_FMContainer].

Referencing FileMaker Fields
The syntax for referencing Filemaker Server Advanced repeating fields, fields
in portals, and global fields is different from the syntax for referencing
these fields in using a FileMaker Pro data source. Solutions that make use
of these types of field references may need to be updated to work with a
FileMaker Server Advanced back end.

Note: For fields of any type the field must be located on the layout
referenced in the [Inline] that performs the database action. No fields in a
FileMaker database can be referenced unless they are located on a layout.

 • Repeating Fields – Within FileMaker Server Advanced databases each
repetition of a repeating field in an -Add or -Update action must include
the number of the repetition explicitly in parentheses after the field
name.

…
 'Customer_ID(1)'='100',
 'Customer_ID(2)'=123,
 'Customer_ID(3)'=987,
…

 • Portal Fields – Within FileMaker Server Advanced databases portal fields
in adds or updates must be specified with the name of the related table
followed by two colons :: and the name of the related field followed
by a period . and the record ID of the related record. For example, the
following would be a reference to the CallTime field in the related table
Calls for the record with record ID 327.

6 0 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Calls::CallTime.327

 • Global Fields – Global fields can be referenced using syntax similar to
that for portal fields, but with .global as the suffix for the field reference.
For example, the following would be a reference to the global variable
Permission in the table Calls.

Calls::Permission.global

The rules above can be combined. A fully qualified field name in FileMaker
Server Advanced consists of the following.

 table name :: field name (repetition number) . record ID

[Bytes] Tag (7.1.3)
The [Bytes] tag now accepts an optional second parameter which speci-
fies in what character set the string should be imported. For example, the
following tag will result in a byte stream that contains the example string
encoded in the iso-8859-1 character set.

[Bytes: 'testing emigré', 'iso-8859-1']

This can be useful for using different encoding styles with the [Encode_URL]
tag. The following tag outputs a Unicode representation of the example
string. Notice that the é character ends up as a two byte sequence. (The
space is encoded using a single space since it is part of the base ASCII set
common to most Western character sets).

[Encode_URL: 'testing emigré'] ➜ testing%20emigr%C3%A9

However, if the [Bytes] tag is used the URL can be encoded using iso-8859-1
single byte encoding instead. Now the é character is represented by a single
byte sequence. This can be useful for communicating with servers that have
not been updated to recognize Unicode encoding.

[Encode_URL: (Bytes: 'testing emigré', 'iso-8859-1')] ➜ testing%20emigr%E9

Prior to Lasso Professional 7.1.3 the following code can be used to import
a string into a byte stream similarly. For example this code results in the
same output as the example immediatly above.

[Var: 'Bytes' = (Bytes)]
[$Bytes->(ImportString: 'testing emigré', 'iso-8859-1')]
[Encode_URL: $Bytes]

-ContentType in Forms
Lasso always reads data which is posted in forms according to the default
character set that is set in Lasso Administration. However, Web browsers
usually send forms using the same encoding with which the enclosing

6 0 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

page was sent. If these character sets are not matched (for example if the
[Content_Type] tag is used to override the default encoding for a particular
page) then Lasso can misinterpret the data being posted by a Web client.

Lasso Professional 7.1.3 introducts a new hidden input named -ContentType.
If a hidden input is named -ContentType in an HTML form then the subse-
quent parameter will be imported into Lasso encoded using the specified
characters set.

The value for -ContentType should be specified as charset=iso-8859-1 (or any
other valid character set) as shown in the example below. The charset= part
is required. It is not sufficient to just put the character set in as the value.

<input type="hidden" name="-ContentType" value="charset=iso-8859-1" />
<input type="hidden" name="Field Name" value="testing emigré" />

This will result in the Field Name input being imported into Lasso using the
iso-8859-1 character set. In order to change the character set for every input
in a form it is necessary to place a hidden input before each text input, text
area, checkbox, select, etc. on the form.

Note: The value from [Action_Param] and [Action_Params] will be returned using
the proper character set. However, the values from [Client_GetParams] and
[Client_GetParams] (and the args equivalents) will use the default character set.

Error Reporting
Lasso Professional 7.0.2 introduces some important enhancements to
how syntax errors and logical errors are reported by Lasso. Each of these
enhancements is discussed in this section and additional details are
provided within Chapter 21: Error Controls.

 • The error reporting level can now be adjusted in Lasso Administration
and overridden on individual pages. The error reporting level controls
whether the built-in error page provides full troubleshooting details,
minimal error messages, or no error details at all.

 • The built-in error page can now be modified in order to provide a
custom server-wide error page for all sites hosted on a server. This page
can work in concert with the site-specific custom error pages to provide
an appropriate amount of information to every site visitor.

Error Reporting Level
For errors that occur while processing a page, Lasso displays error messages
differently based on the current error reporting level. This allows detailed
error messages to be displayed while developing a Web site and then for

6 0 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

minimal or generic error messages to be displayed once a site has been
deployed.

The default global error reporting level can be set in Lasso Administration
in the Setup > Global > Settings section. The error reporting level can be set to
None, Minimal, or Full. The default is Minimal. Each of these levels is described
in more detail below.

The error reporting level for a particular page can be modified using the
[Lasso_ErrorReporting] tag. This will modify the error reporting level only for
the current format file and its includes without affecting the global default.
See the section on the [Lasso_ErrorReporting] tag in Chapter 21: Error
Controls for additional details.

 • None – This level provides only a generic error message with no specific
details or error code. This level can be used on a deployment server
when it is desirable to provide no specific information to site visitors.

 • Minimal – This level is the default. It provides a minimal error message
and error code. No context about where the error occurred is provided.
This level can be used on a deployment server in order to make trouble-
shooting problems easier.

 • Full – This level provides detailed error messages for debugging and
troubleshooting. The path to the current format file is provided along
with information about what files have been included and what param-
eters have been passed to them. If a database or action error is reported
the built-in error message provides information about what database
action was performed when the error occurred.

It is recommended that the global error reporting level on a production
Web server be set to the default of Minimal or to None. This will ensure that
site visitors are not given detailed error messages intended for the devel-
oper of the Web site. On a page by page basis the [Lasso_ErrorReporting] tag
can then be used to set the error level to Full in order to make debugging a
site in development easier.

The [Lasso_ErrorReporting] tag can also be used with the -Local keyword to
set the error reporting level to None within sensitive custom tags or include
files in order to suppress error messages from select portions of a site.

Custom Server-Wide Error Page
The server-wide error page is now stored in the file error.lasso within the
Admin folder in the Lasso Professional 7 application folder. By custom-
izing this file the default error page for all sites hosted on the server can be
modified.

This file can be customized for any of the following purposes:

6 1 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

 • To customize the appearance of the error page. For example, a profes-
sional hosting service could provide an error page that provides informa-
tion for their clients about how to handle the error.

 • To provide an appropriate amount of information to site visitors. The
built-in page provides different information depending on the current
error reporting level. The same levels can be used to provide either more
or less information depending on level.

 • To provide logging or notification. Logging tags can be added to the
error page in order to keep track of what errors have occurred. Email
notification could be used to alert the site administrator that an error
has occurred.

The customized error.lasso page should be thoroughly debugged prior to
being made active, especially on a production Web server. It can be very
difficult to troubleshoot problems which are occurring on a server if there
is a problem with the error reporting page.

The server-wide error.lasso page will only be displayed if no site-specific
error.lasso file is present or if there is an error within a site-specific
error.lasso file.

Unicode Support
Lasso Professional 7 introduces Unicode support throughout Lasso Service,
the database connectors, and LDML. This is a significant architectural
change that alters how all string and binary data is processed by Lasso.

The Unicode standard defines a universal character set which includes
characters for just about every language on the planet. The transition to a
full Unicode workflow should make it easier to transfer data that contains
characters which formerly required special-purpose encodings between
different applications.

Unicode is rapidly achieving dominance as the standard encoding for
data on the Internet, in leading operating systems, and in database prod-
ucts. Recently, Mac OS X and Windows have both implemented native
support for Unicode. All current leading Web browsers support Unicode
data. Many text editors such as BareBones BBEdit have recently introduced
native support for Unicode. And, future database offerings from MySQL
and other database vendors are expected to offer full support for Unicode
encoding.

Every effort has been made to make the change to Unicode transparent
to the Lasso developer. However, these architectural changes may require
modification of some Lasso Professional 6 sites and may require some

6 1 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

additional planning and coding in order to work with Web browsers and
databases that do not yet support Unicode.

The following list includes details about how Unicode is supported in
Lasso Professional 7 and also includes details about backwards compat-
ibility.

Note: Please also read the following section on the new Bytes Type for
details about how binary and string data is handled using LDML tags.

 • Format Files – If a format file contains a valid byte-order mark it is
read using the UTF-8 character encoding. If no byte-order mark is read
then the format file is assumed to be encoded in the Macintosh (or
Mac-Roman) character set on Mac OS X or the Latin-1 character set (also
known as ISO 8859-1) on Windows or Linux.

Popular text editors such as BBEdit can encode text files using UTF-8 and
will insert the proper byte-order mark that Lasso needs to identify the
character set of the format file. Consult the documentation for the text
editor for more information.

All existing format files will be read using the Macintosh or Latin-1 (ISO
8859-1) character sets which Lasso Professional 6 used. New format files
which need to take advantage of the extended character set that Unicode
offers should be encoded as UTF-8 and include a proper byte-order
mark.

Note: Lasso does not support format files encoded using the UTF-16 or
UTF-32 character sets.

 • Web Browser – By default all files sent to the Web browser by
Lasso Professional 7 will be encoded using UTF-8. The default page
encoding option in the Settings > Global > Syntax section of Lasso
Administration can be used to change the default encoding to the Lasso
6 (pre-Unicode) standard Latin-1 character set (also known as ISO 8859-
1).

If encoding different from the default is needed for a given format file
the [Content_Type] tag can be used to instruct Lasso to encode the returned
page using a different character set. For example the following tag
instructs Lasso to use the Latin-1 (ISO 8859-1) character set.

[Content_Type: 'text/html;charset=iso-8859-1']

The [Content_Type] tag sets the page variable __encoding__ to the desired
character set. Modifying this variable will also change the character set
that will be used to return the page to the client’s Web browser.

 • Forms – Most Web browsers return data from HTML forms using the
same encoding that was used to transmit the Web page to them. Lasso

6 1 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

assumes that all incoming form data is going to use the default page
encoding which is set in Lasso Administration in the Settings > Global
> Syntax section. This means that all incoming form data must use
either UTF-8 or Latin-1 (ISO 8859-1) encoding.

It is recommended to use UTF-8 as the default page encoding since this
is the emerging Internet standard. However, if forms are being submitted
to Lasso from Web pages that do not use UTF-8 (or from pre-Unicode
browsers) it may be necessary to change the default page encoding so
data in the forms will be interpreted properly.

 • Database Connector – Lasso communicates with each database using
the character set specified in the table settings in Lasso Administration.
The character set for MySQL databases can be set to either UTF-8 or
Latin-1 (ISO 8859-1).

By default, the Lasso Connectors for MySQL communicate with existing
databases using the Latin-1 (ISO 8859-1) character set. If desired, the
character set for each table can be changed to UTF-8 in the Setup >
Data Sources > Tables section of Lasso Administration.

SQL statements sent using the -SQL parameter are encoded similarly. If
the -Table parameter is specified then the character set for that table will
be used. If no -Table parameter is specified then the SQL statement will
be encoded using the Latin-1 (ISO 8859-1) character set.

The Lasso Connector for FileMaker Pro uses Latin-1 (ISO 8859-1)
encoding by default on Windows and Linux. Macintosh (or Mac-Roman)
encoding is used by default on Mac OS X. If required, the character
set for each database can be changed in the Setup > Data Sources >
Databases section of Lasso Administration.

The Lasso Connector for JDBC always uses UTF-8 on any platform.

Since the default character set encoding for each database connector
is the same as that used in Lasso Professional 6, no changes should
be required to existing solutions. However, any database containing
extended characters must continue to use the same character encoding or
stored data may not be interpreted properly when it is retrieved from the
database.

 • LDML Tags – All LDML tags process string data as double-byte Unicode
strings. Character encoding is only performed when data is imported
into Lasso or exported according to the rules specified above. The bytes
type can be used to process binary data and to perform low-level char-
acter set translation if required.

See the following section for details of what LDML tags return data in
the bytes type and how it compares with the string type.

6 1 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Bytes Type
Since all string data is now processed using double-byte Unicode strings it
is necessary to introduce a new data type that stores single-byte binary data
strings. This new data type in Lasso Professional is called the bytes type
and is manipulated using the [Bytes] tag and associated member tags. Data
in the bytes type is often referred to as a byte stream.

The bytes type adds two important abilities to Lasso Professional 7. Binary
data can be treated separately from string data and data can be converted
between single-byte character sets directly within Lasso. The bytes type is
fully documented in the Extending Lasso Guide. Please see that manual
for additional details about the bytes type and the member tags that it
supports.

The bytes type is used to return any strings in Lasso that will potentially
contain binary data. Many substitution tags always return byte streams or
do so under certain circumstances. These tags are listed in the following
Table 1: Tags That Return the Bytes Type.

Table 1: Tags That Return the Bytes Type

Tag Description

[Bytes] Used to create a new bytes buffer or to cast a string to
the bytes type. Many of the member tags of the bytes
type also return byte streams.

[Decompress] Always returns a byte stream.

[Decrypt_BlowFish] Always returns a byte stream.

[Encode_Base64] Always returns a byte stream.

[Encrypt_BlowFish] Always returns a byte stream.

[Field] Returns a byte stream only for MySQL fields of type
BLOB.

[Field_Read] Always returns a byte stream.

[File_ReadLine] Always returns a byte stream.

[File->Read] Always returns a byte stream.

[Include_Raw] Always returns a byte stream.

[Include_URL] Always returns a byte stream.

[Net->Read] Always returns a byte stream.

[Net->ReadFrom] Always returns a byte stream.

[String_ReplaceRegExp] Returns a byte stream if the input is a byte stream,
otherwise returns a string.

6 1 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Other Tags Many tags in LDML such as [Array->Get] or [Map->Find]
return data in the same type it was stored. These tags
may also return data in the bytes type.

Bytes and Strings
The bytes type and the string type support many of the same member tags.
These member tags can be used on either byte streams or strings without
worrying about the underlying data type. The shared member tags are
listed in Table 2: Byte and String Shared Member Tags.

In addition to these tags both the bytes type and the string type support
the standard comparison operators ==, !=, >>, !>>, ===, and !==. The bytes
type also supports the + and += symbol for appending data to the end of
the stream.

Table 2: Byte and String Shared Member Tags

Tag Description

[Bytes->Append] Appends the specified characters onto the end of the
byte stream.

[Bytes->BeginsWith] Returns true if the byte stream begins with the specified
characters. Case sensitive.

[Bytes->Contains] Returns true if the byte stream contains the specified
characters. Case sensitive.

[Bytes->EndsWith] Returns true if the byte stream ends with the specified
characters. Case sensitive.

[Bytes->Find] Returns the position of the specified characters within
the byte stream. Case sensitive.

[Bytes->Get] Returns a specified character from the byte stream.

[Bytes->Length] Returns the length of the byte stream in bytes.

[Bytes->RemoveLeading] Removes the specified characters from the beginning of
the byte stream. Case sensitive.

[Bytes->RemoveTrailing] Removes the specified characters from the end of the
byte stream. Case sensitive.

[Bytes->Replace] Replaces the specified characters in the byte stream
with the specified replacement. Case sensitive.

[Bytes->Size] Returns the length of the byte stream in bytes.

[Bytes->Split] Splits the byte stream on the specified character. Case
sensitive.

[Bytes->Trim] Trims ASCII white space characters from the start and
end of the byte stream. Removes spaces, tabs, return
characters, and newline characters.

6 1 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

The table above includes all of the most commonly used string member
tags. These tags help to make the string and bytes types generally inter-
changeable. However, there are a significant number of string member
tags that are not supported by the bytes type. These are listed in Table 3:
Unsupported String Member Tags.

In order to use any of these member tags on byte streams the data must
first be converted to a string. Information on how to convert data to and
from the bytes type and string type is included in the next section.

Table 3: Unsupported String Member Tags

Tag Description

Character Tags Tags which fetch information about the characters
in a string including [String->CharDigitValue],
[String->CharName], and [String->CharType].

Comparison Tags Tags which compare strings with case sensitivity. [String-
>Compare] and [String->CompareCodePointOrder]

Case Tags Tags which report the case of a string including
[String->FoldCase], [String->LowerCase],
[String->TitleCase], and [String->UpperCase].

Case Modfiication Tags Tags which change the case of a string including
[String->ToLower], [String->ToTitle], and
[String->ToUpper].

Character Is Tags Tags which report information about the characters
within a string including all tags starting with
[String->Is…].

Miscellaneous Tags The following tags are also not supported by
the bytes type: [String->Digit], [String->Merge],
[String->PadLeading], [String->PadTrailing],
[String->Remove], [String->Reverse], [String->Substring],
and [String->Unescape].

Converting From Bytes to Strings
Data can be converted from byte streams to strings easily, but the method
differs depending on what character set the byte stream is encoded in and
how the data is going to be used.

 • Automatic Casting – When a byte stream is passed to a substitution or
process tag that is expecting a string value it is automatically cast to type
string. For example, the [String_…] substitution tags automatically cast
their parameters to strings.

 • Explicit Casting – The [String] tag can be used to explicitly cast a byte
stream to a string. The byte stream will be converted by assuming it is

6 1 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

encoded using the UTF-8 character set. Explicit casting is appropriate for
data read in using the [Include_URL] or [Net->Read] tags since most commu-
nication on the Internet is encoded using this character set.

 • Converting Character Sets – The [Bytes->ExportString] tag can be used
to convert a byte stream that is encoded using a character set other than
UTF-8 into a string. The tag accepts a single parameter which specifies
what character set the byte stream is encoded in and returns a string
(encoded in the default Unicode double-byte encoding that Lasso uses
internally for all strings.

For example, a file can be read in the Mac-Roman character set and
converted to a string using this code.

[Var: 'myfile' = (File_Read: 'myfile.txt')]
[Var: 'mystring' = $myfile->(ExportString: 'Mac-Roman')]

Similar methods can be used to convert strings into byte streams. Tags
that expect a byte stream as a parameter automatically cast strings to
byte streams. These tags include [File_Write], [File_WriteLine], [File->Write],
[Net->Write], etc. The [Bytes] tag explicitly casts strings to a byte stream. The
[Bytes-ImportString] tag with a string parameter and an encoding parameter
can be used to import a string into a byte stream converting it to any
desired character encoding.

Bytes Member Tags
The bytes type supports a number of additional member tags which are
documented in full in the Extending Lasso Guide. Please see that manual
for more information.

Updating Existing Sites
In order to promote backwards compatibility the bytes type supports the
core member tags of the string type and Lasso performs automatic conver-
sions between the two types when necessary.

However, there are a couple situations which will require Lasso
Professional 6 sites to be updated in order to work properly with Lasso
Professional 7. These situations are detailed below.

 • Checking for String Type – Byte streams are of type bytes so explicit
checks for type string will fail. For example, the following code reads a file
into a variable and then checks the type of the variable.

[Var: 'myfile' = (File_Read: 'myfile.txt')]
[If: $myfile->type == 'string']
 …
[/If]

6 1 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

The conditional will fail since the variable myfile is of type bytes rather
than type string. The conditional can be changed to the following to
create code that works in either Lasso Professional 6 or 7.

[Var: 'myfile' = (File_Read: 'myfile.txt')]
[If: ($myfile->type == 'string') || ($myfile->type == 'bytes')]
 …
[/If]

 • String Member Tags – If any string member tags are used on a byte
stream which are not supported by the bytes type then an error will
occur. For example, this code to read in a file and then convert it to
uppercase will fail in Lasso Professional 7 since the tag [String->toUpper] is
not implemented for the bytes type.

[Var: 'myfile' = (File_Read: 'myfile.txt')]
[$myfile->toUpper]

There are two solutions to this issue. The easiest is to cast the output of
[File_Read] to a string before storing it in a variable. This solution can be
applied across a site by doing a search for each of the tags that return
byte streams and adding an explicit cast using the [String] tag.

[Var: 'myfile' = (String: (File_Read: 'myfile.txt'))]
[$myfile->toUpper]

Another possibility is to use a substitution tag rather than a member tag
to perform the string conversion. The substitution tag will automatically
cast the byte stream to a string and will return a string value.

[Var: 'myfile' = (File_Read: 'myfile.txt')]
[Var: 'myfile' = (String_UpperCase: $myfile)]

Syntax Changes (Lasso 6)
Lasso Professional 7 introduces changes to some of the core syntax rules
of LDML. Most of these changes were made to improve the reliability and
error reporting of Lasso Professional 7. Some of these changes may require
you to rewrite portions of your existing Lasso-based solutions for full
compatibility with Lasso Professional 7. This section describes each change,
why it was made and how to update existing format files.

Table 4: Syntax Changes

Syntax Change Description

File Tags The file tags have been modified to provide more
consistent behavior. The ../ path is now supported to
move up a directory. Updated in 7.0.2 release.

6 1 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Strict Syntax Strict syntax is now required: all parameter keywords
must be preceded by a hyphen, all string literals must be
surrounded by quote marks, and all tag names must be
defined before being called.

Recursion Limit A limit can be configured on the depth of nested
[Include] and [LIbrary] tags allowed. By default the limit
is a depth of 50.

Format File Execution Time Limit
A limit can be configured on the maximum amount of
time that a format file will be allowed to execute. By
default the limit is 10 minutes.

Internal Tags Many tags are now implemented as part of the LDML
parser in order to prove better performance.

Iterate Enhancement The [Loop_Count] and [Loop_Abort] tags can now be
used within [Iterate] … [/Iterate] tags.

Custom Tags Enhancement Database results can now be retrieved from within
custom tags.

Miscellaneous Shortcuts A number of syntax shortcuts have been introduced. See
the full description below for details.

Unicode Support All strings are now processed using double-byte Unicode
and output in UTF-8 format by default. See also the
discussions of Unicode Support and the Bytes Type
which precede this section.

Classic Lasso Classic Lasso support is disabled by default and its use
has been deprecated. Solutions relying on Classic Lasso
should be transition to Inline-based methodology.

-Email… Command Tags The -Email… commands are no longer supported in
LDML 7. The [Email_Send] tag must be used instead.

Decimal Precision Decimal numbers are output using the fewest number of
significant digits possible.

Member Tags and Parentheses Member tags which have multiple parameters must be
surrounded by parentheses.

PDF -Top Parameter The -Top parameter in various PDF tags always
measures from the top margin of a document.

Global Variables Use the [Global] tag rather than the [Variable] tag to
reference global variables.

[NSLookup] Due to changes in Mac OS X 10.3 reverse lookups may
not work with all DNS servers.

[Repetition] Tag The [Repetition] tag has been deprecated. Rewriting
pages to use the modulus symbol % will result in better
performance.

[TCP_…] Tags The [TCP_…] tags have been deprecated in favor of the
new [Net] type and its member tags.

6 1 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

[Else:If] and [Else_If] These tags are no longer supported. Use [Else] instead.

[LoopCount] and [LoopAbort] These tags are no longer supported. Use [Loop_Count]
and [Loop_Abort] instead.

Container Tags Container tags must be defined within LassoStartup.
Container tags cannot be defined on-the-fly. New
keywords allow both looping and simple container tags to
be created.

Custom Tags Parameters and return values are now passed by
reference. [PreCondition] and [PostCondition] are no
longer supported. Asynchronous tag update.

XML Tags The XML tags have been re-implemented. Some
modifications to existing sites may be required.

[Encode_ISOtoMac] This tag and [Encode_MacToISO] have been deleted.
Their functionality can be replicated using the new
[Bytes] type.

File Tags
The behavior of the file tags when moving, copying, or renaming files has
been made more consistent. The following rules will be used.

 • If a file is being operated on and the destination is a file name then
the file will be moved or copied to that file name. For example, the
following code will rename the file example.txt to renamed.txt.

[File_Move: 'example.txt', 'rename.txt']

 • If a file is being operated on and the destination is a directory then
the file will be moved or copied into the directory. For example, the
following code will move the file example.txt into the /directory/.

[File_Move: 'example.txt', '/directory/']

 • If a directory is being operated on and the destination is a directory then
the source directory will replace the destination directory. For example,
the following code will replace the directory /destination/ with the direc-
tory /source/.

[File_Move: '/source/', '/destination/']

In addition, the ../ path can now be used within all file tags and include
tags in order to move up one directory. The effective path will be
computed and then the security settings will be checked to confirm that
the current user has permission to access the specified directory.

6 2 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Strict Syntax
Lasso Professional 6 introduced the option to use strict syntax checking.
This option was on by default, but could be turned off for better backwards
compatibility with Lasso Professional 5 and earlier.

In Lasso Professional 7, strict syntax checking is now required. It can no
longer be deactivated.

With strict syntax the following rules are enforced:

 • All keyword parameters to built-in and custom tags must include a
hyphen. This helps to find unknown tag parameters and to catch other
common syntax errors.

 • All string literals must be surrounded by quotes. This helps to prevent
accidental calls to tags, to identify undefined variables, and to catch
other common syntax errors.

 • All tag calls must be defined. Unknown tags will no longer simply return
the tag value as a string.

With strict syntax any of the errors above will be reported when a page is
first loaded. They must be corrected before the code on the page will be
executed. When upgrading to Lasso Professional 7 it is advisable to first
try existing Lasso Professional 5 and 6 sites and correct any errors that are
reported.

To update existing sites for strict syntax:

If a site is relatively small then the easiest method is to load each Web
page and see if any errors are reported. The following tips can be used for a
more methodical search.

 • Check that all string literals are surrounded by quotes. Quotes are not
necessary around integers or decimal numbers, hyphenated keyword
parameters, tag names, or variable names when used with the & or #
symbols.

 • Check that all keywords in tag calls are preceded by a hyphen. Keyword
and keyword/value parameters must be preceded by a hyphen, but do
not need to be quoted. Name/value parameters should include quotes
around both the name and value (unless they are numbers).

 • Check that all command tags used within opening [Inline] tags are
preceded by a hyphen. Quotes are not necessary around command tags,
even when they are specified within an array.

 • Check that all client-side JavaScript is formatted properly. JavaScript
should either be included in [NoProcess] … [/NoProcess] tags or HTML
comment tags <!-- … --> which ensure that no LDML code within is

6 2 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

processed. Or, any square brackets which are required within the
JavaScript should be output from an [Output] tag.

[Output: '[array[4]]']

➜ [array[4]]

Recursion Limit
Lasso includes a limit on the depth of recursive include files. This limit can
help prevent errors or crashes caused by some common coding mistakes.
The limit sets the maximum depth of nested [Include] and [Library] tags that
can be used. If the depth is exceeded then a critical error is returned and
logged.

The recursion limit is set to 50 by default and can be modified or turned
off in the Setup > Global > Settings section of Lasso Admin.

Note that the limit does not apply to the number of [Include] and [Library]
tags within a single file, but to the depth reached using an [Include] tag to
include a file that itself uses an [Include] tag to include another file and so
on.

Format File Execution Time Limit
Lasso includes a limit on the length of time that a format file will be
allowed to execute. This limit can help prevent errors or crashes caused by
infinite loops or other common coding mistakes. If a format file runs for
longer than the time limit then it is killed and a critical error is returned
and logged.

The execution time limit is set to 10 minutes (600 seconds) by default and
can be modified or turned off in the Setup > Global > Settings section of
Lasso Admin. The execution time limit cannot be set below 60 seconds.

The limit can be overrided on a case by case basis by including the
[Lasso_ExecutionTimeLimit] tag at the top of a format file. This tag can set the
time limit higher or lower for the current page allowing it to exceed the
default time limit. Using [Lasso_ExecutionTimeLimit: 0] will deactivate the time
limit for the current format file altogether.

On servers where the time limit should be strictly enforced, access to the
[Lasso_ExecutionTimeLimit] tag can be restricted in the Setup > Global > Tags
and Security > Groups > Tags sections of Lasso Admin.

Asynchronous tags and compound expressions are not affected by the
execution time limit. These processes run in a separate thread from the
main format file execution. If a time limit is desired in an asynchronous
tag the [Lasso_ExecutionTimeLimit] tag can be used to set one.

6 2 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Note: When the execution time limit is exceeded the thread that is
processing the current format file will be killed. If there are any outstanding
database requests or network connections open there is a potential for some
memory to be leaked. The offending page should be reprogrammed to
run faster or exempted from the time limit using [Lasso_ExecutionTimeLimit: 0].
Restarting Lasso Service will reclaim any lost memory.

Internal Tags
Many LDML tags are now implemented directly in the LDML parser in
order to provide better performance. Since the new versions of these tags
implement the same functionality as the old version of these tags no
changes to existing solutions are required. However, the [Lasso_TagExists]
tag will report False for all of the internal tags.

The internal tags include:

[Abort], [Define_Tag] ... [/Define_Tag], [Define_Type] ... [/Define_Type],
[Encode_Set] ... [/Encode_Set], [Fail], [Fail_If], [False], [Handle] ... [/Handle],
[Handle_Error] ... [/Handle_Error], [If] ... [Else] ... [/If], [Iterate] ... [/Iterate],
[Lasso_Abort], [Loop] ... [/Loop], [Loop_Abort], [Loop_Count], [NoProcess], [Params],
[Protect] ... [/Protect], [Return], [Run_Children], [Select] ... [Case] ... [/Select], [Self],
[True], and [While] ... [/While].

Iterate Enhancement
In Lasso Professional 6 the [Iterate] … [/Iterate] tags did not support the use of
the [Loop_Count] or [Loop_Abort] tags. These tags have been rewritten in Lasso
Professional 7 so that all looping container tags now function identically.

In the following example the [Loop_Count] is output on each iteration and
the iteration is stopped after the item Beta is seen.

[Iterate: (Array: 'Alpha', 'Beta', 'Gamma'), (Var: 'Temp')]

[Loop_Count]: [Var: 'Temp']
 [If: $Temp == 'Beta']
 [Loop_Abort]
 [/If]
[/Iterate]

➜
1: Alpha

2: Beta

For more information about the [Iterate] … [/Iterate] tags see Chapter 12:
Conditional Logic.

6 2 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Custom Tags Enhancement
In Lasso Professional 6 it was not possible to get to the results of a data-
base action from within a custom tag. In Lasso Professional 7 this limita-
tion has been removed. It is now possible to write custom tags which work
directly with [Field] data, the [Found_Count], [Action_Params], or any other
values.

As a demonstration of this new ability the [Link_…] tags have all been
rewritten as custom tags.

In the following example, a custom tag returns a string describing the
results of a database action.

[Define_Tag: 'Ex_Results']
 [Return: 'Showing ' + (Shown_Count) + ' records of ' + (Found_Count) + ' found.']
[/Define_Tag]

This tag can be used as follows.

[Inline: -Findall, -Database='Contacts', -Table='People', -MaxRecords=4]
 [Ex_Results]
[/Iinline]

➜ Showing 4 records out of 8 found.

For more information about the [Define_Tag] tag and custom tags see
Chapter 3: Custom Tags in the Extending Lasso Guide.

Miscellaneous Shortcuts
A number of shortcuts have been introduced in Lasso Professional 7 which
will make coding Web sites even easier. There is no need to use any of
these shortcuts. The equivalent syntax from earlier versions of Lasso will
work fine.

 • Not Contains Symbol – The negation of the contains symbol >> is
now available as !>>. This makes it easy to check that a substring is not
contained in a given string. The following example confirms that Green is
not a part of OmniPilot.

[Output: ('OmniPilot' !>> 'Green')]

➜ True

 • Equivalence Symbol – The equals symbol == checks that two values
are equal by casting them to the same data type. The new equivalence
symbol === checks that two values are equal in both value and data type.
The following example shows four expressions that are True using the
equals symbol ==.

6 2 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

[Output: ('Alpha' == 'Alpha')] ➜ True
[Output: ('100' == 100)] ➜ True
[Output: (3.00 == 3] ➜ True
[Output: (True == 1)] ➜ True

When the equivalency symbol === is used instead only the first expres-
sion is True. The rest of the expressions are False since the data types
of the two operands are different. The second expression compares
a string to an integer. The third expression compares a decimal to an
integer. And, the fourth expression compares a boolean to an integer.

[Output: ('Alpha' === 'Alpha')] ➜ True
[Output: ('100' === 100)] ➜ False
[Output: (3.00 === 3] ➜ False
[Output: (True === 1)] ➜ False

 • String Concatenation – Strings are now concatenated together without
using the + symbol. In the following example database results are
formatted without using the + symbol.

[Output: 'Showing ' (Shown_Count) ' records of ' (Found_Count) ' found.']

➜ Showing 4 records out of 8 found.

 • Array Creation – The : symbol can be used for array creation. Basically
Array: is equivalent to simply :.

[: 'Alpha', 'Beta', 'Gamma']

➜ (Array: 'Alpha', 'Beta', 'Gamma')

 • Tag References – The \ symbol can be used to reference a tag object
based on its name. This allows the descriptions of tags to be fetched
or for tags to be called with programmatically defined parameters. The
following example shows what the output might be for the [Field] tag.

[Var: 'myTag' = \Field]

[Output: $myTag->Description]

[Output: $myTag->(Run: -Name='Field', -Params='First_Name')]

➜
A tag that returns a field value.

John

See Chapter 5: Advanced Programming Topics in the Extending Lasso
Guide for more information.

Unicode Support
All strings in Lasso Professional 7 are represented internally by double-byte
Unicode values. This makes it efficient to work with extended characters in
a platform neutral fashion. All output from Lasso, whether to the client’s
Web browser or into a database, is formatted in UTF-8 by default.

6 2 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

UTF-8 is a Unicode standard that is backwards compatible with common
8-bit ASCII character sets. Any extended Unicode characters are encoded
using an entity like E26; where 4E26 is a hexadecimal number repre-
senting the Unicode value for the character.

Classic Lasso
Classic Lasso refers to the ability of Lasso to interpret command tags which
are included in URLs or HTML forms and process the action described by
those command tags before a format file is loaded.

In prior versions of Lasso this was the sole means of performing database
actions. Since Lasso WDE 3.x it has been possible to perform database
operation using the [Inline] … [/Inline] tags instead. It is preferable to use this
inline methodology for the following reasons.

 • The database, table, and field names which are being accessed need
never be revealed to the client.

 • It is impossible for clients to create new URLs or HTML forms that
perform unintended actions.

 • The amount of data passed in URLs to and from the client can be greatly
reduced. This can provide easier to read and easier to bookmark URLs.

 • [Inline] … [/Inline] tags support a number of advanced features like named
inlines and accepting arrays of parameters which make it easier to sepa-
rate the logic of a Web site from the presentation.

 • Some actions such as issuing SQL statements to Lasso MySQL require
using [Inline] … [/Inline] functionality already.

Note: It is possible to enable Classic Lasso syntax in the Setup > Global >
Syntax section of Lasso Administration, however since this functionality has
been deprecated it will not be supported in a future version of Lasso. It is
recommended that sites be transitioned over to inline methodology when
used with Lasso Professional 7.

To update existing sites:

The [Action_Params] tag can be used to pass all parameters from the URL or
HTML form that loaded the current page to an opening [Inline] … [/Inline] tag.

In the result page, surround the part of the page that references database
results with [Inline] … [/Inline] tags. The opening [Inline] tag should have a
single parameter of [Action_Params]. Often, the [Inline] … [/Inline] tags can
simply surround the entire page contents.

[Inline: (Action_Params)]
 … Page Contents and Database Action Results …
[/Inline]

6 2 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

The [Inline] … [/Inline] tags must not be contained within any other
[Inline] … [/Inline] tags. The [Inline] … [/Inline] tags must surround all
[Records] … [/Records], [Field], [Found_Count], [Link_…], [Error_CurrentError] and
other tags that will return the database results.

In order to enhance security, command tags such as the -Database, -Table,
and action can be added as parameters to the opening [Inline] tag. These
parameters should be placed after the [Action_Params] parameter and will
override any conflicting parameters from the URL or HTML form that loads
the result page.

For example, the following [Inline] will always perform a -Search action on
the People table of the Contacts database even if a -FindAll or -Delete action is
specified in the URL.

[Inline: (Action_Params),
 -Search
 -Database='Contacts',
 -Table='People',
 -KeyField='ID']
 … Page Contents and Database Action Results …
[/Inline]

Now that the -Database, -Table, and action are specified in the opening
[Inline] tag they can be removed from the URL or HTML form that loads the
response page. Any command tags or name/value parameters which will be
specified by the client should be left in the URL or HTML form, but static
command tags can be moved as parameters into the opening [Inline] tag.

-Email… Command Tags
The -Email… commands are no longer supported in LDML 7. Enabling
Classic Lasso syntax will not enable this functionality. The only way to
send email through Lasso Professional 7 is to use the [Email_Send] tag.

To update existing sites:

 • If emails are being sent using the [Inline] … [/Inline] tags they can be modi-
fied to use the [Email_Send] tag as follows. The following shows the old
approach based on -Email… command tags.

[Inline: -Email.Host='mail.example.com',
 -Email.To='me@example.com',
 -Email.From='me@exmaple.com',
 -Email.Subject='An Example Email Message',
 -Email.Format='email_format.lasso']
[/Inline]

6 2 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

The syntax for [Email_Send] is very similar. Notice that -Email.Format has
been changed to -Body=(Include: …). This is the preferred method of
including another format file as the body of an email message.

[Email_Send: -Host='mail.example.com',
 -To='me@example.com',
 -From='me@exmaple.com',
 -Subject='An Example Email Message',
 -Body=(Include: 'email_format.lasso')]

 • If the inline performs a database search in addition to sending an
email message the two functions must be factored out as follows. The
following example performs a search and sends a single email message.

[Inline: -FindAll,
 -Database='Contacts',
 -Table='People',
 -Email.Host='mail.example.com',
 -Email.To='me@example.com',
 -Email.From='me@exmaple.com',
 -Email.Subject='An Example Email Message',
 -Email.Format='email_format.lasso']
 [Records]
 …
 [/Records]
[/Inline]

In the replacement the -Email… tags are removed from the opening [Inline]
tag and the [Email_Send] tag is placed within the [Inline] … [/Inline] tags, but
not within the [Records] … [/Records] tags. If [Email_Send] is placed in the
[Records] … [/Records] tags then one email for each found record will be
sent.

[Inline: -FindAll,
 -Database='Contacts',
 -Table='People'']
 [Email_Send: -Host='mail.example.com',
 -To='me@example.com',
 -From='me@exmaple.com',
 -Subject='An Example Email Message',
 -Body=(Include: 'email_format.lasso')]
 [Records]
 …
 [/Records]
[/Inline]

 • If emails are being sent using command tags in a URL they can be modi-
fied to use the [Email_Send] tag as follows.

6 2 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

<a href="default.lasso?-Email.Host=mail.example.com&
 -Email.To=me@example.com&-Email.From='me@exmaple.com&
 -Email.Subject='An Example Email Message&
 -Email.Format=email_format.lasso"> Send Email

The URL should be simplified to contain just the name of the format
file.

 Send Email

The file default.lasso then must be augmented with the [Email_Send] tag.
Notice that -Email.Format has been changed to -Body=(Include: …). This is
the preferred method of including another format file as the body of an
email message.

[Email_Send: -Host='mail.example.com',
 -To='me@example.com',
 -.From='me@exmaple.com',
 -.Subject='An Example Email Message',
 -Body=(Include: 'email_format.lasso')]

The same technique can be used to modify an HTML form. Simply remove
the -Email… command tags from the form and place an [Email_Send] tag on
the response file.

Decimal Precision
Decimal numbers are output using the fewest number of significant digits
required. In prior versions of Lasso decimal numbers were always output
by default using six significant digits. For example, the following math
calculation outputs only two significant digits.

[Output: 2.02 + 2.0400] ➜ 4.06

In general the output from Lasso Professional 7 should be more readable
than the output from Lasso Professional 6 so no changes to existing code
should be required. In order to modify the number of significant digits
that Lasso outputs the [Decimal->SetFormat] tag should be used.

Member Tags and Parentheses
Member tags which have multiple parameters must be surrounded by
parentheses. Earlier versions of Lasso allowed some non-recommended
syntax constructs to work. The new parser in Lasso Professional 7 is more
strict about when parentheses are required around tag calls.

Specifically, the following syntax worked in Lasso Professional 6, but is no
longer supported in Lasso Professional 7.

[Output: ((Date: ‘2003-12-01’) -> Difference: (Date), -Hour)]

6 2 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

The code should be changed to the following. The parentheses around the
[Date->Difference] tag clarify to which tag the -Hour parameter belongs.

[Output: ((Date: ‘2003-12-01’) -> (Difference: (Date), -Hour))]

For best results any nested tags or member tags which require two or more
parameters should be surrounded by parentheses.

PDF -Top Parameter
The -Top parameter in all PDF tags now always measures from the top
margin of a document. In Lasso Professional 6 some of the PDF tags
measured from the bottom of the page. See the LDML 7 Reference and
the PDF chapter for additional details and a complete list of tags that have
changed.

Global Variables
In Lasso Professional 7 global variables should always be manipulated
using the [Global] tag rather than the [Variable] tag. The $ symbol can be used
to refer to either global variables or page variables. If both a page variable
and a global variable are defined with the same name then the $ symbol
will return the value of the page variable.

Sites which do not use global variables do not require any modifications.
The only sites that will require updates are those that used the [Variable]
tag to refer to previously created global variables. These sites should be
updated to use the [Global] tag instead.

[NSLookup]
Due to changes in Mac OS X 10.3 the [NSLookup] tag may not be able to
perform reverse DNS lookups (from IP address to host name) on all DNS
servers. Normal DNS lookups (from host name to IP address) should
continue to work fine. This issue affects both Lasso Professional 6 and
Lasso Professional 7 running on Mac OS X 10.3.

[NSLookup: '127.0.0.1']

[Repetition] Tag
The [Repetition] tag is deprecated in Lasso Professional 7 and will not be
supported in the next version of Lasso. Converting loops that use the
[Repetition] tag to use the modulus symbol % instead will result in faster
code execution.

6 3 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

To update existing sites:

Replace the [Repetition: 2] tag with (Loop_Count % 2 == 0). The second operand
of the % symbol should be whatever number was specified as a parameter
to the [Repetition] tag.

For example, the following loop which makes use of [Repetition: 5] to display
a message every fifth time through the loop.

[Loop: 100]
 [If: (Repetition: 5)]
 [Loop_Count] is divisible by 5!
 [/If]
[/Loop]

This loop can be rewritten using the modulus operator % as follows.

[Loop: 100]
 [If: (Loop_Count % 5 == 0)]
 [Loop_Count] is divisible by 5!
 [/If]
[/Loop]

The second loop will have exactly the same output as the first loop, but
will run much faster.

[TCP_…] Tags
The [TCP_…] tags have been deprecated in favor of the new [Net] type and its
member tags. Consult Chapter 5: Advanced Programming Topics in the
Extending Lasso Guide for details about the new tags.

[Else:If] and [Else_If]
The [Else] tag supports the functionality that was provided by the dedicated
[Else:If] and [Else_If] tags in prior versions of Lasso. In order to streamline
the language and provide faster code processing only the [Else] tag is
supported in Lasso Professional 7.

For example, in the following code the [Else] tag is used to check several
condition. Without a conditional parameter the [Else] tag is the default
value for the [If] … [/If] tags and always returns its value.

[If: $Condition == 'Alpha']
 … Alpha …
[Else: $Condition == 'Beta']
 … Beta …
[Else: $Condition == 'Gamma']

6 3 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

 … Gamma …
[Else]
 … Default …
[/If]

To update existing sites:

Change all [Else:If] and [Else_If] tags to [Else].

[LoopCount] and [LoopAbort]
In order to streamline the language and provide faster code processing the
synonyms [LoopCount] for [Loop_Count] and [LoopAbort] for [Loop_Abort] are no
longer supported in Lasso Professional 7.

To update existing sites:

Change all [LoopCount] tags to [Loop_Count] and all [LooAbort] tags to
[Loop_Abort].

Container Tags
In order to provide more efficient code execution it is now necessary for all
container tags to be defined in LassoStartup. Any container tags which are
defined within included files or library files will no longer function prop-
erly.

The [Define_Tag] tag now accepts two parameters for creating container tags.
If the -Container keyword is used then a simple, non-looping container tag
will be created. If the -Looping keyword is used then a looping container
tag will be created. The only difference is that the [Loop_Count] will only be
modified in looping container tags.

See Chapter 3: Custom Tags in the Extending Lasso Guide for more
details about defining custom container tags.

Custom Tags
All parameters and return values are now passed to custom tags by refer-
ence. Existing custom tags may need to be updated so that they do not
cause any unwanted side effects or cause syntax errors.

The [PreCondition] and [PostCondition] tags are no longer supported. The -Type
and -ReturnType parameters should be used in a custom tag definition in
order to restrict the parameter types and return type for a custom tag.

Asynchronous custom tags do not have access to page variables from the
page that called the custom tag. The documentation for Lasso Professional

6 3 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

6 was not clear on this point. Any variables which are required within the
custom tag should be stored as globals or passed into the custom tag as
parameters.

A number of other enhancements have been made to custom tags as well.
See Chapter 3: Custom Tags in the Extending Lasso Guide for more
details about defining custom tags.

To update existing sites for parameter passed by reference:

Use different names for locals defined within a custom tag and for the
parameters of the tag. For example, the following tag will cause a syntax
error since it is not possible to modify the incoming literal changing its
type from an integer into a string.

[Define_Tag: 'Ex_UpperCase', -Required='Value']
 [Local: 'Value' = (String_UpperCase: 'Value')]
 [Return: #Value]
[/Define_Tag]

[Ex_UpperCase: 1] ➜ Syntax Error

Instead, use a different name for the local variable within the tag. This
code will work fine in Lasso Professional 7 and in Lasso Professional 6.
By prefixing the local variables name with L_ there is no conflict with the
incoming parameter names.

[Define_Tag: 'Ex_UpperCase', -Required='Value']
 [Local: 'L_Value' = (String_UpperCase: 'Value')]
 [Return: #L_Value]
[/Define_Tag]

[Ex_UpperCase: 1] ➜ 1

To update existing sites to remove pre- and post-conditions:

Use the -Type and -ReturnType parameters to specify the types for each
parameter of a custom tag and the return type for the tag. Additional error
checking can be performed with the custom tag itself.

For example, the following custom tag definition uses [PreCondition] and
[PostCondition] to check that all of the tag’s parameters and the tag’s return
value are strings.

Define_Tag: 'Ex_Concatenate',
 -Required='Param1',
 -Required='Param2';
 PreCondition: #Param1->Type == 'string';
 PreCondition: #Param2->Type == 'string';
 PostCondition: Return_Value == 'string';
 Return: #Param1 + #Param2;
/Define_Tag;

6 3 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

In Lasso Professional 7 this tag can be rewritten as the following. The -Type
parameters specify the required type for the preceding -Required parameter.
The -ReturnType parameter specifies the required type for the return value. If
the parameters or return type are not of the proper type then an error will
be returned.

Define_Tag: 'Ex_Concatenate',
 -Required='Param1', -Type='string',
 -Required='Param2', -Type='string',
 -ReturnType='string';
 Return: #Param1 + #Param2;
/Define_Tag;

XML Tags
The XML tags in Lasso Professional 7 have been re-implemented using
native C/C++ libraries for greater speed and functionality. The behavior of
some of the XML tags have changed and some modifications to existing
sites may be required for full compatibility.

 • [XML->Children], [XML->Attributes], and [XML->Contents] are now read-only. In
Lasso Professional 6 these tags could be used to inspect or modify the
XML data. In Lasso Professional 7 these tags can only be used to inspect
XML data.

 • [XML_Extract] – The [XML_Extract] tag will interpret some -XPath parameters
differently. In particular, the new XML libraries interpret the XPath / to
refer to the root of the XML data rather than the root tag in that data.
/* can be used to refer to the root tag. The new [XML->Extract] tag is the
preferred method of performing XPaths on XML data and uses the same
XPath syntax as [XML_Extract].

 • [XML->Children] – The [XML->Children] tag now includes additional text chil-
dren for many XML tags. These children represent the text on either side
of embedded tags. For example, the following <a> tag has three children
some, the tag, and text.

 Some Embedded Text

Lasso Professional 6 would not provide access to these text children so
the behavior of Lasso Professional 7 is preferred. The text children all
have a name of text and may be empty if no text is specified between the
various tags.

[Encode_ISOtoMac] and [Encode_MacToISO]
The [Encode_ISOtoMac] and [Encode_MacToISO] tags are not compatible with
the Unicode strings that Lasso now uses to store strings. These tags must

6 3 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

be modified in order for sites that use them to work properly with Lasso
Professional 7.

To Update Existing Sites:

The output of the [Include_Raw], [File_Read], and other tags that might return
data in a native character set have all been changed to the bytes type. The
bytes type preserves the character set of the underlying data.

Note: See the earlier section on the Bytes Type for a full discussion of this
new data type.

In Lasso Professional 6 a [File_Read] operation which read a Latin-1 (ISO
8859-1) file may have appeared like this. This code would translate the file
from its native character set to Mac-Roman encoding.

[Variable: 'myFile' = (File_Read: 'myfile.text')]
[Variable: 'myString' = (Encode_ISOtoMac: $myFile)]

In Lasso Professional 7 the following code would be used. This code reads
in the file as a byte stream and then uses [Bytes->ExportString] to convert the
Latin-1 (ISO 8859-1) characters to the native Unicode-based double-byte
strings that Lasso Professional 7 uses for character data.

[Variable: 'myFile' = (File_Read: 'myfile.text')]
[Variable: 'myString' = $myFile->(ExportString: 'iso8859-1')]

With this change the remainder of the code should not need to be changed
since the end result has the same practical value, a natively encoded string.

Tag Name Changes (Lasso 5/6)
All tags from Lasso Professional 6 are supported in Lasso Professional 7
except for those listed in the table below. There are also a number of tag
names which have changed or been deprecated in favor of new tags or
methodologies in Lasso Professional 7.

The following table lists tags that are not supported in Lasso Professional
7. These tags must be replaced in order for sites to work properly in Lasso
Professional 7.

Table 5: Unsupported Tags

LDML 6 Tag LDML 7 Tag Equivalent

[Encode_MacToISO] [Bytes->ExportString]

[Encode_ISOtoMac] [Bytes->ExportString]

6 3 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

The following table lists the tag names that have been changed in Lasso
Professional 7 since the release of Lasso Professional 5/6. The old versions
of each tag will continue to work, but their use has been deprecated. Any
new development in Lasso Professional 7 should use the new versions of
the tag names.

Table 6: Tag Name Changes

LDML 6 Tag LDML 7 Tag Equivalent

[Null->Up] [Null->Parent]

[String->Length] [String->Size]

The following table lists the tags from Lasso Professional 6 which have
been deprecated in Lasso Professional 7 and what code equivalent should
be used. The deprecated versions of these tags will continue to work, but
any new development in Lasso Professional 7 should use the suggested
code equivalent rather than the deprecated tags.

Table 7: Deprecated Tags

LDML 6 Tag LDML 7 Tag Equivalent

[Date_GetCurrentDate] [Date]

[Date_GetDay] [Date->Day]

[Date_GetDayOfWeek] [Date->DayOfWeek]

[Date_GetHour] [Date->Hour]

[Date_GetMinute] [Date->Minute]

[Date_GetMonth] [Date->Month]

[Date_GetSecond] [Date->Second]

[Date_GetYear] [Date->Year]

[Error_NoRecordsFound] Check for whether [Found_Count] is zero.

[PostCondition] -ReturnType in [Define_Tag]

[PreCondition] -Type or -Criteria in [Define_Tag]

[Repetition] Modulus Symbol %

[TCP_Close] [Net->Close]

[TCP_Open] [Net->Connect]

[TCP_Send] [Net->Read], [Net->Write]

6 3 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Syntax Changes (Lasso 5)
Lasso Professional 7 introduces changes to some of the core syntax rules
of LDML. Most of these changes were made to improve the reliability and
error reporting of Lasso Professional 7. Some of these changes may require
you to rewrite portions of your existing Lasso-based solutions for full
compatibility with Lasso Professional 7. This section describes each
change, why it was made and how to update existing format files.

Table 8: Syntax Changes

Syntax Change Description

No Process Tags New [NoProcess] … [/NoProcess] tags allow a portion
of a page to be passed to the browser without being
processed.

Strict Syntax A strict syntax option allows errors such as non-
hyphenated parameters, non-quoted variables, and
undefined tags to be reported as syntax errors.

Date Data Type Date operations have been converted to a new date data
type. LDML 5 date tags have some modifications.

Integer Rounding The [Integer] tag now rounds to the nearest integer
instead of truncating.

No Records Found The [Error_NoRecordsFound] tag has been deprecated.
Check whether [Found_Count] equals zero instead.

No Process Tags
Lasso Professional 7 includes a container tag [NoProcess] … [/NoProcess] that
instructs the LDML parser to ignore its contents. This allows code from
other programming languages to be passed through to the browser without
any processing by Lasso. These new tags do not require any changes to
existing Lasso Web sites, but may make transitioning from older versions
of Lasso easier.

The [NoProcess] … [/NoProcess] tags must be embedded in a page exactly as
written with no extra spaces or parameters within the square brackets. They
cannot be used within LassoScript.

To instruct Lasso to ignore a portion of a page:

Use the [NoProcess] … [/NoProcess] tags. In the following example, the entire
contents of a JavaScript code block is ignored by Lasso. Any array refer-
ences within the JavaScript will not be interpreted by Lasso as square
bracketed tags.

6 3 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

[NoProcess]
 <script language="JavaScript">
 … JavaScript Expressions …
 </script>
[/NoProcess]

Strict Syntax
With strict syntax the following rules are enforced:

 • All keyword parameters to built-in and custom tags must include a
hyphen. This helps to find unknown tag parameters and to catch other
common syntax errors.

 • All string literals must be surrounded by quotes. This helps to prevent
accidental calls to tags, to identify undefined variables, and to catch
other common syntax errors.

 • All tag calls must be defined. Unknown tags will no longer simply return
the tag value as a string.

With strict syntax any of the errors above will be reported when a page is
first loaded. They must be corrected before the code on the page will be
executed. When upgrading to Lasso Professional 7 it is advisable to first
try existing Lasso Professional 5 and 6 sites and correct any errors that are
reported.

To update existing sites for strict syntax:

If a site is relatively small then the easiest method is to load each Web
page and see if any errors are reported. The following tips can be used for a
more methodical search.

 • Check that all string literals are surrounded by quotes. Quotes are not
necessary around integers or decimal numbers, hyphenated keyword
parameters, tag names, or variable names when used with the & or #
symbols.

 • Check that all keywords in tag calls are preceded by a hyphen. Keyword
and keyword/value parameters must be preceded by a hyphen, but do
not need to be quoted. Name/value parameters should include quotes
around both the name and value (unless they are numbers).

 • Check that all command tags used within opening [Inline] tags are
preceded by a hyphen. Quotes are not necessary around command tags,
even when they are specified within an array.

 • Check that all client-side JavaScript is formatted properly. JavaScript
should either be included in [NoProcess] … [/NoProcess] tags or HTML
comment tags <!-- … --> which ensure that no LDML code within is

6 3 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

processed. Or, any square brackets which are required within the
JavaScript should be output from an [Output] tag.

[Output: '[array[4]]']

➜ [array[4]]

Date Data Type
The date tags from LDML 5 have been replaced by new date and dura-
tion data types in LDML 7. This change should not require any changes
to existing code, but many LDML 5 tags have been deprecated and many
other operations are significantly easier using the new tags. See Chapter
16: Date and Time Operations for full documentation of the new date
and duration data types.

Some highlights of the new date and duration data types include:

 • The [Date] tag can be used in place of [Date_GetCurrent] date to return the
current date and time.

 • The [Date] tag now recognizes MySQL date formats natively as well as
United States date formats.

 • The [Date_Get…] tags have been replaced by member tags which perform
equivalent functions. [Date->Day] returns the current day of the month
and [Date->Year] returns the current 4-digit year.

 • The week number can be output using [Date->Week] and the current day
of the year can be output using [Date->DayOfYear].

 • The duration between two dates can be output using the subtraction
symbol [Output: (Date) - (Date: 3/4/1984’)] or a duration can be added to a
date using the addition symbol [Output: (Date) + (Duration: -Hour=1)].

 • The output format for all date tags on a format file can be set using
[Date_SetFormat]. For example, [Date_SetFormat: '%Q %T'] will set all dates to
output in MySQL date format.

 • Individual dates can be formatted using [Date->Format]. For example
[Date->(Format: '%Q %T')] will output the current date in MySQL date
format.

 • Upon casting a date type, Lasso 7 automatically adjusts invalid dates to
be a valid equivalent, where Lasso 5 returns a null value instead of an
invalid date. For example, 9/31/2002 is an invalid date because there are
not 31 days in September. The expression [Date:'9/31/2002'] returns 10/1/2002
in Lasso 7, whereas [Date:'9/31/2002'] returns no value in Lasso 5.

6 3 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Integer Rounding
The [Integer] tag now rounds decimal values to the nearest integer. In Lasso
Professional 5 the [Integer] tag instead truncated decimal values to the next
lowest integer. The new process yields a more accurate result. In general, no
changes to existing sites should be necessary.

To update existing sites:

Use the [Math_Floor] tag to return the next lowest integer rather than using
the [Integer] tag.

No Records Found
The [Error_NoRecordsFound] tag has been deprecated. This tag will continue
to work with the Lasso Connector for FileMaker Pro, but may not work
with MySQL databases or with third party data source connectors.

To update existing sites:

Change any code which uses [Error_NoRecordsFound] to instead check
whether [Found_Count] is equal to zero. For example, the following code
from LDML 5:

[If: (Error_CurrentError) == (Error_NoRecordsFound)]
 No records were found!
[/If]

Can be written as follows in LDML 7:

[If: (Found_Count) == 0]
 No records were found!
[/If]

Lasso MySQL (Lasso 5)
A number of changes have been made to the Lasso Connector for Lasso
MySQL in order to make its behavior match that of the Lasso Connector
for FileMaker Pro. These changes will not in general require any changes to
existing Lasso Professional 5 sites.

6 4 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Table 9: Lasso MySQL Syntax Changes

Syntax Change Description

-Add and -Update The -Add and -Update actions now return the record
which was just added to the database or updated within
the database by default.

Full Text Searching The ft operator allows full text indices to be searched.
Lasso Administration allows full text indices to be
created.

Random Sorting The -SortRandom keyword can be used to return
MySQL results in random order.

Regular Expression Searching The rx and nrx operators allow regular expression
searches to be performed and all records which match
or do not match the results to be returned.

Searching for Distinct Values The -Distinct keyword allows only distinct records from
search results to be returned.

Searching for Null Values The inline tag now recognizes Null as a value distinct
from the empty string allowing Null values in databases
to be found.

Using LIMIT Options The -UseLimit keyword instructs Lasso to use LIMIT
options to select the found records to show rather
than using native methods. This can result in better
performance on large databases with large found sets.

Value Lists Values lists are now supported for ENUM and SET data
types within MySQL databases.

See Chapter 9: MySQL Data Sources for complete documentation of
these changes.

Syntax Changes (Lasso WDE 3.x)
Lasso Professional 7 introduces changes to some of the core syntax rules of
LDML. Some of these changes may require you to rewrite portions of your
existing Lasso-based solutions. This section describes each change, why it
was made and how to update existing format files.

Table 10: Syntax Changes

Syntax Change Description

Square Brackets All expressions in square brackets are now interpreted.

Commas Commas are no longer allowed after tag names.

Keywords Keyword names now always begin with a hyphen.

6 4 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Encoding Keywords The default is to HTML encode outermost substitution
tags and apply no encoding to nested sub-tags.

Else If The [Else:If] tag is no longer supported. The [Else] tag
has been enhanced to provide the same functionality.

Include The [Include] tag now returns an error if the specified file
does not exist.

Post Inline The [Post_Inline] tag has been replaced by a new
scheduling facility accessed through the [Event_
Schedule] tag.

SQL Inline The [SQL_Inline] tag has been replaced by a new -SQL
command tag which can be used in a normal [Inline] tag.

File Tags and Logging The new distributed architecture means these tags work
only on files accessible by Lasso Service.

Line Endings The default line endings on Mac OS X are different from
those for Mac OS 9.

JavaScript Special care must be taken to ensure that array
references in JavaScript are not interpreted by Lasso.

Macros Macros are no longer supported. Much of their
functionality can be achieved through custom tags.

Numeric Literals Numeric literals must not be written with quotes. The
conversion of strings to numeric values has changed.

Mathematical Precision Precision is handled automatically by the new
mathematical expressions and symbols and can be set
explicitly using [Decimal->SetFormat] tag.

Double Quotes Single quotes are preferred for designating string literals.

Restrictions Restrictions on maximum values for math operations and
looping tags have been eased.

Square Brackets
In earlier versions of Lasso, only tag names which were recognized by
Lasso would be interpreted. In Lasso Professional 7, all square bracketed
expressions are interpreted whether they contain a valid LDML tag or not.
This allows expressions and member tags to be used within square brackets
and allows custom tags to be used.

For example, the following expressions would all have been ignored in
earlier versions of Lasso, but will be interpreted as indicated by Lasso
Professional 7.

[45] ➜ 45
[1 + 2] ➜ 3
[blue] ➜ blue
['aqua' + 'marine'] ➜ aquamarine

6 4 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

If square brackets are used decoratively on a page, e.g. to surround link
names, they will be stripped out by Lasso Professional 7.

Note: See the section on JavaScript that follows for tips on using square
brackets within client-side JavaScript contained in an LDML format file.

To update existing sites:

There are several options to update existing sites depending on how the
square brackets are being used on a page.

 • Use the HTML entities for square brackets. These include [for [and
] for]. The following example would display a link name surrounded
by square brackets.

 [Home]

 • Use the LDML [Output] tag to output an expression that includes square
brackets. Lasso will not interpret the output of LDML tags so square
brackets can be safely displayed on a page in this way. The following
example would display a link name surrounded by square brackets.

 [Output: '[Home]']

The expression can also be written without the [Output] tag.

 ['[Home]']

Note: Any string literals which are output in this way should always be
surrounded by single quotes, otherwise there is a danger that they might
be interpreted as a tag.

 • Create a custom tag that outputs text surrounded by square brackets. The
following simple [Define_Tag] can be placed at the top of any page that
requires it.

[Define_Tag: 'Bracket']
 [Output: (Params->(Get: 1)]
[/Define_Tag]

This tag can then be called to display a link name surrounded by square
brackets.

 [Bracket: 'Home']

Commas
In earlier versions of Lasso, commas could optionally be used following
the tag name, before any parameters of the tag. Although this syntax hasn’t
been recommended for some time there are still examples of it in the Lasso
Web Data Engine 3.x documentation and in some Lasso-based Web sites.

6 4 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

The following example shows the tag construct with a comma following
the tag name.

[Tag_Name, Parameters] (No longer supported)

This syntax was particularly common with tags that took only a single
keyword. For example, both of the following tags were commonly written
with a comma following the tag name.

[Server_Date, Short] (No longer supported)
[Error_CurrentError, ErrorCode] (No longer supported)

Using a colon after the tag name is now mandatory in Lasso Professional
7. This change was made in order to facilitate parsing of more complex
expressions. The tag examples above must now be written as follows with
a colon after the tag name. The following example also demonstrates the
new method of specifying keyword names with a leading hyphen.

[Server_Date: -Short]
[Error_CurrentError: -ErrorCode]

To update existing sites:

Use a regular expression to correct format files that contain the older
comma syntax. Most text editors and Web authoring environments can
perform a find/replace using regular expressions.

 1 Search for the following regular expression pattern to find tags in square
brackets which have a comma after the tag name:

\[([A-Za-z_]+),([^\]]*)\]

Use this pattern as the replacement value:

[\1:\2]

 2 Search for the following regular expression pattern to find sub-tags in
parentheses which have a comma after the tag name:

\(([A-Za-z_]+),([^\)]*)\)

Use this pattern as the replacement value:

(\1:\2)

What the first regular expression does is search for a square bracket
followed by a tag name, a comma, then any characters up until the closing
square bracket. The replacement pattern inserts an opening square bracket,
the tag name, a colon, the contents after the comma, and a final closing
square bracket. The second regular expression performs the same steps
with parentheses instead of square brackets.

6 4 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Keywords
All keywords and keyword/value parameters (formerly named parameters)
start with a hyphen in LDML 7. This used to be an option for command
tags used within the [Inline] tag in Lasso Web Data Engine 3.x, but is now
required for all tags. Most tags which were supported in Lasso Web Data
Engine 3.x will continue to accept keywords without the leading hyphen so
Lasso Web Data Engine 3.x solutions do not need to be rewritten. However,
all keyword names without leading hyphens have been deprecated and are
not guaranteed to work in future versions of Lasso.

This change was made so that LDML keywords can be clearly differenti-
ated from user-defined name/value parameters and from tag names. This
becomes especially important as users start to create custom tags which
might have the same name as the keywords of existing tags.

To update existing sites:

 1 Locate all keyword names that do not begin with a hyphen. For example,
the following [Server_Date] tag contains both a tag-specific keyword and
an encoding keyword, neither of which has been written with a hyphen:

[Server_Date: Short, EncodeNone]

The following [Inline] tag contains several command tags or keyword/
value parameter that have not been written with hyphens:

[Inline:
 Database='Contacts',
 Table='People',
 'State'='WA',
 Search]

 2 Change the keywords so their names start with a hyphen. The
[Server_Date] tag is changed to the following with each keyword name
beginning with a hyphen:

[Server_Date: -Short, -EncodeNone]

The [Inline] tag is changed to the following with each command tag and
keyword/value parameter written with a hyphen:

[Inline:
 -Database='Contacts',
 -Table='People',
 'State'='WA',
 -Search]

 3 Do not change user-defined name/value parameters. In the preceding
example 'State'='WA' is not changed when updating the tag for compliance
with Lasso Professional 7.

6 4 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Note: The name ‘State’ has quotes around it in the preceding examples. All
string literals should be specified with single quotes. This ensures that they
will not be misidentified as a sub-tag or a keyword.

Encoding Keywords
The use of encoding keywords in substitution tags has been altered in
Lasso Professional 7. All substitution tags which are used as sub-tags now
have a default encoding of -EncodeNone. Only the outermost substitution
tag (i.e. a tag in square brackets) has a default encoding of -EncodeHTML.
This change was made in order to make Lasso easier to use for new users
and to reduce the length of nested tag expressions.

The following example demonstrates the benefits of the new Lasso
Professional 7 syntax. In LDML 3, the following [String_Concatenate] tag
contains many sub-tag parameters which all have EncodeNone specified.

[String_Concatenate:
 (Field: 'First_Name', EncodeNone), ' ',
 (Field: 'Middle_Name', EncodeNone), ' ',
 (Field: 'Last_Name', EncodeNone)]

The preceding tag can be written as follows in LDML 7. Since the default
encoding of each of the sub-tags is -EncodeNone the encoding keyword can
be omitted. The resulting code is considerably shorter and easier to read.

[String_Concatenate: (Field: 'First Name'), ' ',
 (Field: 'Middle Name'), ' ', (Field: 'Last Name')]

The default encoding for the outermost tag in LDML 7 is still -EncodeHTML
in order to maintain the security of sites powered by Lasso Professional
7. If a field is placed on a page without encoding then any JavaScript or
HTML that the code contains will be live on the Web page. Only HTML
from trusted sources should be allowed on your Web site.

LDML 7 includes additional encoding enhancements. Please see Chapter
18: Encoding for full details of how [Encode_Set] can be used to change the
default encoding of a page and more.

Note: -EncodeHTML is now a valid encoding keyword which performs the
same encoding as that which is performed if no encoding keyword is speci-
fied in an outermost substitution tag.

To update existing sites:

Encoding keywords still work as they did in Lasso Web Data Engine 3.x if
they are specified in every tag. Existing code will generally work after an
upgrade to Lasso Professional 7. However, the following use of encoding
keywords will need to be rewritten.

6 4 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

 1 Locate tags where the outermost tag has an EncodeNone encoding
keyword and the sub-tags do not have any encoding keywords. For
example, the following [String_Concatenate] tag has an EncodeNone keyword
and the two [Field] tags do not have any encoding keywords.

[String_Concatenate: EncodeNone, (Field: 'First Name'), ' ', (Field: 'Last Name')]

 2 Rewrite the tag by removing the EncodeNone keyword from the outermost
tag. In the resulting LDML 7 code, no encoding keywords are required.

[String_Concatenate: (Field: 'First Name'), ' ', (Field: 'Last Name')]

Note: In the LDML 3 code, the [Field] sub-tags were automatically HTML
encoded. The EncodeNone keyword in the outermost [String_Concatenate] tag
ensured that double encoding was not applied. Since Lasso 7 does not
encode sub-tags by default, the encoding keyword is no longer needed.

Else If
The [Else:If:] tag has been eliminated as a distinct tag, but the concept
is still supported. [Else:If: Condition] is now syntactically equivalent to
[Else: (If: Condition)] and the [Else] and [If] tags have been enhanced so that
much of the old behavior of the [Else:If:] tag is preserved.

The following [Else:If:] tag will not work as expected in Lasso Professional 7
because the condition will be misinterpreted:

[Else:If: 'abc' == 'abc']

The condition will be interpreted as if the following tag had been written:

[Else: (If: 'abc') == 'abc']

The (If: 'abc') expression will return True and this will be compared to 'abc'.
Since True is not equal to 'abc' this clause in the conditional will not be
executed.

Note: If called individually, the [If] and [Else] tags will return the value of the
specified conditional expressions parameter rather than returning an error
about an unclosed container tag.

To update existing sites:

 • Use parentheses around all conditional expressions. The following
[Else:If] tag will work correctly in either Lasso Professional 7 or Lasso Web
Data Engine 3.x:

[Else:If: ('abc' == 'abc')]

 • Change the [Else:If] tag to [Else]. Lasso 7’s [Else] tag has been enhanced so
that it now works like the old [Else:If] tag if a condition is specified, but is
still the marker for the default clause of the conditional if no condition

6 4 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

is specified. The following tag will work in Lasso Professional 7, but not
in Lasso Web Data Engine 3.x:

[Else: 'abc' == 'abc']

Include
The [Include] tag now validates whether the specified file exists and returns
an error if an invalid file path is specified. This means that programmati-
cally constructed [Include] statements need to take a precaution so errors
won’t be shown to the site visitor.

To update existing sites:

The [Protect] … [/Protect] tags can be used to suppress the error that is
reported by the [Include] tag. The following code will not return an error,
even though the file fake.lasso does not exist.

[Protect]
 [Include: 'fake.lasso']
[/Protect]

Post Inline
The [Post_Inline] tag is no longer supported in Lasso Professional 7. This
tag relied on access to files which Lasso Service might not be able to
locate because they could be on a separate machine. The replacement for
[Post_Inline] is called [Event_Schedule] and has the following format:

[Event_Schedule:
 -Start=(Date, Defaults to Today),
 -End=(Date, Defaults to Never),
 -URL=(URL to Execute, Required)
 -Repeat=(True/False, Defaults to True if -Delay is set and False otherwise),
 -Restart=(True/False, Defaults to True),
 -Delay=(Minutes, Required if -Repeat is True),
 -Username=(Username for Authentication, Optional),
 -Password=(Password for Authentication, Optional)]

This tag schedules the execution of the response URL at a specific start
date and time. The URL is fetched just as if a client had visited it through a
Web browser. After the task is performed, it is optionally repeated a speci-
fied number of minutes later until the end date and time is reached. If the
restart parameter is set to True then the repeating task will be rescheduled
even after server restarts. Please see Chapter 22: Control Tags for complete
documentation of the syntax of [Event_Schedule].

6 4 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

To update existing sites:

Sites that rely on [Post_Inline] tags will need to be rewritten. The following
steps must be taken:

 1 Determine the URL of the post-inline response page you were calling.

 2 Change the initial [Post_Inline] tag to the equivalent [Event_Schedule] tag
using date calculations if necessary to determine the start date and time.

 3 If the [Post_Inline] tag rescheduled itself in the response page then either
the rescheduling call must be changed to an equivalent [Event_Schedule]
tag or the automatic repeat feature of [Event_Schedule] can be used in its
place.

SQL Inline
The [SQL_Inline] tag is no longer supported in Lasso Professional 7. This tag
has been replaced by a more versatile -SQL command tag that can be used
as the database action within any [Inline] tag.

[Inline: -SQL='…SQL Statement…]
 … Inline Results …
[/Inline]

The -SQL command tag can be used to issue SQL statements to the
included Lasso MySQL data source or to any MySQL data source accessed
through the Lasso Connector for MySQL. The -SQL command tag may also
be supported by third party data source connectors. Please see Chapter 9:
MySQL Data Sources for more information about using this tag.

To update existing sites:

Sites that rely on [SQL_Inline] tags will need to be rewritten. The following
steps must be taken:

 1 Change the opening and closing [SQL_Inline] … [/SQL_Inline] tags to
[Inline] … [/Inline] tags. For example, following is a [SQL_Inline] that searches
the People table of the Contacts database.

[SQL_Inline: Datasource='Contacts',
 SQLStatement='SELECT First_Name, Last_Name from People']
 …
[/SQL_Inline]

The first step is to change this to the following [Inline] … [/Inline] tags, then
to perform the remainder of the steps to complete the transformation.

[Inline: Datasource='Contacts',
 SQLStatement='SELECT First_Name, Last_Name from People']
 …
[/Inline]

6 4 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

 2 Change the Datasource parameter to a -Database keyword/value parameter.
Ensure that the database name is valid in the current Lasso Professional
7 setup.

[Inline: -Database='Contacts',
 SQLStatement='SELECT First_Name, Last_Name from People']
 …
[/Inline]

Note: The ODBC data source module is not provided with Lasso
Professional 7. Data sources must be available through the included Lasso
Connector for MySQL or a third-party data source connector.

 3 Change the SQLStatement parameter to a -SQL command tag. Change any
table references within the SQL statement so they reference both the
database and table name, not just the table name.

[Inline: -Database='Contacts',
 -SQL='SELECT First_Name, Last_Name from Contacts.People']
 …
[/Inline]

 4 If LDML tags are used within the SQL statement then they will need to
be changed to expressions. In the following example, the name of the
table is stored in a variable named MyTable and referenced using a square
bracketed expression within the SQLStatement. This is no longer valid
syntax.

[Var_Set: 'MyTable'='People']
[SQL_Inline: Datasource='Contacts',
 SQLStatement='SELECT First_Name, Last_Name from [Var: 'MyTable']']
 …
[/SQL_Inline]

In Lasso Professional 7, this is changed to the following string expres-
sion that concatenates the value of the variable to the SQL statement
explicitly.

[Variable: 'MyTable'='Contacts.Table']
[Inline: -Database='Contacts',
 -SQL='SELECT First_Name, Last_Name from ' + (Variable: 'MyTable')]
 …
[/Inline]

Please see Chapter 9: MySQL Data Sources for more examples of creating
SQL statements for use with the -SQL command tag and for information
about how to display the results within the [Inline] … [/Inline] tags.

6 5 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

File Tags and Logging
Lasso Professional 7 features a distributed architecture where Lasso Service
can run on a different machine from the Web server on which Lasso
Connector for IIS or Lasso Connector for Apache is installed. The file
tags and logging tags can only manipulate files on the machine which is
hosting Lasso Service. They have no access to the machine which is hosting
a Lasso Web server connector.

If you are running both Lasso Service and your Web serving software on
a single machine then no changes to existing file and logging tags should
be necessary when you upgrade to Lasso Professional 7. Otherwise, please
consult Chapter 20: Files and Logging for more information about how
to access files in a two machine system.

Note: In contrast to the file and logging tags, the [Include] tag works exclu-
sively with files from the Web serving machine. No changes should be
necessary to your sites which use the [Include] tag unless you are using it to
access log files or files which have been manipulated by the file tags. Use the
[File_Read] tag for these situations.

Line Endings
Files created in Mac OS X, Windows 2000, or versions of the Mac OS
9 and earlier each have a different standard for line endings. This can
cause confusion when moving files from one platform to another or from
an earlier version of the Mac OS to Mac OS X. Table 11: Line Endings
summarizes the different standards.

Table 11: Line Endings

Tag Description

Mac OS X Line feed: \n. Each line is ended with a single line feed
character.

Mac OS 9 and Earlier Carriage return: \r. Each line is ended with a single
carriage return character.

Windows 2000 Line feed and carriage return: \r\n. Each line is ended
with both a line feed and a carriage return character.

Line ending differences are handled automatically by Web servers and Web
browsers so are generally only a concern when reading and writing files
using the [File_…] tags. The following tips make working with files from
different platforms easier.

 • The default line endings used by the [File_LineCount] and
[File_ReadLine] tags match the platform default. They are \n in Mac OS X

6 5 1

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

and \r\n in Windows 2000. The default for Lasso Web Date Engine 3.x’s
file tags on Mac OS 9 and earlier was \r.

 • Specify line endings explicitly in the [File_LineCount] and [File_ReadLine]
tags. For example, the following tag could be used to get the line count
for a file that was originally created on Mac OS 9.

[File_LineCount: 'FileName.txt', -FileEndOfLine='\r']

Or, the following tag could be used to get the line count for a file that
was originally created on Windows 2000.

[File_LineCount: 'FileName.txt', -FileEndOfLine='\r\n']

 • Many FTP clients and Web browsers will automatically translate line
endings when uploading or downloading files. Always check the charac-
ters which are actually used to end lines in a file. Don’t assume that they
will automatically be set to the standard of either the current platform or
the platform from which they originated.

 • A text editor such as Bare Bones BBEdit can be used to change the line
endings in a file from one standard to another explicitly.

JavaScript
Since Lasso will interpret any expressions contained within square brackets
special care must be taken to ensure that square brackets which are used
for array accesses within client-side JavaScripts are not interpreted.

 • Use the [NoProcess] … [/NoProcess] tags to instruct Lasso not to interpret
any of the code contained therein.

[NoProcess]
 <script language="JavaScript">
 … JavaScript Expressions …
 </script>
[/NoProcess]

 • Lasso will not interpret any expressions that are contained within HTML
comments. The following common method of surrounding a JavaScript
with HTML comments ensures that neither Lasso nor older Web
browsers will interpret the contents of the JavaScript.

<script language="JavaScript">
 <!--
 … JavaScript Expressions …
 // -->
</script>

The opening <!-- expression is ignored by the JavaScript interpreter. The
closing --> expression is formatted as part of a JavaScript comment by
including it on a line starting with the JavaScript comment characters //.

6 5 2

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

 • If LDML tags need to be used within a client-side JavaScript then the
HTML comment can be opened and closed in order to allow Lasso to
process portions of the JavaScript, but not others.

<script language="JavaScript">
 <!--
 … JavaScript Expressions …
 // -->
 var VariableName='[Output: … LDML Expression …]';
 <!--
 … JavaScript Expressions …
 // -->
</script>

 • The LDML [Output] tag can be used to output short JavaScript segments
that need to make use of square brackets. This technique is useful for
JavaScript that is contained within the attributes of HTML tags or for
JavaScripts that contain only a few square brackets.

In the following example, a select statement contains an [Output] tag in its
onChange handler that returns a JavaScript expression containing square
brackets to report which option was selected.

<select name="Select" multiple size="4"
 onChange="[Output: 'alert(this.options[this.selectedIndex])']">
 <option value="Value"> Value </option>
 …
</select>

Macros
Macros are not supported in Lasso Professional 7. See the Extending Lasso
Guide for information about rewriting macros as custom tags using the
new [Define_Tag] tag in LDML 7.

Numeric Literals
In LDML 7 there is a distinction between number values and string values.
This distinction makes advanced data type specific member tags and
expression symbols possible. Strings are always enclosed in single quotes.
Numbers are never enclosed in quotes. If you use quotes around a numeric
literal then symbols which are used to manipulate that literal may assume
it is a string.

For example, the following code specifies a mathematical operation, the
numerical addition of 1 and 2:

[Output: 1 + 2] ➜ 3

6 5 3

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

In contrast, the following code specifies a string operation, the string
concatenation of the string '1' and the string '2', because the numbers are
contained in quotes:

[Output: '1' + '2'] ➜ 12

The legacy math and string tags from Lasso Web Data Engine 3.x still
perform automatic type conversions on their arguments. This ensures
that existing sites will not need to be rewritten. Both of the following tags
return the same result despite the fact that the parameters are specified
without quotes in one and with quotes in the other:

[Math_Add: 1, 2] ➜ 3
[Math_Add: '1', '2'] ➜ 3

When a string is converted into an integer or a decimal, only a number at
the beginning of the string will be converted. For example, in the following
conversion only the number 800 from the phone number will be output.

[Integer: '800-555-1212'] ➜ 800

In earlier versions of Lasso all the numbers would have been extracted
from the string yielding 8005551212 as the value. Existing sites may require
modifications if this behavior was being counted on.

Note: Negative literals must be surrounded by parentheses when used
on the right-hand side of two-operator symbols. For example, (1 + (-2)) or
($Variable == (-4)).

Mathematical Precision
Mathematical symbols in LDML 7 do not have the same rounding
behavior as math tags in LDML 3. For example, the following [Math_Div] tag
returns a result with the LDML 7 standard of six significant digits instead of
the maximum precision of its two parameters which it would have had in
LDML 3.

[Math_Div: 10, 3.000] ➜ 3.333333

In LDML 7 the mathematical symbols perform an integer operation if both
parameters of the expression are integers. For example, the following divi-
sion is performed and an integer result is returned:

[Output: 10 / 3] ➜ 3

In LDML 7 the mathematical symbols perform a decimal operation if
either of the parameters of the expression are a decimal value. Decimal
results are always returned with at least six significant digits. For example,
the following expressions return six significant digits of the result since one
of the parameters is specified with a decimal point:

6 5 4

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

[Output: 10.0 / 3] ➜ 3.333333
[Output: 10 / 3.0] ➜ 3.333333

Existing sites should be modified to use the [Math_Round] tag or
the [Decimal->SetFormat] tag to format results from mathematical expressions
if less than six significant digits is desired.

The following example shows how to use [Math_Round] to reduce a division
expression to three significant digits:

[Math_Round: (10.0 / 3.0), 1.000] ➜ 3.333

The following example shows how to set a variable so it will always display
three significant digits using the [Decimal->SetFormat] tag.

[Variable: 'Result' = (10.0 / 3.0)]
[(Variable: 'Result')->(SetFormat: -Precision=3)]
[Variable: 'Result']

➜ 3.333

See Chapter 15: Math Operations for more information.

Double Quotes
Single quotes are preferred when specifying string literals. Double quotes
are still supported, but have been deprecated. Double quotes are not
guaranteed to work in the future. No changes to existing sites should be
required, but all future development should use single quotes exclusively.

Restrictions
Some restrictions have been removed in LDML 7. Your site may need to be
rewritten if it relied on one of these pre-defined restrictions. The following
restrictions have been removed in LDML 7:

 • Integer math now uses 64-bit values for greater precision. LDML 7
should support integer values up to 18,446,744,073,709,551,616. Decimal
math and date calculation are also performed using 64-bit values.

 • The [Loop] tag limit of 1000 iterations has been removed. It is now
possible for infinite loops to occur in LDML so you may want to place
your own upper limit on loop iterations as in the following code:

[Loop: 1000000]
 [If: (Loop_Count) > 1000][Loop_Abort][/If]
 … Loop Contents …
[/Loop]

6 5 5

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Tag Name Changes (Lasso WDE 3.x)
In order to promote consistency in LDML 7 many tag names from LDML
3 had to be changed. The following chart details the tag names which have
changed. Please consult the appropriate chapters in this book for more
information about each individual tag name.

For the most part, these tag name changes will not require modifica-
tions to existing Lasso Web Data Engine 3.x sites. The old tag name is still
supported in LDML 7. However, support for these old tag names is depre-
cated. They are not guaranteed to be supported in a future version of Lasso.
All new development should take place using the new tag names.

Table 12: Command Tag Name Changes details the command tags
which have changed in LDML 7. Table 9: Substitution, Process, and
Container Tag Name Changes details the substitution, process, and
container tags which have changed in LDML 7.

Table 12: Command Tag Name Changes

LDML 3 Tag LDML 7 Tag Equivalent

-AddError -ResponseAddError

-AddResponse -ResponseAdd

-AnyError -ResponseAnyError

-AnyResponse -ResponseAny

-ClientPassword -Password

-ClientUsername -Username

-DeleteResponse -ResponseDelete

-DoScript -FMScript

-DoScript.Post -FMScriptPost

-DoScript.Pre -FMScriptPre

-DoScript.PreSort -FMScriptPreSort

-DuplicateResponse -ResponseDuplicate

-LogicalOperator -OperatorLogical

-NoResultsError -ResponseNoResultsError

-RequiredFieldMissingError -ResponseRequiredFieldMissingError

-SecurityError -ResponseSecurityError

-UpdateError -ResponseUpdateError

-UpdateResponse -ResponseUpdate

6 5 6

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Table 13: Substitution, Process, and Container Tag Name Changes

LDML 3 Tag LDML 7 Tag Equivalent

[Choice_List] [Value_List]

[ChoiceListItem] [Value_ListItem]

[DB_NameItem] [Database_NameItem]

[DB_Names] [Database_Names]

[DB_LayoutNameItem] [Database_TableNameItem]

[DB_LayoutNames] [Database_TableNames]

[Encode_Breaks] [Encode_Break]

[File_LineCount] [File_GetLineCount]

[Lasso_Abort] [Abort]

[Lasso_Comment] [Output_None]

[Lasso_Process] [Process]

[Lasso_SessionID] [Lasso_UniqueID]

[Link_Detail] [Link_DetailURL]

[Logical_OperatorValue] [Operator_LogicalValue]

[LoopAbort] [Loop_Abort]

[LoopCount] [Loop_Count]

[RandomNumber] [Math_Random]

[RepeatingValueItem] [Repeating_ValueItem]

[Roman] [Math_Roman]

[SearchFieldItem] [Search_FieldItem]

[SearchOpItem] [Search_OpItem]

[SearchValueItem] [Search_ValueItem]

[Shown_NextGroup] [Link_NextGroup]

[Shown_NextGroupURL] [Link_NextGroupURL]

[Shown_PrevGroup] [Link_PrevGroup]

[Shown_PrevGroupURL] [Link_PrevGroupURL]

[SortFieldItem] [Sort_FieldItem]

[SortOrderItem] [Sort_OrderItem]

[String_ToDecimal] [Decimal]

[String_ToInteger] [Integer]

[ValueListItem] [Value_ListItem]

6 5 7

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

Unsupported Tags (Lasso WDE 3.x)
The following tags are no longer supported in LDML 7. If any of these
tags are used in a Web site that was built for Lasso Web Data Engine 3.x
they will need to be replaced before that Web site can be served by Lasso
Professional 7. Table 14: Unsupported Tags is a complete list of tags that
are not supported in LDML 7 including notes on how to update a Web site
that relies on those tags for compatibility with Lasso Professional 7.

Table 14: Unsupported Tags

LDML 3 Tag Notes

[4D_RefreshCache] The 4D data source module is no longer provided.

[Apple_Event], [AE_…] The Apple Event tags are no longer supported.

-DoScript.….Back The -DoScript tags with a Back argument are no longer
supported. Use the appropriate -FMScript… tag instead.

[Lasso_DatasourceIs4D] The 4D data source module is no longer provided.

[Lasso_DatasourceIsODBC] The ODBC data source module is no longer provided.

[Macro_…], -Macro All macro tags are no longer supported. See the
Extending Lasso Guide for information about custom
tags.

[Post_Inline] See the Post Inline section in this chapter for more
information about how to convert [Post_Inline] calls to
the [Event_Schedule] tag.

[Relation] The [Relation] tag was equivalent to an [Inline] that
performed a search in the related table.

-Scripts This command tag only worked with the Apple Event
based FileMaker Pro data source module. Use any
command tag which performs a database action instead
(e.g. -FindAll).

-Timeout This command tag only worked with the Apple Event
based FileMaker Pro data source module.

[Win_Exec] This tag is no longer supported.

CDML Compatibility

Lasso Web Data Engine 3.x supported a number of CDML tags for
compatibility with Web sites that were created for FileMaker Pro’s Web
Companion. These tags are no longer supported in Lasso Professional 7.

Early Lasso Compatibility

Lasso Web Data Engine 3.x supported a number of tags from earlier
versions of Lasso for compatibility with sites that were created using the

6 5 8

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

earlier versions of Lasso. These tags are no longer supported in Lasso
Professional 7.

FileMaker Pro (Lasso WDE 3.x)
Lasso Professional 7 includes Lasso Connector for FileMaker Pro which
is the equivalent of the Lasso Web Data Engine 3.x FileMaker Pro Remote
data source module. The functionality of the Apple Event based FileMaker
Pro data source module is no longer supported since it was Mac specific
and reliant upon the use of Apple Events.

If you were using the FileMaker Pro Remote data source module then
no changes to your site should be required when you move the site over
to Lasso Professional 7.

If you were not previously using the FileMaker Pro Remote data source
module, some changes may be necessary. Lasso Connector for FileMaker
Pro does not support the following features of the Apple Event based
FileMaker Pro data source module from Lasso Web Data Engine 3.x.

 • Field-Level Search Operators are not supported. The -OperatorBegin
and -OperatorEnd tags cannot be used to create complex queries with a
FileMaker Pro database.

 • Automatic Image Conversion is not supported for PICT images stored
in FileMaker Pro container field. However, GIFs and JPEGs stored in
container field can be retrieved. The parameters of the [Image_URL] tag are
ignored and images are served in the format stored in the database.

 • Certain Script Command Tags are not supported including
-DoScript.Back, -DoScript.Post.Back, -DoScript.PreSort.Back, -DoScript.Pre.Back.
These tags all instruct FileMaker Pro to send itself to the background
after the script is completed. Use the -FMScript commands without the
Back argument instead.

 • FileMaker Pro 3 is no longer supported since this version does not
provide the Web Companion necessary to make a remote connection to
FileMaker Pro.

However, in exchange for the omissions there are some advantages to using
Lasso Connector for FileMaker Pro.

 • FileMaker Pro can be accessed via TCP/IP on the same machine or on a
different machine.

 • Multiple FileMaker Pro applications running on different machines can
be accessed from a single installation of Lasso Professional 7.

 • The -ReturnField tag allows you to limit the fields that are returned from a
search or other database action.

6 5 9

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

 • GIFs and JPEGs can be stored in FileMaker Pro container fields and
served directly without any conversion.

Upgrading FileMaker Pro Based Sites
If a site was created using the FileMaker Remote data source module
then no changes should be necessary when moving the site to Lasso
Professional 7. Simply follow the instructions in Chapter 13: Upgrading
in the Lasso Professional 7 Setup Guide in order to configure Lasso
Connector for FileMaker Pro to point to the appropriate FileMaker Pro
Web Companion.

If a site was created using the Apple Event based FileMaker Pro data source
module or relied on FileMaker Pro 3.x then the following changes will
need to be made in order to ensure that the site is compatible with Lasso
Professional 7.

To upgrade a FileMaker Pro based site:

 1 A site that relies on FileMaker Pro 3 will need to be upgraded to
FileMaker Pro 4.x or FileMaker Pro Unlimited 5.x.

 2 Configure FileMaker Pro Web Companion according to the instructions
in Chapter 5: Data Sources of the Lasso Professional 7 Setup Guide.
The Web Companion needs to be activated and all databases that are to
be shared need to have their Sharing… settings established.

 3 Modify any database searches that relied on the -OperatorBegin and
-OperatorEnd command tags so that they no longer reference these tags.

 4 Modify any calls to -DoScript… to call one of the new
-FMScript… equivalents. Any database action that relies on the -Scripts
command tag needs to be rewritten with a database action such as
-FindAll.

 5 Ensure that the images stored in container fields are either GIFs or
JPEGs. These images will be served directly by the Web Companion.

6 6 0

L A S S O 7 . 1 L A N G U A G E G U I D E

C H A P T E R 3 1 – U P G R A D I N G Y O U R S O L U T I O N S

A
Appendix A

LDML 7 Tag List

This appendix contains two charts which summarize the language of Lasso
Professional 7, e.g. Lasso Dynamic Markup Language (LDML 7).

 • LDML 7 Tag List contains all of the preferred tags in LDML 7 and lists
the tag type (Command, Container, Member, Process, or Substitution), status
(Preferred, Synonym, or Abbreviation), change since LDML 3 (None, None, or
None), and the page number in the Lasso 7 Language Guide where the
tag is principally documented.

 • LDML 7 Legacy Tag List contains all of the deprecated tags which are
still supported in LDML 7, but may not be supported in a future version
of Lasso.

Table Key: Tags which have the * symbol by the page number are a synonym
or abbreviation of a tag which is documented on the specified page. Tags
which have the ‡ symbol by the page number are documented on the speci-
fied page in the Extending Lasso Guide.

Note: The tag listings are also available in the LDML 7 Reference which
provides different list views, allows tags to be searched, and includes addi-
tional details about each tag in LDML 7.

Upgrading Note: See Chapter 32: Upgrading Your Solutions for a list of
LDML 3 tags that are not supported in LDML 7 and for specific tips regarding
how to upgrade solutions that rely on deprecated tags.

6 6 1

L A S S O 7 . 1 L A N G U A G E G U I D E

LDML 7 Tag List
Action
Tag Type Status Change Page

-Add Command Preferred None 110
-Delete Command Preferred None 110
-Duplicate Command Preferred None 110
-FindAll Command Preferred None 110
-Image Command Preferred None 110
-Nothing Command Preferred None 110
-Random Command Preferred None 110
-Search Command Preferred None 110
-Show Command Preferred None 110
-SQL Command Preferred None 110
-Update Command Preferred None 110

Administration
Tag Type Status Change Page

[Admin_ChangeUser] Substitution Preferred None 428
[Admin_CreateUser] Substitution Preferred None 428
[Admin_CurrentGroups] Substitution Preferred New 428
[Admin_CurrentUsername] Substitution Preferred New 428
[Admin_GroupAssignUser] Substitution Preferred None 428
[Admin_GroupListUsers] Substitution Preferred None 428
[Admin_GroupRemoveUser] Substitution Preferred None 428
[Admin_LassoServicePath] Substitution Preferred New 428
[Admin_ListGroups] Substitution Preferred None 428
[Admin_RefreshSecurity] Substitution Preferred New 428
[Admin_ReloadDatasource] Substitution Preferred New 428
[Auth] Process Preferred None 426
[Auth_Admin] Process Preferred None 426
[Auth_Custom] Process Preferred New 426
[Auth_Group] Process Preferred New 426
[Auth_User] Process Preferred New 426
[Lasso_DatasourceIsFileMaker] Substitution Preferred None 215
[Lasso_DatasourceIsLassoMySQL] Substitution Preferred None 189
[Lasso_DatasourceIsMySQL] Substitution Preferred None 189
[Lasso_DatasourceModuleName] Substitution Preferred None 441
[Lasso_TagExists] Substitution Preferred None 441
[Lasso_TagModuleName] Substitution Preferred None 441
[Lasso_Version] Substitution Preferred None 441
[Log_SetDestination] Process Preferred None 391
[Tags] Substitution Preferred None 439

6 6 2

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

Array
Tag Type Status Change Page

[Array] Substitution Preferred None 340
[Array->FindIndex] Member Preferred None 342
[Array->Find] Member Preferred None 342
[Array->Get] Member Preferred None 342
[Array->Insert] Member Preferred None 342
[Array->Join] Member Preferred None 342
[Array->Last] Member Preferred None 342
[Array->Merge] Member Preferred None 342
[Array->Remove] Member Preferred None 342
[Array->RemoveAll] Member Preferred None 342
[Array->Size] Member Preferred None 342
[Array->Sort] Member Preferred None 342
[Map] Substitution Preferred None 352
[Map->Find] Member Preferred None 353
[Map->Get] Member Preferred None 353
[Map->Insert] Member Preferred None 353
[Map->Keys] Member Preferred None 353
[Map->Remove] Member Preferred None 353
[Map->Size] Member Preferred None 353
[Map->Values] Member Preferred None 353
[Pair] Substitution Preferred None 357
[Pair->First] Member Preferred None 357
[Pair->Get] Member Preferred None 357*
[Pair->Name] Member Synonym None 357*
[Pair->Second] Member Preferred None 357
[Pair->Size] Member Preferred None 357*
[Pair->Value] Member Synonym None 357*

Client
Tag Type Status Change Page

[Client_Address] Substitution Preferred None 508
[Client_Browser] Substitution Preferred None 508
[Client_ContentLength] Substitution Preferred None 507
[Client_ContentType] Substitution Preferred None 507
[Client_CookieList] Substitution Preferred None 492
[Client_Cookies] Substitution Preferred None 492
[Client_FormMethod] Substitution Preferred None 507
[Client_GETArgs] Substitution Preferred None 507
[Client_GETParams] Substitution Preferred None 507
[Client_Headers] Substitution Preferred None 507
[Client_IP] Substitution Preferred None 508
[Client_Password] Substitution Preferred None 507
[Client_POSTArgs] Substitution Preferred None 507
[Client_POSTParams] Substitution Preferred None 507

6 6 3

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

[Client_Type] Substitution Preferred None 508
[Client_Username] Substitution Preferred None 507
[WAP_IsEnabled] Substitution Preferred None 515
[WAP_MaxButtons] Substitution Preferred None 515
[WAP_MaxColumns] Substitution Preferred None 515
[WAP_MaxHorzPixels] Substitution Preferred None 515
[WAP_MaxRows] Substitution Preferred None 515
WAP_MaxVertPixels] Substitution Preferred None 515

Conditional
Tag Type Status Change Page

[Abort] Process Preferred None 274
[Case] Substitution Preferred None 267
[Else] Substitution Preferred None 265
[If] Container Preferred None 265
[Iterate] Container Preferred None 273
[Loop] Container Preferred None 270
[Loop_Abort] Process Preferred None 270
[Loop_Count] Substitution Preferred None 270
[Select] Container Preferred None 267
[While] Container Preferred None 274

Custom Tag
Tag Type Status Change Page

[Define_Tag] Container Preferred None 33‡
[Define_Type] Container Preferred None 62‡
[Params] Substitution Preferred None 33‡
[Params_Up] Substitution Preferred None 33‡
[Return] Process Preferred None 33‡
[Run_Children] Substitution Preferred None 33‡
[Self] Substitution Preferred None 62‡
[Tag_Name] Substitution Preferred None 33‡

Database
Tag Type Status Change Page

[Checked] Substitution Preferred None 226
[Column] Substitution Synonym None 125*
[Column_Name] Substitution Synonym None 127*
-Database Command Preferred None 123
[Database_ChangeColumn] Process Preferred None 203*
[Database_ChangeField] Process Preferred None 203
[Database_CreateColumn] Process Preferred None 203*
[Database_CreateField] Process Preferred None 203
[Database_CreateTable] Process Preferred None 203
[Database_FMContainer] Substitution Preferred New 232

6 6 4

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

[Database_Name] Substitution Preferred None 120
[Database_NameItem] Substitution Preferred None 127
[Database_Names] Container Preferred None 127
[Database_RealName] Substitution Preferred None 131
[Database_RemoveColumn] Process Preferred None 203*
[Database_RemoveField] Process Preferred None 203
[Database_RemoveTable] Process Preferred None 203
[Database_SchemaNameItem] Substitution Preferred None 240
[Database_SchemaNames] Container Preferred None 240
[Database_TableNameItem] Substitution Preferred None 127
[Database_TableNames] Container Preferred None 127
-Distinct Command Preferred None 192
[Field] Substitution Preferred None 125
[Field_Name] Substitution Preferred None 127
[Field_Names] Substitution Preferred New 127
-FMScript Command Preferred None 234
-FMScriptPost Command Synonym None 234*
-FMScriptPre Command Preferred None 234
-FMScriptPreSort Command Preferred None 234
-KeyColumn Command Synonym None 123*
[KeyColumn_Name] Substitution Synonym None 120*
[KeyColumn_Value] Substitution Synonym None 120*
-KeyField Command Preferred None 123
[KeyField_Name] Substitution Preferred None 120
[KeyField_Value] Substitution Preferred None 120
-KeyValue Command Preferred None 123
-Layout Command Synonym None 123*
[Layout_Name] Substitution Synonym None 120*
-MaxRecords Command Preferred None 123
-MaxRows Command Synonym None 123*
[Option] Substitution Preferred None 226
[Portal] Container Preferred None 218
[Records] Container Preferred None 125
[Records_Array] Substitution Preferred New 125
[Repeating] Container Preferred None 218
[Repeating_ValueItem] Substitution Preferred None 218
-Req Command Abbreviation None 123*
-Required Command Preferred None 123
-ReturnColumn Command Synonym None 123*
-ReturnField Command Preferred None 123
[Rows] Container Synonym None 125*
[Rows_Array] Substitution Preferred New 125
-Schema Command Preferred None 240
[Schema_Name] Substitution Preferred None 240
[Selected] Substitution Preferred None 226
-SkipRecords Command Preferred None 123
-SkipRows Command Synonym None 123*
-SortColumn Command Synonym None 123*

6 6 5

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

-SortField Command Preferred None 123
-SortOrder Command Preferred None 123
-SortRandom Command Preferred None 192
-Table Command Preferred None 123
[Table_Name] Substitution Preferred None 120
[Table_RealName] Substitution Preferred None 131
-UseLimit Command Preferred None 192
[Value_List] Container Preferred None 226
[Value_ListItem] Substitution Preferred None 226

Date
Tag Type Status Change Page

[Date] Substitution Preferred Updated 325
[Date->Add] Member Preferred None 335
[Date->Day] Member Preferred None 330
[Date->DayofWeek] Member Preferred None 330
[Date->DayofYear] Member Preferred None 330
[Date->Difference] Member Preferred None 335
[Date->Format] Member Preferred None 329
[Date->GMT] Member Preferred None 330
[Date->Hour] Member Preferred None 330
[Date->Millisecond] Member Preferred None 330
[Date->Minute] Member Preferred None 330
[Date->Month] Member Preferred None 330
[Date->Second] Member Preferred None 330
[Date->SetFormat] Member Preferred None 329
[Date->Subtract] Member Preferred None 335
[Date->Time] Member Preferred None 330
[Date->Week] Member Preferred None 330
[Date->Year] Member Preferred None 330
[Date_Add] Substitution Preferred None 334
[Date_Difference] Substitution Preferred None 334
[Date_Format] Substitution Preferred None 325
[Date_GetLocalTimeZone] Substitution Preferred None 325
[Date_GMTtoLocal] Substitution Preferred None 325
[Date_LocaltoGMT] Substitution Preferred None 325
[Date_Maximum] Substitution Preferred None 325
[Date_Minimum] Substitution Preferred None 325
[Date_SetFormat] Process Preferred None 325
[Date_Subtract] Substitution Preferred None 334
[Duration] Substitution Preferred None 332
[Duration->Day] Member Preferred None 332
[Duration->Hour] Member Preferred None 332
[Duration->Minute] Member Preferred None 332
[Duration->Month] Member Preferred None 332

6 6 6

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

[Duration->Second] Member Preferred None 332
[Duration->Week] Member Preferred None 332
[Duration->Year] Member Preferred None 332
[Server_Date] Substitution Preferred None 445
[Server_Day] Substitution Preferred None 445
[Server_Time] Substitution Preferred None 445

Encoding
Tag Type Status Change Page

[Decode_Base64] Substitution Preferred None 367
[Decode_HTML] Substitution Preferred New 367
[Decode_URL] Substitution Preferred None 367
[Encode_Base64] Substitution Preferred None 367
[Encode_Break] Substitution Preferred None 367
[Encode_HTML] Substitution Preferred None 367
[Encode_Set] Container Preferred None 366
[Encode_Smart] Substitution Preferred None 367
[Encode_SQL] Substitution Preferred None 367
[Encode_StrictURL] Substitution Preferred None 367
[Encode_URL] Substitution Preferred None 367
[Encode_XML] Substitution Preferred None 367

Encryption
Tag Type Status Change Page

[Decrypt_BlowFish] Substitution Preferred None 368
[Encrypt_BlowFish] Substitution Preferred None 368
[Encrypt_MD5] Substitution Preferred None 368

Error
Tag Type Status Change Page

[Error_AddError] Substitution Preferred None 417
[Error_Code] Substitution Preferred New 415
[Error_ColumnRestriction] Substitution Synonym None 417*
[Error_CurrentError] Substitution Preferred None 415
[Error_DatabaseConnectionUnavailable]
 Substitution Preferred None 417
[Error_DatabaseTimeout] Substitution Preferred None 417
[Error_DeleteError] Substitution Preferred None 417
[Error_FieldRestriction] Substitution Preferred None 417
[Error_FileNotFound] Substitution Preferred None 417
[Error_InvalidDatabase] Substitution Preferred None 417
[Error_InvalidPassword] Substitution Preferred None 417
[Error_InvalidUsername] Substitution Preferred None 417
[Error_ModuleNotFound] Substitution Preferred None 417
[Error_Msg] Substitution Preferred New 415

6 6 7

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

[Error_NoError] Substitution Preferred None 417
[Error_NoPermission] Substitution Preferred None 417
[Error_OutOfMemory] Substitution Preferred None 417
[Error_ReqColumnMissing] Substitution Abbreviation None 417*
[Error_ReqFieldMissing] Substitution Abbreviation None 417
[Error_RequiredColumnMissing] Substitution Synonym None 417*
[Error_RequiredFieldMissing] Substitution Preferred None 417*
[Error_SetErrorCode] Process Preferred None 415
[Error_SetErrorMessage] Process Preferred None 415
[Error_UpdateError] Substitution Preferred None 417
[Fail] Process Preferred None 419
[Fail_If] Process Preferred None 419
[Handle] Container Preferred None 419
[Handle_Error] Container Preferred New 419
[Protect] Container Preferred None 419

File
Tag Type Status Change Page

[File] Substitution Preferred New 404
[File->Close] Member Preferred New 405
[File->Delete] Member Preferred New 405
[File->GetPosition] Member Preferred New 405
[File->Get] Member Preferred New 405
[File->IsOpen] Member Preferred New 405
[File->MoveTo] Member Preferred New 405
[File->Name] Member Preferred New 405
[File->Open] Member Preferred New 405
[File->Path] Member Preferred New 405
[File->Read] Member Preferred New 405
[File->SetMode] Member Preferred New 405
[File->SetPosition] Member Preferred New 405
[File->SetSize] Member Preferred New 405
[File->Size] Member Preferred New 405
[File->Write] Member Preferred New 405
[File_Copy] Process Preferred None 396
[File_Create] Process Preferred None 396
[File_CreationDate] Substitution Preferred None 396
[File_CurrentError] Substitution Preferred None 396
[File_Delete] Process Preferred None 396
[File_Exists] Substitution Preferred None 396
[File_GetLineCount] Substitution Preferred None 396
[File_GetSize] Substitution Preferred None 396
[File_IsDirectory] Substitution Preferred None 396
[File_LineCount] Substitution Preferred None 396
[File_ListDirectory] Substitution Preferred None 396
[File_ModDate] Substitution Preferred None 396
[File_Move] Process Preferred None 396

6 6 8

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

[File_Read] Substitution Preferred None 396
[File_ReadLine] Substitution Preferred None 396
[File_Rename] Process Preferred None 396
[File_SetSize] Process Preferred None 396
[File_Uploads] Substitution Preferred None 396
[File_Write] Process Preferred None 396

Image
Tag Type Status Change Page

[Image] Substitution Preferred New 464
[Image->AddComment] Member Preferred New 467
[Image->Annotate] Member Preferred New 473
[Image->Blur] Member Preferred New 470
[Image->Comments] Member Preferred New 465
[Image->Composite] Member Preferred New 474
[Image->Contrast] Member Preferred New 470
[Image->Crop] Member Preferred New 469
[Image->Depth] Member Preferred New 465
[Image->Describe] Member Preferred New 465
[Image->Enhance] Member Preferred New 470
[Image->Execute] Member Preferred New 476
[Image->File] Member Preferred New 465
[Image->FlipH] Member Preferred New 469
[Image->FlipV] Member Preferred New 469
[Image->Format] Member Preferred New 465
[Image->Height] Member Preferred New 465
[Image->Modulate] Member Preferred New 465
[Image->Pixel] Member Preferred New 470
[Image->ResolutionH] Member Preferred New 465
[Image->ResolutionV] Member Preferred New 465
[Image->Rotate] Member Preferred New 465
[Image->Save] Member Preferred New 469
[Image->Scale] Member Preferred New 469
[Image->Sharpen] Member Preferred New 469
[Image->Width] Member Preferred New 470

Include
Tag Type Status Change Page

[Include] Substitution Preferred None 386
[Include_Raw] Substitution Preferred None 386
[Include_URL] Substitution Preferred None 484
[Library] Process Preferred None 386

6 6 9

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

Link
Tag Type Status Change Page

[Link] Container Preferred New 157
[Link_CurrentAction] Container Preferred None 161
[Link_CurrentActionParams] Substitution Preferred New 162
[Link_CurrentActionURL] Substitution Preferred None 160
[Link_CurrentGroup] Container Preferred None 161
[Link_CurrentGroupParams] Substitution Preferred New 162
[Link_CurrentGroupURL] Substitution Preferred None 160
[Link_CurrentRecord] Container Preferred None 161
[Link_CurrentRecordParams] Substitution Preferred New 162
[Link_CurrentRecordURL] Substitution Preferred None 160
[Link_Detail] Container Preferred None 161
[Link_DetailParams] Substitution Preferred New 162
[Link_DetailURL] Substitution Preferred None 160
[Link_FirstGroup] Container Preferred None 161
[Link_FirstGroupParams] Substitution Preferred New 162
[Link_FirstGroupURL] Substitution Preferred None 160
[Link_FirstRecord] Container Preferred None 161
[Link_FirstRecordParams] Substitution Preferred New 162
[Link_FirstRecordURL] Substitution Preferred None 160
[Link_LastGroup] Container Preferred None 161
[Link_LastGroupParams] Substitution Preferred New 162
[Link_LastGroupURL] Substitution Preferred None 160
[Link_LastRecord] Container Preferred None 161
[Link_LastRecordParams] Substitution Preferred New 162
[Link_LastRecordURL] Substitution Preferred None 160
[Link_NextGroup] Container Preferred None 161
[Link_NextGroupParams] Substitution Preferred New 162
[Link_NextGroupURL] Substitution Preferred None 160
[Link_NextRecord] Container Preferred None 161
[Link_NextRecordParams] Substitution Preferred New 162
[Link_NextRecordURL] Substitution Preferred None 160
[Link_Params] Substitution Preferred New 157
[Link_PrevGroup] Container Preferred None 161
[Link_PrevGroupParams] Substitution Preferred New 162
[Link_PrevGroupURL] Substitution Preferred None 160
[Link_PrevRecord] Container Preferred None 161
[Link_PrevRecordParams] Substitution Preferred New 162
[Link_PrevRecordURL] Substitution Preferred None 160
[Link_URL] Substitution Preferred New 157
[Referer] Container Synonym None 161
[Referer_URL] Substitution Synonym None 160
[Referrer] Container Preferred None 161
[Referrer_URL] Substitution Preferred None 160

6 7 0

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

Literal
Tag Type Status Change Page

[False] Substitution Preferred None 275*
[True] Substitution Preferred None 275*

Math
Tag Type Status Change Page

[Currency] Substitution Preferred New 320
[Decimal] Substitution Preferred None 307
[Decimal->SetFormat] Member Preferred None 311
[Integer] Substitution Preferred None 306
[Integer->BitAnd] Member Preferred None 313
[Integer->BitClear] Member Preferred None 313
[Integer->BitFlip] Member Preferred None 313
[Integer->BitNot] Member Preferred None 313
[Integer->BitOr] Member Preferred None 313
[Integer->BitSet] Member Preferred None 313
[Integer->BitShiftLeft] Member Preferred None 313
[Integer->BitShiftRight] Member Preferred None 313
[Integer->BitTest] Member Preferred None 313
[Integer->BitXOr] Member Preferred None 313
[Integer->SetFormat] Member Preferred None 313
[Locale_Format] Substitution Preferred New 320
[Math_Abs] Substitution Preferred None 316
[Math_ACos] Substitution Preferred None 319
[Math_Add] Substitution Preferred None 316
[Math_ASin] Substitution Preferred None 319
[Math_ATan] Substitution Preferred None 319
[Math_ATan2] Substitution Preferred None 319
[Math_Ceil] Substitution Preferred None 316
[Math_ConvertEuro] Substitution Preferred None 316
[Math_Cos] Substitution Preferred None 319
[Math_Div] Substitution Preferred None 316
[Math_Exp] Substitution Preferred None 319
[Math_Floor] Substitution Preferred None 316
[Math_Ln] Substitution Preferred None 319
[Math_Log] Substitution Preferred None 319
[Math_Log10] Substitution Preferred None 319
[Math_Max] Substitution Preferred None 316
[Math_Min] Substitution Preferred None 316
[Math_Mod] Substitution Preferred None 316
[Math_Mult] Substitution Preferred None 316
[Math_Pow] Substitution Preferred None 319
[Math_Random] Substitution Preferred None 316
[Math_RInt] Substitution Preferred None 316
[Math_Roman] Substitution Preferred None 316

6 7 1

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

[Math_Round] Substitution Preferred None 316
[Math_Sin] Substitution Preferred None 319
[Math_Sqrt] Substitution Preferred None 319
[Math_Sub] Substitution Preferred None 316
[Math_Tan] Substitution Preferred None 319
[Percent] Substitution Preferred New 320
[Scientific] Substitution Preferred New 320

Networking
Tag Type Status Change Page

[Net] Substitution Preferred New 108‡
[Net->Accept] Member Preferred New 110‡
[Net->Bind] Member Preferred New 109‡
[Net->Close] Member Preferred New 109‡
[Net->Connect] Member Preferred New 110‡
[Net->Listen] Member Preferred New 110‡
[Net->LocalAddress] Member Preferred New 109‡
[Net->ReadFrom] Member Preferred New 114‡
[Net->Read] Member Preferred New 110‡
[Net->RemoteAddress] Member Preferred New 109‡
[Net->SetBlocking] Member Preferred New 109‡
[Net->SetType] Member Preferred New 109‡
[Net->Wait] Member Preferred New 109‡
[Net->WriteTo] Member Preferred New 114‡
[Net->Write] Member Preferred New 110‡
[Net_ConnectInProgress] Substitution Preferred New 108‡
[Net_ConnectOK] Substitution Preferred New 108‡
[Net_WaitRead] Substitution Preferred New 108‡
[Net_WaitTimeOut] Substitution Preferred New 108‡
[Net_WaitWrite] Substitution Preferred New 108‡

Operator
Tag Type Status Change Page

-Op Command Abbreviation None 123*
[Op_LogicalValue] Substitution Synonym None 120*
-OpBegin Command Abbreviation None 123*
-OpEnd Command Abbreviation None 123*
-Operator Command Preferred None 123
[Operator_LogicalValue] Substitution Preferred None 120
-OperatorBegin Command Preferred None 123
-OperatorEnd Command Preferred None 123
-OperatorLogical Command Preferred None 123
-OpLogical Command Abbreviation None 123*

6 7 2

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

Output
Tag Type Status Change Page

[Content_Type] Substitution Preferred None 504
[File_Serve] Process Preferred None 479
[Header] Container Preferred None 504
[HTML_Comment] Container Preferred None 247
[Output] Substitution Preferred None 247
[Output_None] Container Preferred None 247
[Redirect_URL] Process Preferred None 487
[Server_Push] Process Preferred None 503

PDF
Tag Type Status Change Page

[PDF_Barcode] Substitution Preferred None 592
[PDF_Doc] Substitution Preferred None 559
[PDF_Doc->Add] Member Preferred New 565
[PDF_Doc->AddChapter] Member Preferred None 574
[PDF_Doc->AddCheckBox] Member Preferred None 577
[PDF_Doc->AddComboBox] Member Preferred None 577
[PDF_Doc->AddHiddenField] Member Preferred None 577
[PDF_Doc->AddPage] Member Preferred None 574
[PDF_Doc->AddPasswordField] Member Preferred None 577
[PDF_Doc->AddPhrase] Member Preferred None 530
[PDF_Doc->AddRadioButton] Member Preferred None 577
[PDF_Doc->AddRadioGroup] Member Preferred None 577
[PDF_Doc->AddResetButton] Member Preferred None 577
[PDF_Doc->AddSection] Member Preferred None 574
[PDF_Doc->AddSelectList] Member Preferred None 577
[PDF_Doc->AddSubmitButton] Member Preferred None 577
[PDF_Doc->AddTextArea] Member Preferred None 577
[PDF_Doc->AddTextField] Member Preferred None 577
[PDF_Doc->Arc] Member Preferred None 589
[PDF_Doc->Circle] Member Preferred None 589
[PDF_Doc->ClosePath] Member Preferred None 589
[PDF_Doc->Close] Member Preferred None 567
[PDF_Doc->CurveTo] Member Preferred None 589
[PDF_Doc->GetHeaders] Member Preferred None 566
[PDF_Doc->GetMargins] Member Preferred None 566
[PDF_Doc->GetPageNumber] Member Preferred None 574
[PDF_Doc->GetSize] Member Preferred None 566
[PDF_Doc->InsertPage] Member Preferred New 563
[PDF_Doc->Line] Member Preferred None 589
[PDF_Doc->MoveTo] Member Preferred None 589
[PDF_Doc->Rect] Member Preferred None 589
[PDF_Doc->SetColor] Member Preferred None 589
[PDF_Doc->SetLineWidth] Member Preferred None 589

6 7 3

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

[PDF_Doc->SetPageNumber] Member Preferred None 574
[PDF_Font] Substitution Preferred None 568
[PDF_Font->GetColor] Member Preferred None 569
[PDF_Font->GetEncoding] Member Preferred None 569
[PDF_Font->GetFace] Member Preferred None 569
[PDF_Font->GetFullFontName] Member Preferred None 569
[PDF_Font->GetPSFontName] Member Preferred None 569
[PDF_Font->GetSize] Member Preferred None 569
[PDF_Font->GetSupportedEncodings]
 Member Preferred None 569
[PDF_Font->IsTrueType] Member Preferred None 569
[PDF_Font->SetColor] Member Preferred None 569
[PDF_Font->SetEncoding] Member Preferred None 569
[PDF_Font->SetFace] Member Preferred None 569
[PDF_Font->SetSize] Member Preferred None 569
[PDF_Font->SeUnderline] Member Preferred None 569
[PDF_Font->TextWidth] Member Preferred New 569
[PDF_Image] Substitution Preferred None 587
[PDF_List] Substitution Preferred New 573
[PDF_List->Add] Member Preferred New 573
[PDF_Read] Substitution Preferred New 562
[PDF_Read->PageCount] Member Preferred New 562
[PDF_Read->PageSize] Member Preferred New 562
[PDF_Serve] Process Preferred None 599
[PDF_Table] Substitution Preferred None 583
[PDF_Table->Add] Member Preferred New 583
[PDF_Table->GetAbsWidth] Member Preferred None 584
[PDF_Table->GetColumnCount] Member Preferred None 584
[PDF_Table->GetRowCount] Member Preferred None 584
[PDF_Text] Substitution Preferred New 571
[PDF_Text->Add] Member Preferred New 571

Response
Tag Type Status Change Page

-Response Command Preferred None 116
-ResponseAnyError Command Preferred None 116
-ResponseReqColumnMissingError Command Abbreviation None 116*
-ResponseReqFieldMissingError Command Abbreviation None 116
-ResponseRequiredColumnMissingError
 Command Synonym None 116*
-ResponseRequiredFieldMissingError Command Preferred None 116*
-ResponseSecurityError Command Preferred None 116

6 7 4

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

Results
Tag Type Status Change Page

[Found_Count] Substitution Preferred None 125
[Lasso_CurrentAction] Substitution Preferred None 120
[MaxRecords_Value] Substitution Preferred None 120
[Req_Column] Substitution Abbreviation None 127*
[Req_Field] Substitution Abbreviation None 127*
[Required_Column] Substitution Synonym None 127*
[Required_Field] Substitution Preferred None 127
[Response_FilePath] Substitution Preferred None 507
[Response_LocalPath] Substitution Preferred None 507
[Response_Path] Substitution Preferred None 507
[Response_Realm] Substitution Preferred None 507
[Search_Args] Container Abbreviation None 120*
[Search_Arguments] Container Preferred None 120
[Search_ColumnItem] Substitution Synonym None 120*
[Search_FieldItem] Substitution Preferred None 120
[Search_OperatorItem] Substitution Preferred None 120
[Search_OpItem] Substitution Abbreviation None 120*
[Search_ValueItem] Substitution Preferred None 120
[Shown_Count] Substitution Preferred None 125
[Shown_First] Substitution Preferred None 125
[Shown_Last] Substitution Preferred None 125
[SkipRecords_Value] Substitution Preferred None 120
[Sort_Args] Substitution Abbreviation None 120*
[Sort_Arguments] Container Preferred None 120
[Sort_ColumnItem] Substitution Synonym None 120*
[Sort_FieldItem] Substitution Preferred None 120
[Sort_OrderItem] Substitution Preferred None 120
[Total_Records] Substitution Preferred None 125

Session
Tag Type Status Change Page

[Session_Abort] Process Preferred New 375
[Session_AddVar] Process Abbreviation None 375*
[Session_AddVariable] Process Preferred None 375
[Session_End] Process Preferred None 375
[Session_ID] Substitution Preferred None 375
[Session_RemoveVar] Process Abbreviation None 375*
[Session_RemoveVariable] Process Preferred None 375
[Session_Result] Substitution Preferred New 375
[Session_Start] Process Preferred None 375

6 7 5

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

String
Tag Type Status Change Page

[String] Substitution Preferred None 281
[String->Append] Member Preferred None 286
[String->BeginsWith] Member Preferred None 290
[String->CharDigitValue] Member Preferred New 295
[String->CharName] Member Preferred New 295
[String_CharFromName] Substitution Preferred New 297
[String->CharType] Member Preferred New 295
[String->CompareCodePointOrder] Member Preferred New 290*
[String->Compare] Member Preferred New 290
[String_Concatenate] Substitution Preferred None 287
[String->Contains] Member Preferred None 290
[String->Digit] Member Preferred New 295
[String->EndsWith] Member Preferred None 290
[String_EndsWith] Substitution Preferred None 291
[String->Equals] Member Preferred None 290
[String_Extract] Substitution Preferred None 293
[String->Find] Member Preferred None 292
[String_FindPosition] Substitution Preferred None 293
[String_FindRegExp] Substitution Preferred None 298
[String->FoldCase] Member Preferred New 289
[String->Get] Member Preferred None 292
[String->GetNumericValue] Member Preferred New 295
[String_GetUnicodeVersion] Substitution Preferred New 297
[String_Insert] Substitution Preferred None 287
[String->IsAlnum] Member Preferred New 295
[String->IsAlpha] Member Preferred New 295
[String_IsAlpha] Substitution Preferred None 293
[String_IsAlphaNumeric] Substitution Preferred None 293
[String->IsBase] Member Preferred New 295
[String->IsCntrl] Member Preferred New 295
[String->IsDefined] Member Preferred New 295
[String->IsDigit] Member Preferred New 295
[String_IsDigit] Substitution Preferred None 293
[String_IsHexdigit] Substitution Preferred None 293
[String->IsLower] Member Preferred New 295
[String_IsLower] Substitution Preferred None 293
[String_IsNumeric] Substitution Preferred None 293
[String->IsPrint] Member Preferred New 295
[String_IsPunctuation] Substitution Preferred None 293
[String->IsSpace] Member Preferred New 295
[String_IsSpace] Substitution Preferred None 293
[String->IsTitle] Member Preferred New 295
[String->IsUAlphabetic] Member Preferred New 295
[String->IsULowerCase] Member Preferred New 295
[String->IsUpper] Member Preferred New 295

6 7 6

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

[String_IsUpper] Substitution Preferred None 293
[String->isUUpperCase] Member Preferred New 295
[String->IsUWhiteSpace] Member Preferred New 295
[String->IsWhiteSpace] Member Preferred New 295
[String_Length] Substitution Preferred None 293
[String->LowerCase] Member Preferred None 289
[String_LowerCase] Substitution Preferred None 289
[String->Merge] Member Preferred None 286
[String->PadLeading] Member Preferred New 286
[String->PadTrailing] Member Preferred New 286
[String->Remove] Member Preferred None 286
[String_Remove] Substitution Preferred None 287
[String->RemoveLeading] Member Preferred None 286
[String_RemoveLeading] Substitution Preferred None 287
[String->RemoveTrailing] Member Preferred None 286
[String_RemoveTrailing] Substitution Preferred None 287
[String->Replace] Member Preferred None 286
[String_Replace] Substitution Preferred None 287
[String_ReplaceRegExp] Substitution Preferred None 298
[String->Reverse] Member Preferred New 286
[String->Size] Member Preferred None 292
[String->Split] Member Preferred None 297
[String->Substring] Member Preferred None 292
[String->TitleCase] Member Preferred New 289
[String->ToLower] Member Preferred New 289
[String->ToTitle] Member Preferred New 289
[String->ToUpper] Member Preferred New 289
[String->Trim] Member Preferred None 286
[String->Unescape] Member Preferred New 289
[String->Uppercase] Member Preferred None 289
[String_Uppercase] Substitution Preferred None 289

Technical
Tag Type Status Change Page

[Boolean] Substitution Preferred None 275
[Bytes] Substitution Preferred New 92‡
[Bytes->Append] Member Preferred New 92‡
[Bytes->BeginsWith] Member Preferred New 92‡
[Bytes->Contains] Member Preferred New 92‡
[Bytes->EndsWith] Member Preferred New 92‡
[Bytes->Export16Bits] Member Preferred New 92‡
[Bytes->Export32Bits] Member Preferred New 92‡
[Bytes->Export64Bits] Member Preferred New 92‡
[Bytes->Export8Bits] Member Preferred New 92‡
[Bytes->ExportString] Member Preferred New 92‡
[Bytes->Find] Member Preferred New 92‡
[Bytes->GetRange] Member Preferred New 92‡

6 7 7

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

[Bytes->Get] Member Preferred New 92‡
[Bytes->Import16Bits] Member Preferred New 92‡
[Bytes->Import32Bits] Member Preferred New 92‡
[Bytes->Import64Bits] Member Preferred New 92‡
[Bytes->Import8Bits] Member Preferred New 92‡
[Bytes->ImportString] Member Preferred New 92‡
[Bytes->Length] Member Preferred New 92‡
[Bytes->RemoveLeading] Member Preferred New 92‡
[Bytes->RemoveTrailing] Member Preferred New 92‡
[Bytes->Replace] Member Preferred New 92‡
[Bytes->SetRange] Member Preferred New 92‡
[Bytes->SetSize] Member Preferred New 92‡
[Bytes->Size] Member Preferred New 92‡
[Bytes->Split] Member Preferred New 92‡
[Bytes->SwapBytes] Member Preferred New 92‡
[Bytes->Trim] Member Preferred New 92‡
[Compress] Substitution Preferred None 371
[Decompress] Substitution Preferred None 371
[Lasso_ErrorReporting] Substitution Preferred New 413
[Lasso_ExecutionTimeLimit] Process Preferred New 442
[LassoApp_Create] Substitution Preferred None 15‡
[LassoApp_Dump] Substitution Preferred None 15‡
[LassoApp_Link] Substitution Preferred None 15‡
[LassoApp_List] Substitution Preferred New 15‡
[NoProcess] Container Preferred None 435
[Null] Substitution Preferred None 437
[Null->DetachReference] Member Preferred None 437
[Null->Dump] Member Deprecated None 437
[Null->FreezeType] Member Preferred None 437
[Null->FreezeValue] Member Preferred None 437
[Null->IsA] Member Preferred None 437
[Null->Parent] Member Preferred None 437
[Null->Properties] Member Preferred None 437
[Null->RefCount] Member Preferred None 437
[Null->Serialize] Member Preferred None 437
[Null->Type] Member Preferred None 437
[Null->Unserialize] Member Preferred None 437
[Null->Up] Member Deprecated None 437
[Null->XMLSchemaType] Member Preferred New 437
[Process] Substitution Preferred None 435
[Reference] Substitution Preferred None 88‡
-ResponseLassoApp Command Preferred None 15‡
[Sleep] Process Preferred None 435
[Tag] Substitution Preferred None 95‡
[Tag->AsAsync] Member Preferred None 95‡
[Tag->AsType] Member Preferred None 95‡
[Tag->Description] Member Preferred None 95‡
[Tag->Eval] Member Preferred None 95‡

6 7 8

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

[Tag->Run] Member Preferred None 95‡
[Thread_Event] Substitution Preferred None 104‡
[Thread_Event->SignalAll] Member Preferred None 104‡
[Thread_Event->Signal] Member Preferred None 104‡
[Thread_Event->Wait] Member Preferred None 104‡
[Thread_Lock] Substitution Preferred None 100‡
[Thread_Lock->Lock] Member Preferred None 100‡
[Thread_Lock->UnLock] Member Preferred None 100‡
[Thread_Pipe] Substitution Preferred None 104‡
[Thread_Pipe->Get] Member Preferred None 105‡
[Thread_Pipe->Set] Member Preferred None 105‡
[Thread_RWLock] Substitution Preferred None 100‡
[Thread_RWLock->ReadLock] Member Preferred None 103‡
[Thread_RWLock->ReadUnlock] Member Preferred None 103‡
[Thread_RWLock->WriteLock] Member Preferred None 103‡
[Thread_RWLock->WriteUnlock] Member Preferred None 103‡
[Thread_Semaphore] Substitution Preferred None 100‡
[Thread_Semaphore->Decrement] Member Preferred None 102‡
[Thread_Semaphore->Increment] Member Preferred None 102‡

Utility
Tag Type Status Change Page

[Action_Param] Substitution Preferred None 120
[Action_Params] Substitution Preferred None 120
[Cache] Container Preferred New 497
[Cache_Empty] Process Preferred New 501
[Cache_Fetch] Substitution Preferred New 501
[Cache_Object] Substitution Preferred New 500
[Cache_Store] Process Preferred New 500
[Cookie] Substitution Preferred None 492
[Cookie_Set] Process Preferred None 492
[Email_Send] Process Preferred None 456
[Event_Schedule] Process Preferred None 432
[FTP_GetFile] Substiution Preferred None 489
[FTP_GetListing] Substitution Preferred None 489
[FTP_PutFile] Process Preferred None 489
[HTTP_GetFile] Substitution Preferred None 488
[Inline] Container Preferred None 110
[Lasso_UniqueID] Substitution Preferred None 445
[Log] Container Preferred None 289
[Log_Critical] Process Preferred None 390
[Log_Detail] Process Preferred None 390
[Log_Warning] Process Preferred None 390
[NSLookup] Substitution Preferred None 443
-Password Command Preferred None 139
[Server_Name] Substitution Preferred None 509
[Server_Port] Substitution Preferred None 509

6 7 9

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

-Token Command Preferred None 123
[Token_Value] Substitution Preferred None 120
-Username Command Preferred None 139
[Valid_CreditCard] Substitution Preferred None 444
[Valid_Date] Substitution Preferred New 444
[Valid_Email] Substitution Preferred None 444
[Valid_URL] Substitution Preferred None 444

Variable
Tag Type Status Change Page

[Global] Substitution Preferred None 90‡
[Global_Defined] Substitution Preferred None 90‡
[Globals] Substitution Preferred None 90‡
[Local] Substitution Preferred None 33‡
[Local_Defined] Substitution Preferred None 33‡
[Locals] Substitution Preferred None 33‡
[Var] Substitution Abbreviation None 250
[Var_Defined] Substitution Abbreviation None 250
[Var_Remove] Process Preferred New 250
[Variable] Substitution Preferred None 250
[Variable_Defined] Substitution Preferred None 250
[Variables] Substitution Preferred None 439
[Vars] Substitution Abbreviation None 439*

XML
Tag Type Status Change Page

[XML] Substitution Preferred None 522
[XML->Attributes] Member Preferred None 523
[XML->Children] Member Preferred None 523
[XML->Contents] Member Preferred None 523
[XML->Document] Member Preferred New 523
[XML->ExtractOne] Member Preferred New 523
[XML->Extract] Member Preferred New 523
[XML->Name] Member Preferred None 523
[XML->Namespaces] Member Preferred New 523
[XML->NextSibling] Member Preferred New 523
[XML->Parent] Member Preferred New 523
[XML->PreviousSibling] Member Preferred New 523
[XML->Transform] Member Preferred New 523
[XML_Extract] Substitution Preferred None 526
[XML_Serve] Process Preferred None 550
[XML_Transform] Substitution Preferred None 531
[XML_RPC] Substitution Preferred None 540
[XML_RPCCall] Substitution Preferred None 538
[XML_RPC->Call] Member Preferred None 540
[XML_RPC->GetMethod] Member Preferred None 540

6 8 0

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

[XML_RPC->GetParams] Member Preferred None 540
[XML_RPC->Response] Member Preferred None 540
[XMLStream] Substitution Preferred New 532
[XMLStream->AttributeCount] Member Preferred New 535
[XMLStream->BaseURI] Member Preferred New 535
[XMLStream->Depth] Member Preferred New 535
[XMLStream->GetAttributeNamespace]
 Member Preferred New 535
[XMLStream->GetAttribute] Member Preferred New 535
[XMLStream->HasAttributes] Member Preferred New 535
[XMLStream->HasValue] Member Preferred New 535
[XMLStream->IsEmptyElement] Member Preferred New 535
[XMLStream->LocalName] Member Preferred New 535
[XMLStream->LookupNamespace] Member Preferred New 535
[XMLStream->MoveToAttributeNamespace]
 Member Preferred New 534
[XMLStream->MoveToElement] Member Preferred New 534
[XMLStream->MoveToFirstAttribute] Member Preferred New 534
[XMLStream->MoveToNextAttribute] Member Preferred New 534
[XMLStream->Name] Member Preferred New 535
[XMLStream->NamespaceURI] Member Preferred New 535
[XMLStream->NextSibling] Member Preferred New 534
[XMLStream->Next] Member Preferred New 534
[XMLStream->NodeType] Member Preferred New 535
[XMLStream->Prefix] Member Preferred New 535
[XMLStream->ReadAttributeValue] Member Preferred New 535
[XMLStream->ReadString] Member Preferred New 535
[XMLStream->Value] Member Preferred New 535
[XMLStream->XMLLang] Member Preferred New 535

6 8 1

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

LDML 7 Legacy Tag List
All tags in this list have been deprecated. This means that they are
supported in Lasso Professional 7, but may not be supported in a future
version of Lasso. Equivalent tags are LDML 7 preferred tags which provide
the same basic functionality as associated legacy tags, but may not share
exactly the same syntax. While not required, for future compatibility it
is recommended that solutions containing legacy tags be Noned using
the equivalent preferred tags. Additional information is available in the
upgrading chapters of the documentation.

Administration
Tag Type Equivalent

[Lasso_DataType] Substitution [Null->Type]

Client
Tag Type Equivalent

[Client_Addr] Substitution [Client_Address]

Conditional
Tag Type Equivalent

[Lasso_Abort] Process [Abort]
[Repetition] Substitution (Loop_Count % 2) == 0

Custom Tag
Tag Type Equivalent

[Named_Param] Substitution [Define_Tag: -Required] or
 [Define_Tag: -Optional]

6 8 2

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

Database
Tag Type Equivalent

[Choice_List] Container [Value_List]
[ChoiceListItem] Container [Value_ListItem]
-Datasource Command -Database
[Datasource_Name] Substitution [Database_Name]
[DB_LayoutNameItem] Substitution [Database_TableNameItem]
[DB_LayoutNames] Container [Database_TableNames]
[DB_NameItem] Substitution [Database_NameItem]
[DB_Names] Substitution [Database_Names]
[DB_TableNameItem] Substitution [Database_TableNameItem]
[DB_TableNames] Container [Database_TableNames]

-DoScript Command -FMScript
-DoScript.Post Command -FMScriptPost
-DoScript.Pre Command -FMScriptPre
-DoScript.PreSort Command -FMScriptPreSort
-RecID Command -KeyValue
[RecID_Value] Substitution [KeyField_Value]
-RecordID Command -KeyValue
[RecordID_Value] Substitution [KeyField_Value]
[RepeatingValueItem] Command [Repeating_ValueItem]
[ValueListItem] Substitution [Value_ListItem

Date
Tag Type Equivalent

[Date_GetCurrentDate] Substitution [Date]
[Date_GetDay] Substitution [Date->Day]
[Date_GetDayOfWeek] Substitution [Date->DayofWeek]
[Date_GetHour] Substitution [Date->Hour]
[Date_GetMinute] Substitution [Date->Minute]
[Date_GetMonth] Substitution [Date->Month]
[Date_GetSecond] Substitution [Date->Second]
[Date_GetTime] Substitution [Date->Time]
[Date_GetYear] Substitution [Date->Year]

Encoding
Tag Type Equivalent

[Encode_Breaks] Substitution [Encode_Break]
[Encode_Raw] Substitution [Encode_None]

Error
Tag Type Equivalent

[Error_NoRecordsFound] Substitution [Found_Count]

6 8 3

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

File
Tag Type Equivalent

[Directory_Lister] Container [File_ListDirectory]
[DirectoryNameItem] Substitution [File_ListDirectory]
[File_Control] Container None

Image
Tag Type Equivalent

[Image_URL] Substitution [Database_FMContainer]
[IMG] Substitution [Database_FMContainer]

Include
Tag Type Equivalent

[Include_CGI] Container [Include_URL]

Link
Tag Type Equivalent

[Link_CurrentSearch] Container [Link_CurrentAction]
[Link_CurrentSearchURL] Substitution [Link_CurrentActionURL]
[Shown_NextGroup] Container [Link_NextGroup]
[Shown_NextGroupURL] Substitution [Link_NextGroupURL]
[Shown_PrevGroup] Container [Link_PrevGroup]
[Shown_PrevGroupURL] Substitution [Link_PrevGroupURL]

List
Tag Type Equivalent

[List_AddItem] Substitution [Array->Insert]
[List_FromList] Substitution [Array]
[List_FromString] Substitution [String->Split]
[List_GetItem] Substitution [Array->Get]
[List_ItemCount] Substitution [Array->Size]
[List_RemoveItem] Process [Array->Remove]
[List_ReplaceItem] Process [Array->Get]
[List_ToString] Substitution [Array->Get]

Math
Tag Type Equivalent

[Euro] Substitution [Math_ConvertEuro]
[RandomNumber] Substitution [Math_Random]
[Roman] Substitution [Math_Roman]

6 8 4

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

Operator
Tag Type Equivalent

-LogicalOp Command -OperatorLogical
-LogicalOperator Command -OperatorLogical
[LogicalOp_Value] Substitution [Operator_LogicalValue]
[LogicalOperator_Value] Substitution [Operator_LogicalValue]

Output
Tag Type Equivalent

[Lasso_Comment] Container [Output_None]

Response
Tag Type Equivalent

-AddError Command -ResponseAnyError
-AddResponse Command -Response
-AnyError Command -ResponseAnyError
-AnyResponse Command -Response
-DeleteResponse Command -Response
-DuplicateResponse Command -Response
-NoResultsError Command -ResponseAnyError
-RequiredColumnMissingError Command -ResponseAnyError
-RequiredFieldMissingError Command -ResponseAnyError
-SecurityError Command -ResponseSecurityError
-NoneError Command -ResponseAnyError
-NoneResponse Command -Response
-ResponseAdd Command -Response
-ResponseAddError Command -Response
-ResponseAny Command -Response
-ResponseDelete Command -Response
-ResponseDuplicate Command -Response
-ResponseNoResultsError Command -Response
-ResponseUpdate Command -Response
-ResponseUpdateError Command -Response

6 8 5

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

Results
Tag Type Equivalent

[Record_Count] Substituion [Shown_Count]
[Row_Count] Substitution [Shown_Count]
[SearchFieldItem] Substitution [Search_FieldItem]
[SearchOperatorItem] Substitution [Search_OperatorItem]
[SearchOpItem] Substitution [Search_OperatorItem]
[SearchValueItem] Substitution [Search_ValueItem]
[SortColumnItem] Substitution [Sort_FieldItem]
[SortFieldItem] Substitution [Sort_FieldItem]
[SortOrderItem] Substitution [Sort_OrderItem]

String
Tag Type Equivalent

[String_CountFields] Substitution [Array->Size]
[String_GetField] Substitution [Array->Get]
[String->Length] Member [String->Size]
[String_ToDecimal] Substitution [Decimal]
[String_ToInteger] Substitution [Integer]

Technical
Tag Type Equivalent

[Lasso_Process] Substitution [Process]

Utility
Tag Type Equivalent

-ClientPassword Command -Password
-ClientUsername Command -Username
[Form_Param] Substitution [Action_Param]
[Lasso_SessionID] Substitution [Lasso_UniqueID]
[SQL_Inline] Container [Inline: -SQL]
[TCP_Close] Substitution [Net]
[TCP_Open] Substitution [Net]
[TCP_Send] Substitution [Net]

6 8 6

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X A – L D M L 7 T A G L I S T

B
Appendix B

Error Codes

This appendix contains a list of all known error codes that Lasso
Professional 7, Lasso MySQL, or FileMaker Pro will return.

 • Lasso Professional 7 Error Codes contains a list of all error codes
which are generated by Lasso Professional 7.

 • Lasso MySQL Error Codes contains a list of all error codes which are
generated by Lasso MySQL or another MySQL data source.

 • FileMaker Pro Error Codes contains a list of known error codes which
are generated by FileMaker Pro when used as a data source.

In addition to the error codes described in this appendix, Lasso
Professional 7 will report any unknown errors it receives from the oper-
ating system, Web server applications, or data source applications it
communicates with. Please consult the documentation for the operating
system and each application for more information about the error codes
they may report.

For information about how to gracefully handle and recover from errors,
please see Chapter 21: Error Control.

Lasso Professional 7 Error Codes
The following Table 1: Lasso Professional Error Codes lists all of the
native error codes of Lasso Professional 7. The error codes are listed in
numerical order and are divided into general categories for easier reading.
Many of the error codes descriptions contain helpful information about
what to do to correct or prevent the error.

6 8 7

L A S S O 7 . 1 L A N G U A G E G U I D E

Table 1: Lasso Professional 7 Error Codes

Error Code Description

0 No Error.

-609 The specified database was not found. Lasso could not
find the specified database. This error usually occurs
when a database is not open or not accessible by Lasso.
Make sure the specified database is open.

-700 Could not find email format file. The format file specified
by an -Email.Format command tag could not be found.
Check the spelling of the file name. Make sure the path
to the file is specified properly.

-701 All email tags must be assigned a value. In order for
an email message to be sent, all five of the email
parameters (-Email.Host, -Email.From, -Email.To,
-Email.Subject, and -Email.Format) must be specified.
Make sure you have specified values for all five
parameters in your HTML form. Make sure the
parameter names are spelled correctly.

Database Errors

-800 Value missing for required field. The value of one or
more required field was not specified. Make sure that all
required fields are supplied with a value.

-801 Repeating related fields are not supported. An attempt to
retrieve data from a repeating related field failed. Lasso
does not support retrieving data from repeating related
fields.

-802 Action not supported. The specified Lasso action is not
supported by the specified database or data source.

-1712 Timeout. A database action timed out.

-1728 No records found. No records were found in the
specified database.

-2000 The module was not found. The requested module was
not found. Make sure that the module is located in the
“Lasso Modules” folder and relaunch the Web server
and/or Lasso.

-3000 A data source error has occured.

 continued

6 8 8

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X B – E R R O R C O D E S

Syntax Errors

-9951 A syntax error occurred. Invalid or incorrect syntax was
used. Correct the syntax.

-9952 A looping tag was aborted.

-9953 Unknown error.

Internal Errors

-9954 A pointer was nil when it should not have been.

-9955 Overflow: Some memory passed to a function that was
too small to hold the results.

-9956 An invalid parameter was passed to a function.

Action Errors

-9957 Delete error. An error occurred while deleting a record
from the specified database. Make sure that the
database or data source is set to allow record deletion.

-9958 Update error. An error occurred while updating a
record from the specified database. Make sure that the
database or data source is set to allow records to be
updated.

-9959 Add error. An error occurred while adding a record to the
specified database. Make sure that the database or data
source is set to allow records to be added.

-9960 Field restriction. A field security restriction prevented the
action from being executed. Edit field security restrictions
as configured within Lasso security.

Security Errors

-9961 No permission. The current user is not allowed to
perform the specified action. This could mean that a file
suffix is not allowed by Lasso security. Edit user security
permissions as configured within Lasso security.

-9962 Invalid database. The database or data source name is
not valid.

-9963 Invalid password. The password supplied is not valid.

-9964 Invalid user name. The user name supplied is not valid.

-9965 Network error. An error occurred accessing the
network connection. This error usually occurs while
communicating with FileMaker Pro over TCP/IP. Try
quitting and restarting the FileMaker Pro client.

-9966 Resource error.

-9967 Resource not found.

 continued

6 8 9

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X B – E R R O R C O D E S

File Errors

-9968 Could not read from file.

-9969 Could not write to file.

-9970 End of file reached.

-9971 Beginning of file reached.

-9972 File is closed.

-9973 File already open with write permission.

-9974 File Unlocked.

-9975 File locked.

-9976 Invalid filename.

-9977 Invalid pathname.

-9978 I/O error.

-9979 Directory full.

-9980 Disk full.

-9981 Volume does not exist.

-9982 The file is corrupt.

-9983 File already exists.

-9984 Unauthorized file suffix or file not found.The error -9984
can be seen if you specify a format file with a file suffix
which is not included in the Lasso Security settings. Also
returned by file management tags.

-9985 Could not delete file.

-9986 Could not close file.

-9987 Could not create or open file.

-9988 Invalid access mode.

-9990 File error.

 continued

6 9 0

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X B – E R R O R C O D E S

Memory Errors

-9991 Could not dispose memory.

-9992 Could not unlock memory.

-9993 Could not lock memory.

-9994 Lasso ran out of stack space. This error may occur
when a Lasso format file contains too many deeply
nested container tags. The [Variable] tag can be used in
order to significantly reduce the number on nested tags
in a format file.

-9995 Lasso ran out of memory. Increase the memory which is
available to the server running Lasso.

-9996 Invalid memory object.

-9997 Memory error.

-9998 Error writing to stream.

-9999 Error reading from stream.

6 9 1

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X B – E R R O R C O D E S

Lasso MySQL Error Codes
All of the known error codes in Lasso MySQL are listed in Table 2: Lasso
MySQL Error Codes. Additional error codes may be reported if Lasso
MySQL encounters an operating system error. If Lasso receives one of these
error codes from Lasso MySQL or another MySQL data source then it will
be passed on to the site visitor.

Table 2: Lasso MySQL Error Codes

Error Code Description

1 Operation not permitted.

2 No such file or directory.

3 No such process.

4 Interrupted system call.

5 Input/output error.

6 Device not configured.

7 Argument list too long.

8 Exec format error.

9 Bad file descriptor.

10 No child processes.

11 Resource deadlock avoided.

12 Cannot allocate memory.

13 Permission denied.

14 Bad address.

15 Block device required.

16 Device busy.

17 File exists.

18 Cross-device link.

19 Operation not supported by device.

20 Not a directory.

21 Is a directory.

22 Invalid argument.

23 Too many open files in system.

24 Too many open files.

25 Inappropriate ioctl for device.

 continued

6 9 2

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X B – E R R O R C O D E S

26 – 50

26 Text file busy.

27 File too large.

28 No space left on device.

29 Illegal seek.

30 Read-only file system.

31 Too many links.

32 Broken pipe.

33 Numerical argument out of domain.

34 Result too large.

35 Resource temporarily unavailable.

36 Operation now in progress.

37 Operation already in progress.

38 Socket operation on non-socket.

39 Destination address required.

40 Message too long.

41 Protocol wrong type for socket.

42 Protocol not available.

43 Protocol not supported.

44 Socket type not supported.

45 Operation not supported.

46 Protocol family not supported.

47 Address family not supported by protocol family.

48 Address already in use.

49 Can’t assign requested address.

50 Network is down.

 continued

6 9 3

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X B – E R R O R C O D E S

51 – 75

51 Network is unreachable.

52 Network dropped connection on reset.

53 Software caused connection abort.

54 Connection reset by peer.

55 No buffer space available.

56 Socket is already connected.

57 Socket is not connected.

58 Can’t send after socket shutdown.

59 Too many references: can’t splice.

60 Operation timed out.

61 Connection refused.

62 Too many levels of symbolic links.

63 File name too long.

64 Host is down.

65 No route to host.

66 Directory not empty.

67 Too many processes.

68 Too many users.

69 Disc quota exceeded.

70 Stale NFS file handle.

71 Too many levels of remote in path.

72 RPC struct is bad.

73 RPC version wrong.

74 RPC prog. not avail.

75 Program version wrong.

 continued

6 9 4

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X B – E R R O R C O D E S

76 – 150

76 Bad procedure for program.

77 No locks available.

78 Function not implemented.

79 Inappropriate file type or format.

80 Authentication error.

81 Need authenticator.

82 Device power is off.

83 Device error.

84 Value too large to be stored in data type.

85 Bad executable (or shared library).

86 Bad CPU type in executable.

87 Shared library version mismatch.

88 Malformed Mach-O library file.

120 Didn’t find key on read or update.

121 Duplicate key on write or update.

123 Someone has changed the row since it was read.

124 Wrong index given to function.

126 Index file is crashed / Wrong file format.

127 Record-file is crashed.

131 Command not supported by database.

132 Old database file.

133 No record read before update.

134 Record was already deleted (or record file crashed).

135 No more room in record file.

136 No more room in index file.

137 No more records (read after end of file).

138 Unsupported extension used for table.

139 Too big row (>= 16 M).

140 Wrong create options.

141 Duplicate unique key or constraint on write or update.

142 Unknown character set used.

143 Conflicting table definition between MERGE and mapped
table.

144 Table is crashed and last repair failed.

145 Table was marked as crashed and should be repaired.

6 9 5

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X B – E R R O R C O D E S

FileMaker Pro Error Codes
All of the known error codes for the FileMaker Pro Web Companion as
of FileMaker Pro 5.5v3 are listed in Table 3: FileMaker Pro Error Codes.
Additional error codes may be reported if FileMaker Pro encounters an
operating system error. If Lasso receives one of these error codes from a
FileMaker Pro data source, it will be passed on to the site visitor.

Table 3: FileMaker Pro Error Codes

Error Code Description

-1 Unknown Error.

0 No Error.

1 User cancelled action.

2 Memory error.

3 Command is unavailable.

4 Command is unknown.

5 Command is invalid.

100 – 199

100 File is missing.

101 Record is missing.

102 Field is missing.

103 Relation is missing.

104 Script is missing.

105 Layout is missing.

200 – 299

200 Record access is denied.

201 Field cannot be modified.

202 Field access is denied.

203 No records in file to print or password doesn’t allow print
access.

204 No access to field(s) in sort order.

205 Cannot create new records; import will overwrite existing
data.

 continued

6 9 6

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X B – E R R O R C O D E S

300 – 399

300 The file is locked or in use.

301 Record is in use by another user.

302 Script definitions are in use by another user.

303 Paper size is in use by another user.

304 Password definitions are in use by another user.

305 Relationship or value list definitions are locked by
another user.

400 – 499

400 Find criteria is empty.

401 No records match the request.

402 Not a match field for a lookup.

403 Exceeding maximum record limit for demo.

404 Sort order is invalid.

405 Number of records specified exceeds number of records
that can be omitted.

406 Replace/Reserialize criteria is invalid.

407 One or both key fields are missing (invalid relation).

408 Specified field has inappropriate data type for this
operation.

409 Import order is invalid.

410 Export order is invalid.

411 Cannot perform delete because related records cannot
be deleted.

412 Wrong version of FileMaker Pro used to recover file.

 continued

6 9 7

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X B – E R R O R C O D E S

500 – 599

500 Date value does not meet validation entry options.

501 Time value does not meet validation entry options.

502 Number value does not meet validation entry options.

503 Value in field does not meet range validation entry
options.

504 Value in field does not meet unique value validation
entry options.

505 Value in field failed existing value validation test.

506 Value in field is not a member value of the validation
entry option value list.

507 Value in field failed calculation test of validation entry
option.

508 Value in field failed query value test of validation entry
option.

509 Field requires a valid value.

510 Related value is empty or unavailable.

600 –699

600 Print error has occurred.

601 Combined header and footer exceed one page .

602 Body doesn’t fit on a page for current column setup .

603 Print connection lost.

700 – 799

700 File is of the wrong file type for import.

701 Data Access Manager can't find database extension file.

702 Data Access Manager was unable to open the session.

704 Data Access Manager failed when sending a query.

705 Data Access Manager failed when executing a query.

706 EPSF file has no preview image.

707 Graphic translator can not be found.

708 Can't import the file or need color computer.

709 QuickTime movie import failed.

710 Unable to update Quicktime file reference, read-only.

711 Import Translator can not be found.

712 XTND version is incompatible.

713 Couldn't initialize the XTND system.

714 Insufficient password privileges to allow the operation.

 continued

6 9 8

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X B – E R R O R C O D E S

800 – 899

800 Unable to create file on disk.

801 Unable to create temporary file on System disk.

802 Unable to open file .

803 File is single user or host cannot be found .

804 File cannot be opened as read-only in its current state .

805 File is damaged; use Recover command.

806 File cannot be opened with this version of FileMaker Pro.

807 File is not a FileMaker Pro file or is severely damaged .

808 Cannot open file because of damaged access privileges

809 Disk/volume is full.

810 Disk/volume is locked.

811 Temporary file cannot be opened as FileMaker Pro file.

812 Cannot open the file because it exceeds host capacity.

813 Record Synchronization error on network.

814 File(s) cannot be opened because maximum number is
open.

815 Couldn’t open lookup file.

816 Unable to convert file.

900 – 999

900 General spelling engine error.

901 Main spelling dictionary not installed.

902 Could not launch the Help system.

903 Command cannot be used in a shared file.

904 Command can only be used in a file hosted under
FileMaker Server.

950 Adding repeating related fields is not supported.

951 An unexpected error occurred.

971 The user name is invalid.

972 The password is invalid.

973 The database is invalid.

974 Permission denied.

975 The field has restricted access.

976 Security is disabled.

977 Invalid client IP address (FileMaker Pro 5.x only).

978 The number of allowed guests has been exceeded
(FileMaker Pro 5.x only).

6 9 9

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X B – E R R O R C O D E S

JDBC Error Codes
All error codes specific to JDBC data sources are listed in Table 4: JDBC
Error Codes. Additional error codes may be reported if the JDBC data
source encounters an operating system error. If Lasso receives one of these
error codes from a JDBC data source, it will be passed on to the site visitor.

Table 4: JDBC Error Codes

Error Code Description

-11000 Invalid Token Error. Invalid Lasso state token passed
from Java.

-10999 Null Parameter Error. One of the required parameters
was Null.

7 0 0

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X B – E R R O R C O D E S

SYMBOLS
!

Boolean not 276
!=

Boolean inequality 276
Mathematical inequality 310
String inequality 283

“
HTML delimiter 88

#
Local variable 250
URL delimiter 88

$
Page variable 250
Regular expressions 300

%
Mathematical modulus 308

%=
Mathematical modulus 309

&
URL delimiter 88

&&
Boolean and 275

‘
String delimiter 87

()
Expression delimiter 87
Regular expressions 301

*
Mathematical multiplication 308
Regular expressions 301
String repetition 282

*=

Mathematical multiplication 309
String repetition 283

+
Date Addition 337
Mathematical addition 308
Regular expressions 301
String concatenation 282

+=
String concatenation 283

,
Tag delimiter 87

-
Date Subtraction 337
Keyword prefix 87
Mathematical subtraction 308
String deletion 282

-=
Mathematical subtraction 309
String deletion 283

->
Member symbol 87

-Schema 240
.

Regular expressions 300
/

Mathematical division 308
URL delimiter 88

//
LassoScript 448
LassoScript comment 87

/=
Mathematical division 309

:
Naming related fields 219

B
Appendix C

Index

7 0 1

L A S S O 7 . 1 L A N G U A G E G U I D E

Tag delimiter 87
;

LassoScript delimiter 448
Tag delimiter 87

<
HTML delimiter 88
Mathematical less than 310
String order 283

<=
Mathematical less than or equal 310
String order 283

<?LassoScript 448
=

Mathematical assignment 309
Parameter delimiter 87
URL delimiter 88
Variable assignment 250

==
Boolean equality 276
Mathematical equality 310
String equality 283

>
Mathematical greater than 310
String order 283

>=
Mathematical greater than or equal 310
String order 283

>>
String contains 283

?
Regular expressions 301
URL delimiter 88

?>
LassoScript delimiter 448

[]
Regular expressions 300
Tag delimiter 87

\
Escape Character 575
Line Endings 401, 651
Regular Expressions 300

^
Regular expressions 300

{ }
Compound Expressions 87
Regular expressions 301

|
Regular expressions 301

||
Boolean or 275
Logical expressions 85

A
Abbreviation 70
[Abort] 274
Absolute Paths 51
Accessing PDF File Information 566
Action.Lasso 43

HTML forms 116
Paths 52

[Action_Param]
Database searches 141
Inline actions 113

[Action_Params]
Displaying the current action parameters 121
HTML forms 114
Inline actions 114
Linking to data 163
Results schema 123

Action Errors 410
Action Methods 42
Action Parameters 120
-Add 172

Requirements 175
Adding Content to Table Cells 584
Adding Records 174

Classic Lasso 173
FileMaker Pro 175
Lasso MySQL 175
MySQL 175
Security 173
Using an HTML form 177
Using an inline 176
Using a URL 177

[Admin_ChangeUser] 428
[Admin_CreateUser] 428
[Admin_GroupAssignUser] 428
[Admin_GroupListUsers] 428
[Admin_GroupRemoveUser] 428
[Admin_ListGroups] 428
Administration Tags 428
AND 144

Performing an and search 144
[Array] 340
[Array->Get] 271
[Array->Merge]

Parameters 347
[Array->Size] 271
[Array] 253
Arrays 77, 339, 340

Automatic string casting 281
Common arrays 358
Compressing an array 371

7 0 2

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

Converting a string to an array 298
Creating 340
Creating an empty array 341
Creating a pair array 350
Finding an element 348
Finding a pair within an array 350
Getting an element 343
Getting the size 343
Inserting an element 344
Iterating through an array 343
Joining into a string 346
Looping through an array 343
Members tags 342
Merging arrays 347
Pair arrays 350
Passing values into an inline 119
Removing an element 345
Setting an element 344
Sorting 351
Types 340

Array Parameters 119
[Auth] 426
[Auth_Admin] 426
Authentication 30
Authentication Tags 391

B
Barcodes 590
Base 64 Encoding 364
Binary Formats 48
Binary Operations 314
Bit Operations 314
Blowfish 368

Seeds 368
Storing data securely 369

[Boolean] 253, 275
Data Type 275
False 275
Symbols 275
True 275

Boolean Operations 314
Brackets 56
bw 143
[Bytes] 253
Byte Order Mark 40

C
[Cache] 497
[Cache_Empty] 501
[Cache_Fetch] 501
[Cache_Object] 500

[Cache_Store] 500
Caching 496
[Case] 267
Casting

String 281
Cellular Phones 511
CGI 484
Character Encoding 40, 137, 172
character set 503
Character Sets 29
[Checked] 197, 227

Displaying selected values 232
Check Boxes 201
Classic Lasso

Adding records 173
Database searches 138
Deleting records 173
Tokens 117
Updating records 173

[Client_Address] 508
[Client_Browser] 508
[Client_ContentLength] 507
[Client_ContentType] 507
[Client_CookieList] 492
[Client_Cookies] 492
[Client_FormMethod] 507
[Client_GETArgs] 507
[Client_GETParams] 507
[Client_Headers] 507
[Client_IP] 508
[Client_Password] 507
[Client_POSTArgs] 507
[Client_POSTParams] 507
[Client_Type] 508
[Client_Username] 507
Client Tags 508
cn 143
Color

Creating a random color 319
Command Tags 65

Action tags 110
Email sending tags 457

Comments
LassoScript 449

Complex Expressions 83
Compound Expressions 58
[Compress] 371
Compression 371

Compressing an array 371
Compressing a string 371

Conditional Expressions 84
Symbols 85

7 0 3

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

Conditional Logic 263
Complex conditionals 266
If else conditionals 264
Iterations 272
Loops 268
Nested conditionals 266
Select statements 267
While loops 273

Configuration Tags 441
Container Fields 232
Container Tags 64

LassoScript 449
Link tags 161

[Content_Type] 28, 29, 504
Serving images and multimedia 478
Serving WML 512
XML data 551

Content Type 504
Control Tags 425
[Cookie] 492
[Cookie_Set] 492

Parameters 493
Cookies 29, 491

Checking for cookie support 496
Retrieving cookies 494
Setting cookies 492

Creating Barcodes 590
Creating PDF Documents 559, 564
Creating Tables 582
Creating Text Content 567
Credit Cards

Checking whether a number is valid 444
[Currency] 320
Custom Errors

Using the [Protect] … [/Protect] tags 424
Custom Error Pages 411

Defining 415
Testing 416

Custom Tags
XML-RPC 542, 547

D
-Database 130
Database 50
[Database_ChangeField] 203

Parameters 206
[Database_CreateField] 203

Parameters 206
[Database_CreateTable] 203

Parameters 204
[Database_FMContainer] 232, 606

[Database_Names] … [/Database_Names]
Listing available databases 127

[Database_RealName] 131
[Database_RemoveField] 203
[Database_RemoveTable] 203
[Database_SchemaNameItem] 240
[Database_SchemaNames] 240
[Database_TableNames] … [/Database_

TableNames]
Listing available tables 128

Databases
Listing available databases 127
Listing fields 128
Required fields 129

Database Actions 110
Action parameters 120
Displaying the current parameters 121
Error codes 688
FileMaker Pro error codes 696
Finding all records 111
HTML forms 113
Inline method 109
JDBC error codes 700
Lasso MySQL error codes 692
Response tags 115
Results 124
Searching for records 112
Tags 110
Tokens 117

Database Errors 410
Database Field Paths 53
Database Schema

Showing 125
Database Searches 136

Classic Lasso 138
Complex queries 146
Detail links 168
Displaying data 153
Displaying results from a named inline 155
Displaying results out of order 155
Displaying search results 154
Error reporting 137
Field operators 142
Finding all records 150
Finding random records 152
HTML forms 141
Limiting returned fields 149
Linking to data 156
Logical operators 144
Manipulating the found set 148
Navigation links 164
Operators 142

7 0 4

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

Performing a logical not search 145
Random sorting 153
Results 147
Returning part of a found set 149
Returning unique field values 151
Searching records 139
Security 138
Security command tags 139
Sorting links 167
Sorting results 147, 148
Specifying field operators 143
Specifying username and password 139
Using a logical and operator 144
Using a logical or operator 145
Using inline tags 140

Data Output 247
Data Type

Boolean 275
Data Types 253

Casting 254, 257
Decimal 306
Integer 306
Returning the type of a variable 438
XML 522
XML-RPC 539

[Date] 253, 325
[Date->Add] 335
[Date->Day] 330
[Date->DayofWeek] 330
[Date->DayofYear] 330
[Date->Difference] 336
[Date->GMT] 330
[Date->Hour] 330
[Date->Millisecond] 330
[Date->Minute] 330
[Date->Month] 330
[Date->Second] 330
[Date->Subtract] 335
[Date->Time] 330
[Date->Week] 330
[Date->Year] 330
[Date_Add] 334
[Date_Difference] 334
[Date_Format] 325
[Date_GetLocalTimeZone] 325
[Date_GMTToLocal] 325
[Date_LocalToGMT] 325
[Date_Maximum] 325
[Date_Minimum] 325
[Date_SetFormat] 325
[Date_Subtract] 334
Dates 76, 321

Accessors 330
Formatting 327
Math Operations 333, 337

Date Data Type 321
Date Format Symbols 327, 329
Date Math Symbols 337
Date Math Tags 333, 335
Date Tags 322
Daylight Savings Time 322, 333
[Decimal] 253, 307
[Decimal->SetFormat] 311

Parameters 312
Decimals 75, 306

Assignment symbols 309
Automatic string casting 281
Casting 307
Comparing values 310
Comparison symbols 310
Formatting 311
Formatting as currency 312
Member tags 311
Random numbers 318
Rounding values 317
Scientific notation 312
Substitution tags 316
Trignometry 319
Using assignment symbols 309
Using mathematical symbols 308

[Decode_Base64] 367
[Decode_URL] 367
[Decompress] 371
[Decrypt_BlowFish] 368
[Define_Tag]

XML-RPC 542, 547
-Delete 172

Requirements 183
Deleting Records 183

Classic Lasso 173
Deleting several records 184
Security 173
Using an inline tag 183

Delimiters 87
LassoScript 448

Detail Links 156
Inline Lasso 168

Displaying data 153
-Distinct 147, 192
Documentation 21
Documentation Conventions 22
Document Type Definition 520, 521
Domain Name Server 443
Downloading Files 489, 490

7 0 5

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

Drawing Graphics Direct to PDF Pages 587
DTD 521
 See also Document Type Definition
-Duplicate 172

Requirements 185
Duplicating Records 185

Using an inline tag 186
[Duration] 332
[Duration->Day] 332
[Duration->Hour] 332
[Duration->Minute] 332
[Duration->Month] 332
[Duration->Second] 332
[Duration->Week] 332
[Duration->Year] 332
[Duration] 253
Durations 77, 321

Math Operations 333, 337
Duration Data Type 321
Duration Math Tags 335
Duration Tags 331

E
[Else] 264, 265

Complex conditionals 266
Email 455

Attachments 460
Command tags 457
Monitoring in Lasso Administration 455
Multiple recipients 458
Sending a message 457
Sending HTML messages 459

[Email_Send]
Parameters 456

[Encode_Base64] 367
[Encode_Break] 367

HTML encoding 363
[Encode_HTML] 367

HTML encoding 363
[Encode_Set]

Encoding for WML 514
Setting encoding within a LassoScript 450

[Encode_Set] … [/Encode_Set] 366
Setting default encoding 366

-EncodeSmart 365
HTML encoding 363

[Encode_Smart] 367
HTML encoding 363

[Encode_SQL] 367
[Encode_StrictURL] 367

URL encoding 364

[Encode_URL] 367
URL encoding 364

[Encode_XML] 367
XML encoding 364

-EncodeBreak 365
HTML encoding 363

-EncodeHTML 365
Default encoding 362
HTML encoding 363

-EncodeNone 365
-EncodeStrictURL 365

URL encoding 364
-EncodeURL 365

URL encoding 364
-EncodeXML 365

Encoding for WML 514
XML encoding 364

Encoding 361
Base 64 encoding 364
Controls 366
Default encoding 362
HTML 363
HTML encoding 363
Keywords 365
LassoScripts 362
Rules for encoding 362
Substitution tags 362
Tags 367
URL encoding 364
Using encoding tags 367
WML 514
XML 551

Encoding Keywords 72
[Encrypt_BlowFish] 368
[Encrypt_MD5] 368
Encryption 368

BlowFish 368
MD5 hash function 368
Storing and checking passwords 370
Storing data securely 369

ENUM MySQL Data Type 196
EQ 143
[Error_CurrentError] 417
[Error_NoRecordsFound] 419
[Error_SetErrorCode] 417
[Error_SetErrorMessage] 417
Errors

Types 410
Error Codes 687

FileMaker Pro 696
JDBC 700
Lasso MySQL 692

7 0 6

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

Error Control 385, 409, 420
Checking for an error 419
Displaying the current error message 417
Executing code if an error is encountered 421
Fail tags 422
Handle tags 420
Outputting debugging messages 421
Post-processing 422
Protecting a portion of a page 423
Protect tags 423
Reporting an error 422
Response tags 416
Setting the current error message 418
Standard error tags 418
Tags 417, 420

Error Messages 411
Built-In 411
Custom 414

Error Pages 416
Custom 414

Error Reporting 244
Adding records 172
Checking for an error 137
Database searches 137
Deleting records 172
Displaying the current error 137
Updating records 172

[Event_Schedule] 432
Parameters 432
Scheduled actions 45

Event Administration 432
Event Tags 432
EW 143
Example PDF Files 592
Expressions 79
Extensible Markup Language 521
Extensible Stylesheet Language 521

F
False 275
[Field] 154, 219

Database searches 141
Displaying results out of order 155
Displaying search results 154
Returning related fields 219

[Field_Name] 270
Listing fields 128
Parameters 128

Fields
Paths 53
Required fields 129

Field Operators 142
[File->Close] 406
[File->Delete] 406
[File->Get] 406
[File->GetPosition] 406
[File->IsOpen] 406
[File->MoveTo] 406
[File->Name] 406
[File->Open] 406
[File->Path] 406
[File->Read] 406
[File->SetMode] 406
[File->SetPosition] 406
[File->SetSize] 406
[File->Size] 406
[File->Write] 406
[File] 404
[File_Copy] 396
[File_Create] 396
[File_CreationDate] 396
[File_CurrentError] 397
[File_Delete] 397
[File_Exists] 397
[File_GetLineCount] 397
[File_GetSize] 397
[File_IsDirectory] 397
[File_ListDirectory] 397
[File_ModDate] 397
[File_Move] 397
[File_Read] 397
[File_ReadLine] 397
[File_Rename] 397
[File_SetSize] 397
[File_Uploads] 403
[File_Write] 398
FileMaker

Container Fields 232, 606
Server Advanced 606

FileMaker Pro 211
Adding a record through a portal 221
Adding a record with repeating fields 224
Adding records 175
Checking for databases 215
Compatibility tips 215
Deleting a record through a portal 223
Deleting repeating field values 226
Displaying a value list 228
Displaying data 219
Duplicating a record 185
Error codes 696
Executing a script 235
Field operators 142

7 0 7

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

Key fields 216
Listing databases 216
Logical operators 144
Performance tips 213
Portals 220
Record IDs 216
Referencing a record by ID 217
Related fields 219
Repeating fields 223
Returning a random record 152
Returning the current record ID 216
Returning values from a repeating field 223
Scripts 234
Sorting records 218
Terminology 212
Updating a record within a portal 222
Updating a record with repeating fields 225
Value lists 227
XML templates 552

Files 383
Error codes 690
Management 48
Paths 26, 393
Security 395
Tags 392

File Permissions 463
File Suffixes 385, 395
File Uploads 402
-FindAll 136

Inline action 111
Requirements 151

-FMScript 235
-FMScriptPre 235
-FMScriptPreSort 235
[Form_Param]
 See [Action_Param]
Format Files 37, 244

Action methods 42
Character Encoding 40
Editing 40
File management 48
Functional types 41
HTML form actions 43
Inline actions 44
Naming 39
Output formats 47
Post-processing 422
Scheduled actions 45
Securing 46
Specificing paths 50
Startup actions 46
Storage types 38

Unicode 40
URL actions 42

Forms 261
 See also HTML Forms
Form Parameters 262
[Found_Count]

Displaying the current found count 125
FT 143, 190
FTP 489
[FTP_GetFile] 490
[FTP_GetListing] 490
[FTP_PutFile] 489
Full-Text Search 191

G
GET Method 33
GIF

Serving image files 478
GT 143
GTE 143

H
[Handle] … [/Handle] 420
[Header] … [/Header] 504
Header Tags 503, 504
Hexadecimals 314

Creating a random color 319
Host Name 26

Looking up an IP address 443
HTML 521

Encoding 363
Output formats 47
Sending email messages 459

[HTML_Comment] 247
HTML Delimiters 88
HTML Format Files 38
HTML Forms 32, 33

Actions 43
Adding a record 177
Creating a pop-up menu 228
Creating radio buttons 229
Executing a FileMaker Pro script 236
Format files 115
GET method 33
Inline actions 113
Input syntax 59
POST method 33
Response tags 115
Searching databases 141
Setting values 117
Updating a record 180

7 0 8

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

HTTP 488
[HTTP_GetFile] 488
HTTPS 484, 486
HTTP Content and Controls 483
HTTP Delimiters 88
HTTP Requests 26
HTTP Responses 27
HyperText Markup Language 521

I
[If] 264, 265

Complex conditionals 266
Error control 265
LassoScript 265
Nested conditionals 266

Illegal Characters 88
[Image->AddComment] 467
[Image->Annotate] 473
[Image->Blur] 471
[Image->Comments] 466
[Image->Composite] 474
[Image->Contrast] 470
[Image->Crop] 469
[Image->Depth] 465
[Image->Describe] 466
[Image->Enhance] 471
[Image->File] 466
[Image->FlipH] 469
[Image->FlipV] 469
[Image->Format] 465
[Image->Height] 465
[Image->Modulate] 470
[Image->Pixel] 466
[Image->ResolutionH] 465
[Image->ResolutionV] 465
[Image->Rotate] 469
[Image->Scale] 469
[Image->Sharpen] 471
[Image->Width] 465
image/gif 478
image/jpeg 478
[Image] 462, 464
ImageMagick 462
Images 461

Generating the path to a file 477
MIME types 478
Serving an image file 479

Image Formats 463
[Include] 386
[Include_Raw]

Serving images and multimedia 478

[Include_Raw] 386
[Include_URL] 484, 544

Parameters 485
Includes 383
Include Paths 384
Include URLs 484
Index 701
[Inline] … [/Inline] 110

Actions 44
Action parameters 120
Adding a record 176
Array parameters 119
Checking for an error 419
Database actions 109
Deleting a record 183
Deleting several records 184
Displaying results from a named inline 155
Displaying search results 154
Duplicating a record 186
Executing a FileMaker Pro script 235
-FindAll action 111
Finding all records 151
HTML forms 113
Linking to data 163
Nesting tags 118
Passing array parameters 119
-Search action 112
Searching databases 140
Specifying field operators 143
Specifying username and password 139
Updating a record 179
Updating several records 182

-InlineName
Displaying results 155

Inline Lasso 109
Detail links 168
Navigation links 164
Sorting links 167

Inline Tag 110
Installation Problems 410
Integer

Substitution tags 316
[Integer] 306
[Integer->BitAnd] 313
[Integer->BitClear] 313
[Integer->BitFlip] 313
[Integer->BitNot] 313
[Integer->BitOr] 313
[Integer->BitSet] 313
[Integer->BitShiftLeft] 313
[Integer->BitShiftRight] 313
[Integer->BitTest] 313

7 0 9

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

[Integer->BitXOr] 313
[Integer->SetFormat] 313

Parameters 314
[Integer] 253
Integers 75, 306

Assignment symbols 309
Automatic string casting 281
Bit operations 314
Casting to integer 306
Comparing values 310
Comparison symbols 310
Formatting 313
Formatting as hexadecimals 314
Hexadecimal output 314
Member tags 313
Random numbers 318
Rounding numbers 317
Using assignment symbols 309
Using mathematical symbols 308

IP Address
Looking up a host name 444

ISO-8859-1 28, 40, 137, 172
ISO 8859-1 612
[Iterate] … [/Iterate] 272, 273

Array elements 272
Iterating through an array 343
Iterating through a map 354
String characters 273

iText 558

J
JavaScript

Not processing square brackets 436
JDBC 237

Certification 238
Data sources 237
Error codes 700
Tips for usage 238

JDBC Schema Tags 239
JPEG

Serving image files 478

K
-KeyField

Using with FileMaker Pro 175
Using with MySQL 175

[KeyField_Value]
Using with FileMaker Pro 179
Using with MySQL 179

Keywords
Encoding 365

L
[Lasso_DataSourceIsFileMaker] 215
[Lasso_DatasourceIsFileMaker] 441
[Lasso_DataSourceIsFileMakerSA] 215
[Lasso_DatasourceIsLassoMySQL] 189
[Lasso_DatasourceIsLassoMySQL] 441
[Lasso_DatasourceIsMySQL] 189
[Lasso_DatasourceIsMySQL] 441
[Lasso_DatasourceModuleName] 441
[Lasso_TagExists] 441
[Lasso_TagModuleName] 441
[Lasso_UniqueID] 445
[Lasso_Version] 441
LassoScripts 57, 447

Comments 449
Container tags 449
Converting from square bracket syntax 450
Delimiters 448
Encoding 362
Returning values 448
Setting default encoding 366, 450
Single tag 448
Suppressing output 450
Syntax 448

Lasso 6 Documentation 21
Lasso Administration

Monitoring email 455
Lasso Connector for FileMaker SA 606
Lasso MySQL

Adding records 175
Error codes 692
Field operators 142
Logical operators 144
Random sorting 153
Returning unique field values 151
SQL encoding 364

Lasso Service 49
Paths 53

Lasso Web Server Connector 48
Latin-1 29, 40, 137, 172, 612
-LayoutResponse 147, 606
LDML 55, 245

Converting to LassoScript 450
Format files 39
Legacy tags 682
Syntax types 56
Tag categories 67
Tag listing 661
Tag types 60

LDML 6 Reference 91
Browsing 98

7 1 0

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

Comments 102
Components 92
Searching 93
Sections of the interface 92
Tag detail 100
Tag listing 104

LDML 6 Tag Language 55
LDML Reference

Navigation 93
Leap Years 322
libCURL 484, 488, 489
[Library] 386
Library Files 41, 384
Line Endings 401
[Link_CurrentAction] … [/Link_CurrentAction]

161
Linking to the current record 168

[Link_CurrentActionURL] 160
[Link_Detail] … [/Link_Detail] 161

Linking to the current record 168
[Link_DetailURL] 160
[Link_FirstGroup] … [/Link_FirstGroup] 161

Creating sort links 167
[Link_FirstGroupURL] 160
[Link_FirstRecord] … [/Link_FirstRecord] 161
[Link_FirstRecordURL] 160
[Link_LastGroup] … [/Link_LastGroup] 161
[Link_LastGroupURL] 160
[Link_LastRecord] … [/Link_LastRecord] 161
[Link_LastRecordURL] 160
[Link_NextGroup] … [/Link_NextGroup] 161

Creating next links 164
[Link_NextGroupURL] 160
[Link_NextRecord] … [/Link_NextRecord] 161
[Link_NextRecordURL] 160
[Link_PrevGroup] … [/Link_PrevGroup] 161

Creating previous links 164
[Link_PrevGroupURL] 160
[Link_PrevRecord] … [/Link_PrevRecord] 161
[Link_PrevRecordURL] 160
Linking to Data 156

Container tags 161
Tag parameters 157
URL tags 160

Linking to PDF Files 597
List Array 340
Literals 80
[Locale_Format] 320
[Log] 389
[Log_Critical] 390
[Log_Detail] 390
[Log_SetDestination] 391

[Log_Warning] 390
Logging 383, 388

Changing log destination preferences 392
Destination codes 392
Logging to file 388
Logging to internal database 389
Message level codes 391
Preferences 391
Resetting log destination preferences 392

Logical Errors 410
Logical Expressions 85

Symbols 85
Logical Operators 144

Performing an and search 144
Performing an or search 145
Performing a not search 145

[Loop] … [/Loop] 268, 270
Array elements 271
Display field names 270
Looping through an array 343
Looping through a map 354
Parameters 269

[Loop_Abort] 269, 270, 274
[Loop_Count] 269, 270, 274
Lower Case

Strings 290
LT 143
LTE 143

M
Mac OS X File Permissions 396
[Map] 253
Maps 78, 339, 351

Automatic string casting 281
Common maps 358
Comparison to pair arrays 356
Creating a map 352
Displaying an element 355
Getting a value 353
Inserting an element 355
Iterating through a map 354
Looping through a map 354
Member tags 353
Removing an element 355

Math 305
 See also Decimals; See also Integers

Addition 309
Expressions 82
Scientific notation 312
Symbols 83, 308
Trigonometry 319

7 1 1

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

[Math_Abs] 316
[Math_ACos] 319
[Math_Add] 316
[Math_ASin] 319
[Math_ATan] 319
[Math_ATan2] 319
[Math_Ceil] 316

Rounding numbers 317
[Math_ConvertEuro] 316
[Math_Cos] 319
[Math_Div] 316
[Math_Exp] 319
[Math_Floor] 316

Rounding numbers 317
[Math_Ln] 319
[Math_Log10] 319
[Math_Max] 316
[Math_Min] 316
[Math_Mod] 316
[Math_Mult] 316
[Math_Pow] 319
[Math_Random] 316

Parameters 318
[Math_RInt] 316

Rounding numbers 317
[Math_Roman] 316
[Math_Round] 316

Rounding numbers 317
[Math_Sin] 319
[Math_Sqrt] 319
[Math_Sub] 316
[Math_Tan] 319
-MaxRecords 130, 147
MD5 368
MD5 Hash Function

Storing and checking passwords 370
Member Tags 63, 80, 260

Decimal tags 311
Integer tags 313

Member Tag Types 261
MIME Type

Image files 478
Miscellaneous Tags 443
Multimedia 461

Generating the path to a file 477
MIME types 478
Serving a multimedia file 479

MySQL
 See Lasso MySQL

Adding and updating records 195
Adding records 175
Creating fields 205

Creating tables 202
Data sources 187
Error codes 692
Field operators 142
Field types 207
Logical operators 144
Random sorting 153
Returning unique field values 151
Searching records 190
Search command tags 192
Search field operators 190
Security 188
SQL encoding 364
Tags 189
Tips for usage 188

N
Named Inlines

Displaying results 155
Name Server 443
Navigation Links 156

Inline Lasso 164
NEQ 143
Nesting Tags 118
[NoProcess] … [/NoProcess] 435
NOT 144

Performing a not search 145
-Nothing 120
NRX 143, 191
[NSLookup] 443
Null

Data type 437
Value 194, 196

[Null->DetachReference] 437
[Null->Dump] 437
[Null->FreezeType] 437
[Null->FreezeValue] 437
[Null->Properties] 437
[Null->Serialize]

Compressing an array 371
[Null->Serialize] 437
[Null->Type] 253, 437
[Null->UnSerialize] 437
[Null] 437

O
-OpBegin

Complex queries 146
-OpEnd

Complex queries 146
OpenSSL 484

7 1 2

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

Operating System Errors 410
-Operator 142
-OperatorBegin 142
-OperatorEnd 142
-OperatorLogical 142

Performing an and search 144, 145
Operators

Database searches 142
Field operators 142
Logical operators 144

Optimizing Tables 209
[Option] 197, 227

Creating a pop-up menu 229
OR 144

Performing an or search 145
[Output] 247

Automatic string casting 281
Returning values from a LassoScript 448

[Output_None] 247
Suppressing LassoScript output 450

Outputting Values 247
Output Formats 47
Output Suppressing 248

P
Page Variables 439, 440
[Pair] 253
Pairs 339, 356

Automatic string casting 281
Creating a pair 356
Displaying an element 358
Getting an element 357
Member tags 357
Setting an element 358

Pair Arrays 340, 350
Comparison to maps 356

Parameters
Array objects 119

-Password 139
Paths

Absolute 51
Action.Lasso 52
Database fields 53
Lasso Service 53
Relative 51
Specifying 50

PDF 557
Output Formats 47

PDF, Introduction to Creating PDF Files 462,
558

[PDF_Barcode] 590

[PDF_Doc] 464, 559, 564
[PDF_Doc->AddChapter] 563
[PDF_Doc->AddCheckBox] 576
[PDF_Doc->AddComboBox] 576
[PDF_Doc->AddHiddenField] 577
[PDF_Doc->AddList] 573
[PDF_Doc->AddPage] 563
[PDF_Doc->AddPasswordField] 576
[PDF_Doc->AddRadioButton] 576
[PDF_Doc->AddRadioGroup] 576
[PDF_Doc->AddResetButton] 577
[PDF_Doc->AddSelectList] 577
[PDF_Doc->AddSubmitButton] 577
[PDF_Doc->AddText] 562, 571
[PDF_Doc->AddTextArea] 576
[PDF_Doc->AddTextField] 576
[PDF_Doc->Circle] 588
[PDF_Doc->Close] 567
[PDF_Doc->CurveTo] 588
[PDF_Doc->DrawArc] 588
[PDF_Doc->DrawText] 573
[PDF_Doc->GetColor] 566
[PDF_Doc->GetHeaders] 566
[PDF_Doc->GetMargins] 566
[PDF_Doc->GetPageNumber] 563
[PDF_Doc->GetSize] 566
[PDF_Doc->InsertPage] 565
[PDF_Doc->Line] 588
[PDF_Doc->MoveTo] 588
[PDF_Doc->Rect] 588
[PDF_Doc->SetColor] 588
[PDF_Doc->SetFont] 566
[PDF_Doc->SetLineWidth] 588
[PDF_Doc->SetPageNumber] 563
[PDF_Font] 568
[PDF_Font->GetColor] 569
[PDF_Font->GetEncoding] 569
[PDF_Font->GetFace] 569
[PDF_Font->GetPSFontName] 569
[PDF_Font->GetSize] 569
[PDF_Font->GetFullFontName] 570
[PDF_Font->GetSupportedEncodings 569
[PDF_Font->IsTrueType] 569
[PDF_Font->SetColor] 569
[PDF_Font->SetEncoding] 569
[PDF_Font->SetFace] 569
[PDF_Font->SetSize] 569
[PDF_Font->SetUnderline] 569
[PDF_Image] 586
[PDF_List->Add] 574
[PDF_Read->PageCount] 564
[PDF_Read->PageSize] 564

7 1 3

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

[PDF_Serve] 598
[PDF_Table] 582
[PDF_Table->GetAbsWidth] 583
[PDF_Table->GetColumnCount] 583
[PDF_Table->GetRowCount] 583
[PDF_Table->Insert] 584
[Percent] 320
Performance Tips

FileMaker Pro 213
Personal Digital Assistants 511
Pop-Up Menu 200
Portable Document Format 557
[Portal] … [/Portal] 219

Returning portal values 221
Portals

Adding a record through a portal 221
Deleting a record through a portal 223
FileMaker Pro 220
Updating a record within a portal 222

Port Number 26
Post-Lasso 41
Post-Processing 422
POST Method 33
Pre-Lasso 41
[Process] 435

Processing code stored in a field 436
Processing code stored in a variable 435

Process Tags 62, 435
Programming Fundamentals 243
[Protect] … [/Protect] 423
Protocol 26

R
-Random 136

Requirements 152
Random Numbers 318
[RecordID_Value] 216
[Records] … [/Records] 154

Database actions 110
Database searches 141
Displaying results from a named inline 155
Displaying search results 154

Record ID 216
[Redirect_URL] 275, 487
[Referrer] 161
[Referrer_URL] 160
RegExp
 See Regular Expressions
Regular Expressions 191, 298

Combination symbols 301, 302
Finding expressions 303

Matching symbols 300
Replacement symbols 301
Replacing expressions 302

Relative Paths 51
Remote Procedure Call 521
[Repeating] … [/Repeating] 219

Returning values from a repeating field 223
[Repeating_ValueItem] 219
Repeating Fields 223

Adding a record 224
Deleting values 226
Returning values 223
Updatinga a record 225

[Repetition] 270
Two column display 271

Request Tags 506
[Required_Field]

Parameters 129
-Response

Action.Lasso 116
[Response_FilePath] 507
[Response_LocalPath] 507
[Response_Path] 507
[Response_Realm] 507
-ResponseAnyError 416
Response Tags 115

Command tags 116
Error control 416

Results
Database searches 147

-ReturnField 147
Limiting returned fields 150

RPC 521
RX 143, 191

S
Scheduled Events 45
Scheduling Events 431
Schema 520, 521
[Schema_Name] 240
[Scientific] 320
Scientific Notation 312
Scripts

Executing a Script 235
FileMaker Pro 234

-Search 136
Inline Action 112
Requirements 140

[Search_Arguments] … [/Search_Arguments]
Displaying search arguments 124

Searching Databases

7 1 4

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

 See Database Searches
Security

Adding records 173
Command tags 139
Database searches 138
Deleting records 173
Duplicating records 173
Error codes 689
Violations 410

[Select] 267
Data type 268

[Selected] 197, 227
Displaying selected values 230

[Server_Port] 509
[Server_Push] 503
Server Push 502
Server Tags 509
Serving PDF Files 597
Serving PDF Files to Client Browsers 598
-Session 374
[Session_AddVariable] 374, 375
[Session_End] 375
[Session_ID] 375
[Session_RemoveVariable] 375
[Session_Start] 374, 375

Parameters 376
Sessions 373

Adding variables 378
Deleting 379
Example 380
Removing variables 378
Starting a session 376
Tags 375
Using cookies 377
Using links 377

SET MySQL Data Type 196
SGML 521
-Show 270

Listing fields 128
Listing required fields 129
Requirements 126
Showing database schema 126

[Shown_Count]
Displaying the current shown count 125

Simple Object Access Protocol 544
-SkipRecords 130, 147
[Sleep] 435
Smart HTML Encoding 363
SOAP 544
[Sort_Arguments] … [/Sort_Arguments]

Displaying sort arguments 124
-SortField 147

Sorting FileMaker Pro results 218
Sorting

Arrays 351
Sorting Links 156

Inline Lasso 167
Sorting Records

FileMaker Pro 218
-SortOrder 147
-SortRandom 147, 192
Specifying Paths 50
SQL

Encoding 364
SQL Server

XML templates 552
SQL Statements 129
Square Brackets 56

Converting to LassoScript 450
SSL 484
Standard Generalized Markup Language 521
Startup Actions 46
Storage Array 340
Storage Types 38
[String] 281
[String->Split]

Creating an array 341
[String] 253
[String_FindRegExp]

Examples 303
[String_ReplaceRegExp]

Examples 302
Strings 74, 279

Assignment 282
Automatic casting 281
Casting values to string 281
Comparisons 285
Concatenation 283
Converting case 290
Converting to an array 298
Deleting a substring 284
Expressions 81
Extracting part of a string 293
Finding regular expressions 303
Joining an array 346
Lenth 293
Manipulation tags 288
Regular expressions 298
Repeating a string 284
Replacing regular expressions 302
Splitting a string into an array 341
Symbols 82, 282

Style Sheets 530
Sub-Tags 80

7 1 5

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

Submitting Form Data to Lasso-Enabled
Databases 581

Substitution Tags 60
Encoding 362

Symbols 79, 258
Assignment 259
Boolean 275
Math 308
Strings 282

Synonym 70
Syntax 56
Syntax Errors 410
System.ListMethods 539
System.MethodHelp 539
System.MethodSignature 539
System.MultiCall 539

T
[Table_RealName] 131
Tables

Listing available tables 128
Listing fields 128
Required fields 129

Tags
Categories and naming 67
Legacy tags 682
Listing 661
Naming conventions 68
Synonynms and abbreviations 70

[Tags] 439
Tag Types 60
Templates

XML 552
Test.Echo 539
Text Formats 47
Text Format Files 39
Time 321
Time Zone 322
Tokens 117
Trigonometry 319
True 275

U
UCS Transformation Format 29
Unicode 29, 40, 137, 172, 503
-Unique

Returning unique field values 151
Unique ID 445
 See also Sessions
Universal Character Set 29
-Update 172

Requirements 178
Updating Records 178

Classic Lasso 173
Security 173
Updating several records 182
Using an HTML form 180
Using a URL 181
Using inline tags 179

Upgrading
Email command tags 457

Uploading Files 490
Upper Case

Strings 290
URLs 26, 261

Action.Lasso 116
Actions 42
Adding a record 177
Encoding 364
Executing a FileMaker Pro script 236
Format files 115
Link Tags 160
Parameters 32, 262
Response tags 115
Syntax 59
Updating a record 181

-UseLimit 147, 192
-Username 139
Using Fonts 568
UTF-8 28, 29, 40, 137, 172, 503

V
[Valid_CreditCard] 444
[Valid_Email] 444
Validation Tags 444
[Valid_URL] 444
[Value_List] … [/Value_List] 197, 227
[Value_ListItem] 197, 227

Displaying selected values 230
Value Lists 196, 227

Creating a pop-up menu 228
Creating radio buttons 229
Displaying all values 228
Displaying selected values 230

[Var] 250
[Var_Defined] 250
[Var_Remove] 250
[Variable] 250
[Variable_Defined] 250
Variables 249

Checking 252
Creating 250

7 1 6

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

Returning data types 254
Returning the type of a variable 438
Returning values 251
Server-side 373
Setting 252

[Variables] 439

W
WAP 511

Tags 515
[WAP_IsEnabled]

Checking to see if current browser is WAP
enabled 515

Web Application Servers 34
Web Browsers 25

Authentication 30
Cookies 29

Web Companion 212
Web Servers 31

Connectors 48
Errors 410

[While] 273, 274
Wireless Application Protocol 511
 See also WAP
Wireless Devices 511
Wireless Markup Language 511, 521
 See also WML
WML 511, 521

Encoding 514
Example 516
Formatting 512, 513
Forms 513
Links 513
Output formats 47
Serving 512

X
XML 519, 521
 See also XML-RPC

Attributes 524
Children 524, 528
Contents 525
Customizing templates 554
Data type 522
Descendants 530
Document type definition 520
Encoding 363, 551
Extracting tags using an XPath 528
Extracting tags using XPath 529
Formatting 550
Format files 38

Member tags 523, 533, 534, 535
Output formats 47
Parameters 528
Root tag 528
Schema 520
Serving 550
Templates 552
Transformations 530
Wireless Markup Language 511
XPath 520, 525

XML-RPC 520, 521, 537
Built-in data types 539
Built-in methods 539
Calling a remote procedure 537, 544
Calling multiple methods 538
Calling remote procedured (low-level) 541
Custom Tags 542, 547
Data Type 540
Listing available methods 538
Processing incoming requests 541, 546
Processing tags 543

[XML_Extract] 526
[XML_RPCCall] 538
[XML_Serve] 550

Serving WML 512
[XML_Transform] 531
XPath 520, 521, 525

Conditional expressions 529
Extracting XML Tags 528, 529
Simple expressions 527

XSL 521
Transforming XML data 531

XSLT 521, 530
XSL Transformations 521

7 1 7

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

7 1 8

L A S S O 7 . 1 L A N G U A G E G U I D E

A P P E N D I X C – I N D E X

	Contents
	I - Lasso Overview
	1 - Introduction
	Lasso 7 Documentation
	Lasso 7.1 Language Guide
	Documentation Conventions

	2 - Web Application Fundamentals
	Web Browser Overview
	Web Server Overview
	HTML Forms and URL Parameters
	Web Application Servers
	Web Application Server Languages
	Error Reporting

	3 - Format Files
	Introduction
	Storage Types
	Naming Format Files
	Character Encoding
	Editing Format Files
	Functional Types
	Action Methods
	Table 1: Action Methods
	Securing Format Files
	Output Formats
	File Management
	Specifying Paths
	Format File Execution Time Limit

	4 - LDML 7 Tag Language
	Introduction
	Syntax Types
	Table 1: LDML 7 Syntax Types
	Tag Types
	Table 2: LDML 7 Tag Types
	Tag Categories and Naming
	Table 3: LDML 7 Tag Categories
	Table 4: LDML 7 Synonyms
	Table 5: LDML 7 Abbreviations
	Parameter Types
	Table 6: Parameter Types
	Encoding
	Table 7: Encoding Keywords
	Data Types
	Table 8: Primary LDML 7 Data Types
	Expressions and Symbols
	Table 9: Types of LDML 7 Expressions
	Table 10: Member Tag Symbol
	Table 11: String Expression Symbols
	Table 12: Math Expression Symbols
	Table 13: Conditional Expression Symbols
	Table 14: Logical Expression Symbols
	Delimiters
	Table 15: LDML 7 Delimiters
	Table 16: HTML/HTTP Delimiters
	Illegal Characters
	Table 17: Illegal Characters

	5 - LDML 7 Reference
	Overview
	Figure 1: LDML 7 Reference
	Search
	Figure 2: Basic Search Page
	Figure 3: Advanced Search Page
	Figure 4: Comments Search Page
	Figure 5: Examples Search Page
	Browse
	Figure 6: Category Tags Page
	Figure 7: Legacy Tags Page
	Detail
	Figure 8: Tag Detail Page
	Figure 9: Tag Comments Page
	List
	Figure 10: Preferred Tags Page
	Figure 11: Legacy Tags Page

	II - Database Interaction
	6 - Database Interaction Fundamentals
	Inline Database Actions
	Table 1: Inline Tag
	Table 2: Inline Database Action Parameters
	Table 3: Response Parameters
	Action Parameters
	Table 4: Action Parameter Tags
	Table 5: [Action_Params] Array Schema
	Results
	Table 6: Results Tags
	Showing Database Schema
	Table 7: -Show Parameter
	Table 8: -Show Action Requirements
	Table 9: Schema Tags
	Table 10: [Field_Name] Parameters
	Table 11: [Required_Field] Parameters
	SQL Statements
	Table 12: SQL Inline Parameters
	Table 13: -SQL Helper Tags
	SQL Transactions

	7 - Searching and Displaying Data
	Overview
	Table 1: Command Tags
	Table 2: Security Command Tags
	Searching Records
	Table 3: -Search Action Requirements
	Table 4: Operator Command Tags
	Table 5: Field Operators
	Table 6: Results Command Tags
	Finding All Records
	Table 7: -FindAll Action Requirements
	Finding Random Records
	Table 8: -Random Action Requirements
	Displaying Data
	Table 9: Field Display Tags
	Linking to Data
	Table 10: Link Tags
	Table 11: Link Tag Parameters
	Table 12: Link URL Tags
	Table 13: Link Container Tags
	Table 14: Link Parameter Tags

	8 - Adding and Updating Records
	Overview
	Table 1: Command Tags
	Table 2: Security Command Tags
	Adding Records
	Table 3: -Add Action Requirements
	Updating Records
	Table 4: -Update Action Requirements
	Deleting Records
	Table 5: -Delete Action Requirements
	Duplicating Records
	Table 6: -Duplicate Action Requirements

	9 - MySQL Data Sources
	Overview
	MySQL Tags
	Table 1: Enhanced MySQL Tags
	Searching Records
	Table 2: MySQL Search Field Operators
	Table 3: MySQL Search Command Tags
	Adding and Updating Records
	Value Lists
	Table 4: MySQL Value List Tags
	Creating Database Tables
	Table 5: Database Creation Tags
	Table 6: [Database_CreateTable] Parameters:
	Table 7: [Database_CreateField] and [Database_ChangeField] Parameters:
	Table 8: MySQL Field Types

	10 - FileMaker Data Sources
	Overview
	Performance Tips
	Compatibility Tips
	FileMaker Tags
	Table 1: FileMaker Data Source Tags
	Primary Key Field and Record ID
	Sorting Records
	Displaying Data
	Table 2: FileMaker Data Display Tags
	Value Lists
	Table 3: FileMaker Value List Tags
	Container Fields
	Table 4: Container Field Tags
	FileMaker Scripts
	Table 7: FileMaker Scripts Tags

	11 - JDBC Data Sources
	Overview
	Using JDBC Data Sources
	JDBC Schema Tags
	Table 1: JDBC Schema Tags

	III - Programming
	12 - Programming Fundamentals
	Overview
	Figure 1: Error Page
	Logic vs. Presentation
	Data Output
	Table 1: Output Tags
	Variables
	Table 2: Variable Tags
	Table 3: Variable Symbols
	Data Types
	Table 4: Data Type Tags
	Symbols
	Member Tags
	Forms and URLs

	13 - Conditional Logic
	If Else Conditionals
	Table 1: If Else Tags
	Select Statements
	Table 2: Select Tags
	Loops
	Table 3: [Loop] Tag Parameters
	Table 4: Loop Tags
	Iterations
	Table 5: Iteration Tags
	While Loops
	Table 6: While Tags
	Abort Tag
	Table 7: Abort Tag
	Boolean Type
	Table 8: Boolean Tag
	Table 9: Boolean Symbols

	14 - String Operations
	Overview
	Table 1: String Tag
	String Symbols
	Table 2: String Symbols
	String Manipulation Tags
	Table 3: String Manipulation Member Tags
	Table 4: String Manipulation Tags
	String Conversion Tags
	Table 5: String Conversion Member Tags
	Table 6: String Conversion Tags
	String Validation Tags
	Table 7: String Validation Member Tags
	Table 8: String Validation Tags
	String Information Tags
	Table 9: String Information Member Tags
	Table 10: String Information Tags
	Table 11: Character Information Member Tags
	Table 12: Unicode Tags
	String Casting Tags
	Table 13: String Casting Member Tags
	Regular Expressions
	Table 14: Regular Expression Tags
	Table 15: Regular Expression Matching Symbols
	Table 16: Regular Expression Combination Symbols
	Table 17: Regular Expression Replacement Symbols
	Table 18: Regular Expression Advanced Symbols

	15 - Math Operations
	Overview
	Table 1: Integer Tag
	Table 2: Decimal Tag
	Mathematical Symbols
	Table 3: Mathematical Symbols
	Table 4: Mathematical Assignment Symbols
	Table 5: Mathematical Comparison Symbols
	Decimal Member Tags
	Table 6: Decimal Member Tag
	Table 7: [Decimal->SetFormat] Parameters
	Integer Member Tags
	Table 8: Integer Member Tags
	Table 9: [Integer->SetFormat] Parameters
	Math Tags
	Table 10: Math Tags
	Table 11: [Math_Random] Parameters
	Table 12: Trigonmetric and Advanced Math Tags
	Locale Formatting
	Table 13: Locale Formatting Tags

	16 - Date and Time Operations
	Overview
	Date Tags
	Table 1: Date Substitution Tags
	Table 2: Date Format Symbols
	Table 3: Date Format Member Tags
	Table 4: Date Accessor Tags
	Duration Tags
	Table 5: Duration Tags
	Date and Duration Math
	Table 6: Date Math Tags
	Table 7: Date and Duration Math Tags
	Table 8: Date Math Symbols

	17 - Arrays and Maps
	Overview
	Arrays
	Table 1: Array Tag
	Table 2: Array Member Tags
	Table 3: [Array->Merge] Parameters
	Maps
	Table 4: Map Tag
	Table 5: Map Member Tags
	Pairs
	Table 6: Pair Tag
	Table 7: Pair Member Tags
	Common Maps and Arrays
	Table 8: Common Maps and Arrays

	18 - Encoding
	Overview
	Encoding Keywords
	Table 1: Encoding Keywords
	Encoding Controls
	Table 2: Encoding Controls
	Encoding Tags
	Table 3: Encoding Tags
	Encryption Tags
	Table 4: Encryption Tags
	Compression Tags
	Table 5: Compression Tags

	19 - Sessions
	Overview
	Session Tags
	Table 1: Session Tags
	Table 2: [Session_Start] Parameters
	Session Example

	20 - Files and Logging
	Includes
	Table 1: Include Tags
	Logging
	Table 2: File Log Tags
	Table 3: Lasso Error Log Tags
	Table 4: Log Preference Tag
	Table 5: Log Message Levels
	Table 6: Log Destination Codes
	File Tags
	Table 7: File Tags
	Table 8: Line Endings
	File Uploads
	Table 9: File Upload Tags
	Table 10: [File_Uploads] Map Elements
	File Streaming Tags
	Table 11: [File] Tag
	Table 12: File Open Modes
	Table 13: File Read Modes
	Table 14: File Streaming Tags

	21 - Error Control
	Overview
	Error Reporting
	Figure 1: Built-In None Error Message
	Figure 2: Built-In Minimal Error Message
	Figure 3: Built-In Full Error Message
	Table 1: Error Level Tag
	Figure 4: Lasso Service Error Message
	Figure 5: Authentication Dialog
	Custom Error Page
	Figure 6: Custom Error Page
	Error Pages
	Table 2: Error Response Tags
	Error Tags
	Table 3: Error Tags
	Table 4: Error Type Tags
	Error Handling
	Table 5: Error Handling Tags

	22 - Control Tags
	Authentication Tags
	Table 1: Authentication Tags
	Administration Tags
	Table 2: Administration Tags
	Scheduling Events
	Table 3: Scheduling Tag
	Table 4: Scheduling Parameters
	Process Tags
	Table 5: Process Tags
	Null Data Type
	Table 6: Null Member Tags
	Page Variables
	Table 7: Page Variable Tags
	Table 8: Page Variables
	Configuration Tags
	Table 9: Configuration Tags
	Format File Execution Time Limit
	Table 10: Time Limit Tags

	23 - Miscellaneous Tags
	Name Server Lookup
	Table 1: Name Server Lookup Tag
	Validation Tags
	Table 2: Valid Tags
	Unique ID Tags
	Table 3: Unique ID Tag
	Server Tags
	Table 4: Server Tags

	24 - LassoScript
	LassoScript Overview
	LassoScript Syntax
	Table 1: LassoScript Delimiters

	IV - Protocols and Media
	25 - Email
	Sending Email
	Table 1: Email Tag
	Table 2: [Email_Send] Parameters

	26 - Images and Multimedia
	Overview
	Table 1: Tested and Certified Image Formats
	Casting Images as LDML Objects
	Table 2: [Image] Tag:
	Table 3: [Image] Tag Parameters:
	Getting Image Information
	Table 4: Image Information Tags
	Converting and Saving Images
	Table 5: Image Conversion and File Tags
	Manipulating Images
	Table 6: Image Size and Orientation Tags
	Table 7: Image Effects Tags
	Table 8: Annotate Image Tag
	Table 9: Composite Image Tag
	Table 10: Composite Image Tag Operators
	Extended ImageMagick Commands
	Table 11: ImageMagick Execute Tag
	Serving Image and Multimedia Files
	Table 12: Image Serving Tag

	27 - HTTP/HTML Content and Controls
	Include URLs
	Table 1: Include URL Tag
	Table 2: [Include_URL] Parameters
	Redirect URL
	Table 3: Redirect URL Tag
	HTTP Tags
	Table 4: HTTP Tags
	FTP Tags
	Table 5: FTP Tags
	Cookie Tags
	Table 6: Cookie Tags
	Table 7: [Cookie_Set] Parameters
	Caching Tags
	Table 8: [Cache] Tag
	Table 9: [Cache] Tag Parameters
	Table 10: LDML Object Cache Tags
	Table 11: Cache Control Tags
	Server Push
	Table 12: Server Push Tag
	Header Tags
	Table 13: Header Tags
	Request Tags
	Table 14: Request Tags
	Client Tags
	Table 15: Client Tags
	Server Tags
	Table 16: Server Tags

	28 - Wireless Devices
	Overview
	Formatting WML
	WAP Tags
	Table 1: WAP Tags
	WML Example

	29 - XML
	Overview
	XML Glossary
	XML Data Type
	Table 1: XML Data Type Tag
	Table 2: XML Member Tags
	XPath Extraction
	Table 3: [XML_Extract] Tag
	Table 4: Simple XPath Expressions
	Table 5: Conditional XPath Expressions
	XSLT Style Sheet Transforms
	Table 6: [XML_Transform] Tag
	XML Stream Data Type
	Table 7: XML Stream Data Type Tag
	Table 8: XML Stream Node Types
	Table 9: XML Stream Navigation Member Tags
	Table 10: XML Stream Member Tags
	XML-RPC
	Table 11: [XML_RPCCall] Tag
	Table 12: XML-RPC Built-In Methods
	Table 13: XML-RPC and Built-In Data Types
	Table 14: XML-RPC Data Type
	Table 15: [XML_RPC] Call Tag
	Table 16: [XML_RPC] Processing Tags
	SOAP
	Serving XML
	Table 17: [XML_Serve] Serving Tags
	Formatting XML
	XML Templates
	Table 18: FileMaker Pro XML Templates
	Table 19: SQL Server XML Templates

	30 - Portable Document Format
	Overview
	Creating PDF Documents
	Table 1: [PDF_Doc] Tag and Parameters
	Table 2: [PDF_Doc->Add] Tag and Parameters
	Table 3: PDF Page Tags
	Table 4: PDF Read Tags
	Table 5: Page Insertion Tag and Parameters
	Table 6: PDF Accessor Tags
	Table 7: [PDF_Doc->Close] Tag
	Creating Text Content
	Table 8: PDF Font Tag and Parameters
	Table 9: [PDF_Font] Member Tags
	Table 10: [PDF_Text] Tag and Parameters
	Table 11: [PDF_Doc->DrawText] Tag
	Table 12: [PDF_List] Tags and Parameters
	Table 13: Special Characters
	Creating and Using Forms
	Table 14: [PDF_Doc] Form Member Tags
	Table 16: Form Placement Parameters
	Creating Tables
	Table 17: [PDF_Table] Tag and Parameters
	Table 18: [PDF_Table] Member Tags
	Table 19: Cell Content Tags
	Creating Graphics
	Table 20: [PDF_Image] Tag and Parameters
	Table 21: [PDF_Doc] Drawing Member Tags
	Creating Barcodes
	Table 22: [PDF_Barcode] Tag and Parameters
	Example PDF Files
	Serving PDF Files
	Table 23: PDF Serving Tags

	V - Upgrading
	31 - Upgrading Your Solutions
	Introduction
	Lasso Professional 7.1
	Error Reporting
	Unicode Support
	Bytes Type
	Table 1: Tags That Return the Bytes Type
	Table 2: Byte and String Shared Member Tags
	Table 3: Unsupported String Member Tags
	Syntax Changes (Lasso 6)
	Table 4: Syntax Changes
	Tag Name Changes (Lasso 5/6)
	Table 5: Unsupported Tags
	Table 6: Tag Name Changes
	Table 7: Deprecated Tags
	Syntax Changes (Lasso 5)
	Table 8: Syntax Changes
	Lasso MySQL (Lasso 5)
	Table 9: Lasso MySQL Syntax Changes
	Syntax Changes (Lasso WDE 3.x)
	Table 10: Syntax Changes
	Table 11: Line Endings
	Tag Name Changes (Lasso WDE 3.x)
	Table 12: Command Tag Name Changes
	Table 13: Substitution, Process, and Container Tag Name Changes
	Unsupported Tags (Lasso WDE 3.x)
	Table 14: Unsupported Tags
	FileMaker Pro (Lasso WDE 3.x)

	A - LDML 7 Tag List
	LDML 7 Tag List
	LDML 7 Legacy Tag List

	B - Error Codes
	Lasso Professional 7 Error Codes
	Table 1: Lasso Professional 7 Error Codes
	Lasso MySQL Error Codes
	Table 2: Lasso MySQL Error Codes
	FileMaker Pro Error Codes
	Table 3: FileMaker Pro Error Codes
	JDBC Error Codes
	Table 4: JDBC Error Codes

	C - Index
	Section I

