
Extending Lasso 7 Guide

blueworld

Trademarks

Lasso, Lasso Professional, Lasso Studio, LDML, Lasso Service, Lasso Connector, Lasso

Web Data Engine, Blue World and Blue World Communications are trademarks of

Blue World Communications, Inc. MySQL™ is a trademark of MySQL AB. All other

products mentioned may be trademarks of their respective holders. See Appendix
C: Copyright Notices in the Lasso Professional 7 Setup Guide for additional

details.

Third Party Links

This guide may contain links to third-party Web sites that are not under the control

of Blue World. Blue World is not responsible for the content of any linked site. If you

access a third-party Web site mentioned in this guide, then you do so at your own

risk. Blue World provides these links only as a convenience, and the inclusion of the

links does not imply that Blue World endorses or accepts any responsibility for the

content of those third-party sites.

Copyright

Copyright © 2004 Blue World Communications, Inc. This manual may not be

copied, photocopied, reproduced, translated or converted to any electronic or

machine-readable form in whole or in part without prior written approval of

Blue World Communications, Inc.

Additional copies of this documentation may be purchased at the Blue
World store at http://store.blueworld.com/.

Second Edition: January 14, 2004

Blue World Communications, Inc.
10900 NE 8th Street, Suite 900
Bellevue, Washington 98004 U.S.A.

Telephone: (425) 646-0288
Fax: (425) 454-4383
Email: blueworld@blueworld.com
Web Site: http://www.blueworld.com

3

E X T E N D I N G L A S S O 7 G U I D E

Contents

Chapter 1
Introduction .7
Lasso 7 Documentation . 7
Extending Lasso 7 Guide . 8
Source Code . 9

Chapter 2
LassoApps .13
Overview . 13

Table 1: LassoApp Tags . 15
Default LassoApps . 15
Administration . 16
Serving LassoApps . 17
Preparing Solutions . 19
Building LassoApps . 23

3

E X T E N D I N G L A S S O 7 G U I D E

Table 2: [LassoApp_Create] Tag Parameters . 25
Tips and Techniques . 26

Chapter 3
Custom Tags .29
Overview . 29
Custom Tags . 32

Table 1: Tags For Creating Custom Tags . 33
Table 2: [Define_Tag] Parameters . 34

Container Tags . 46
Web Services, Remote Procedure Calls, and SOAP 48
Asynchronous Tags .51
Overloading Tags . 54
Libraries . 58

Chapter 4
Custom Types .61
Overview .61

Table 1: Tags for Creating Custom Data Types 62
Custom Types . 63
Member Tags . 65

Table 2: Built-In Member Tags . 66
Callback Tags . 68

Table 3: Callback Tags . 69
Symbol Overloading . 73

Table 4: Overloadable Symbols . 74
Table 5: Comparison Callback Tags . 75
Table 6: Symbol Callback Tags . 78
Table 7: Assignment Callback Tags . 80

Inheritance . 82
Libraries . 84

Chapter 5
Advanced Programming Topics 85
References . 86

Table 1: Reference Tags and Symbols . 88
Global Variables . 89

Table 2: Global Tags . 90
Bytes Types . 92

Table 3: Byte Stream Tag . 92
Table 4: Byte Stream Member Tags . 93

4

E X T E N D I N G L A S S O 7 G U I D E

C O N T E N T S 5

E X T E N D I N G L A S S O 7 G U I D E

C O N T E N T S

Tag Data Type . 96
Table 5: Tag Data Type Member Tags . 97
Table 6: [Tag->Run] Parameters . 97

Compound Expressions . 99
Thread Tools .101

Table 7: Thread Tools .102
Table 8: [Thread_Lock] Member tags: .102
Table 9: [Thread_Semaphore] Member Tags .104
Table 10: [Thread_RWLock] Member Tags .105

Thread Communication . 106
Table 11: Thread Communication .106
Table 12: [Thread_Event] Member Tags: .106
Table 13: [Thread_Pipe] Member Tags: .107

Network Communication . 108
Table 14: [Net] Tags . 110
Table 15: [Net] Type Member Tags . 111
Table 16: [Net] TCP Member Tags .112
Table 17: [Net] UDP Member Tags .116

Post Processing .118

Chapter 6
Lasso C/C++ API 7 119
Overview . 120
What’s Changed . 120
Requirements . 121
Getting Started . 121
Debugging . 123
Substitution Tag Operation . 125
Substitution Tag Tutorial . 126
Data Source Connector Operation . 130

Figure 1: Custom Data Source Host Screen .131
Data Source Connector Tutorial . 132
Data Type Operation . 138
Data Type Tutorial . 139
LCAPI Function Reference . 147
LCAPI Data Type Reference . 185
Frequently Asked Questions . 186

Chapter 7
Lasso Connector Protocol 189
Overview . 189
Requirements . 190

4

E X T E N D I N G L A S S O 7 G U I D E

C O N T E N T S 5

E X T E N D I N G L A S S O 7 G U I D E

C O N T E N T S

Lasso Web Server Connectors . 190
Getting Started . 191
Debugging . 192
Lasso Connector Operation . 193

Table 1: LPCommandBlock Structure Members 193
Lasso Connector Tutorial . 194
Lasso Connector Protocol Reference . 205

Table 2: Named Parameters . 206

Chapter 8
Lasso Java API .207
Overview . 208
What’s New . 208
LJAPI 7 vs. LCAPI 7 . 209
Requirements .211
Getting Started .211
Debugging . 214
Substitution Tag Operation . 215
Substitution Tag Tutorial . 216
Data Source Connector Operation . 221

Figure 1: Custom Data Source Host Screen . 222
Data Source Connector Tutorial . 223
Data Type Operation . 238
Data Type Tutorial . 239

Table 1: Type initializer and Member Tags . 239
Table 2: Accessors . 240

LJAPI Interface Reference . 251
LJAPI Class Reference . 251

Appendix A
Extending Lasso Copyright Notice . . .291

Appendix B
Index .293

6

E X T E N D I N G L A S S O 7 G U I D E

C O N T E N T S

1
Chapter 1

Introduction

This chapter provides on overview of the Lasso 7 documentation, the
section outline, and documentation conventions for this book.

 • Lasso 7 Documentation describes the documentation included with
Lasso 7 products.

 • Extending Lasso 7 Guide describes the sections in this book.

Lasso 7 Documentation
The documentation for Lasso 7 products is divided into several different
manuals and also includes several online resources. The following manuals
and resources are available.

 • Lasso Professional 7 Setup Guide is the main manual for Lasso
Professional 7. It includes documentation of the architecture of Lasso
Professional 7, installation instructions, the administration interface,
and Lasso security. After the release notes, this is the first guide you
should read.

 • Lasso Studio 6 User Guide is the main documentation for Lasso
Studio 6. It includes documentation both of Lasso Studio for Adobe
GoLive and Lasso Studio for Dreamweaver.

 • Lasso 7 Language Guide includes documentation of LDML (Lasso
Dynamic Markup Language), the language used to access data sources,
specify programming logic, and much more.

 • LDML 7 Reference provides detailed documentation of each tag in
LDML 7. This is the definitive reference to the language of Lasso 7. This
reference is provided as a LassoApp and Lasso MySQL database within

7

E X T E N D I N G L A S S O 7 G U I D E

Lasso Professional 7 and also as an online resource from the Blue World
Web site.

 • Lasso 7 Tutorial includes detailed, step-by-step documentation on how
to build a specific Lasso-driven solution.

 • Extending Lasso 7 Guide is a collection of documentation and sample
projects which provide instructions on how to extend Lasso.

Comments, suggestions, or corrections regarding the documentation may
be sent to the following email address.

documentation@blueworld.com

Extending Lasso 7 Guide
This is the guide you are reading now. This guide contains information
about extending Lasso and LDML. It is organized into the following
sections.

 • Chapter 2: LassoApps contains important information about adminis-
tering, developing and building LassoApps.

 • Chapter 3: Custom Tags documents how to build custom substitution
tags, container tags, and asynchronous tags entirely in LDML.

 • Chapter 4: Custom Types documents how to build custom data types
in LDML including sub-classing existing types, overriding built-in math,
string, and comparison symbols and more.

 • Chapter 5: Advanced Programming Topics documents how to use
pipes and semamphores for inter-thread communication, the tag data
type, compound expressions, and the TCP/IP tags which facilitate low-
level communication with remote servers.

 • Chapter 6: Lasso C/C++ API documents how to create new tags, data
types, and data sources in C or C++.

 • Chapter 7: Lasso Connector Protocol documents the protocol which
is used for communication between Lasso Web server connectors and
Lasso Service.

 • Chapter 8: Lasso Java API documents how to create new tags and data
sources in Java using the new LJAPI 6 programming interface.

The appendix contains the Extending Lasso Copyright Notice which
covers all of the source code and sample projects that are included with
Lasso Professional 7.

8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 1 – I N T R O D U C T I O N 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 1 – I N T R O D U C T I O N

Source Code
The Extending Lasso 7 Guide includes example source code for the
concepts that are discussed in each chapter. The source code files are
included within the 5-ExtendingLasso folder inside the Documentation folder.

All of the source code is provided solely for example purposes. Blue World
does not provide support for the included source code or for any derivative
LassoApps, tags, data sources, or connectors created using the source code.

Note: Different source files, make files, and project files are installed on Mac
OS X and Windows 2000 so that each project can built on the appropriate
platform. However, unless otherwise noted a version of each example is
provided on both platforms.

What follows are descriptions of the contents of the 5-Extending Lasso folder
and its sub-folders:

LassoApps
Includes source code for each of the compiled LassoApps that ship with
Lasso Professional 7. Each sub-folder represents one LassoApp.

 • Admin – The source code for Lasso Administration or Admin.LassoApp.
This source is a good reference for creating custom administration inter-
faces.

 • DatabaseBrowser – The source code for DatabaseBrowser.LassoApp. This
source code is a good example of datasource independent design.

 • GroupAdmin – The source code for GroupAdmin.LassoApp. This source
code provides a good example of using the [Admin_…] tags to add users to
groups dynamically.

 • LDMLReference – The source for the LDML 7 Reference or
LDMLReference.LassoApp. This source code is a good example of using
named inlines, using sessions to keep state, and using custom tags for
data customization.

 • RPC - The source for the RPC.LassoApp file which processes incoming
remote procedure calls. This source is a good example of how to process
incoming remote procedure call server requests.

 • Startup – The source for the Startup.LassoApp file found in LassoStartup.
This source code provides many examples of custom tags including
the LDML 3 compatibility [List_…] tags, custom data types including
[Client_Address] and [Repetition], and dynamic background processes
including the event scheduler and email sender.

8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 1 – I N T R O D U C T I O N 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 1 – I N T R O D U C T I O N

LCAPI
Includes source code for custom tags and data source connectors. The
following projects are provided.

Data Source Connectors

 • Lasso Connector for MySQL – The complete source code for the built-
in data source connector for external MySQL data sources. This is a good
starting point for creating a custom data source connector.

 • Sample Data Source – An example that provides demonstrations of
many aspects of creating custom data source connectors with the LCAPI
interface.

Custom Tags

 • Math Tags – The source for a set of extended math tags.

 • File Tags – The source for a set of file manipulation tags.

 • Tester – An example that provides demonstrations of many aspects of
creating custom tags with the LCAPI interface.

LJAPI
Includes source code for custom tags, types, and data source connectors.
Documentation in the JavaDoc format is provided in the HTML folder. The
following projects are provided.

Data Source Connectors

 • JDBC Data Source Connector – Source code for an example JDBC
data source connector is provided. This is a good starting point for
creating a custom data source connector.

Custom Tags

 • Zip Count Substitution Tag – The source for a [Zip_Count] tag that
counts the number of files within an archive of the zip format.

 • XML Tags– The source for the built-in [XML_Extract] and [XML_Transform]
tags based on the Xalan and Xerces libraries.

Custom Types

 • PDF Type – The source for the built-in PDF data types based on the
iText libraries.

 • Zip Custom Type – The source for a data type that can store or extract
data within archives of the zip format.

1 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 1 – I N T R O D U C T I O N 1 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 1 – I N T R O D U C T I O N

LCP
Includes source code for Lasso Web server connectors. The following proj-
ects are provided.

Note: The source code for the Web server connectors is only installed on the
platform on which that code can be compiled and used. Mac OS X inclues
the connectors for Apache and WebSTAR V and Windows includes the
connector for IIS.

 • Apache for Mac OS X – The complete source code for the Lasso Web
server connector for Apache 1.x.

 • IIS for Windows 2000 – The complete source code for the Lasso Web
server connector for IIS.

 • WebSTAR V for Mac OS X – The complete source for the Lasso Web
server connector for WebSTAR V.

1 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 1 – I N T R O D U C T I O N 1 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 1 – I N T R O D U C T I O N

1 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 1 – I N T R O D U C T I O N

2
Chapter 2

LassoApps

This chapter discusses how to develop, build, and administer LassoApps.

 • Overview describes LassoApps and their benefits for distributing Lasso-
based solutions.

 • Administration explains how to enable LassoApp serving and how
LassoApps are cached.

 • Preparing Solutions documents how to prepare a Lasso-based solution
for conversion into a LassoApp.

 • Building LassoApps explains how to use LassoApp Builder in Lasso
Administration or the [LassoApp_Create] tag to build a LassoApp.

 • Tips and Techniques provides helpful information about how to create
professional quality LassoApps.

Overview
LassoApps allow entire Lasso-based solutions, including format files and
image files, to be packaged into a single archive file with a .LassoApp exten-
sion. A compiled LassoApp can be easily distributed and executed on any
machine running Lasso Professional 7.

LassoApps offer the following benefits:

 • Performance – LassoApps are loaded into RAM and cached for efficient
serving. All format files within the LassoApp are pre-parsed and served
without additional disk accesses. LassoApp solutions generally provide
better performance than their non-LassoApp counterparts.

 • Size – LassoApps are stored efficiently as a single file. The overhead asso-
ciated with multiple format and image files is reduced. Redundant data

1 3

E X T E N D I N G L A S S O 7 G U I D E

within format files is optimized so only a single copy of duplicate strings
is stored.

 • Security – The code within a LassoApp is stored securely in a pre-parsed
form. It is not possible to extract format files and code from a LassoApp.

 • Portability – A LassoApp is an ideal way to distribute a solution
by copying and installing a single file with all internal paths intact.
LassoApps are fully cross platform. They can be created on either Mac
OS X or Windows 2000 and then deployed on either platform without
modifications.

LassoApps are stored in a custom binary file format with a
.LassoApp extension. LassoApps can be created programmatically using
the [LassoApp_Create] tag or through the LassoApp Builder located in Lasso
Administration.

LassoApps can be used for any of the following purposes:

 • Packaged Solutions – LassoApps enable developers to create packaged
solutions that can be easily installed by end-users and served by any
copy of Lasso Professional 7. LassoApps are placed in the Web serving
folder and referenced like a Lasso-based format file.

 • Client Solutions – LassoApps enable developers to deliver solutions
to clients in a convenient, secure package. This is ideal so clients can
evaluate the functionality of a solution without requiring access to the
source code. LassoApps are placed in the Web serving folder and refer-
enced like a Lasso-based format file.

 • Startup Libraries – LassoApps can be installed into the
LassoStartup folder. The default page of the LassoApp will be executed
as a library when Lasso Service starts up and can define custom tags or
perform initialization code.

 • Secure Includes – LassoApps can be included into other format files
using the [Include] or [Library] tag. LassoApps can be used to define custom
tags or to provide HTML code in a secure manner.

See the sections that follow for information about enabling LassoApps
within Lasso Administration, preparing an existing solution for compila-
tion as a LassoApp, and detailed instructions about building LassoApps.

1 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 1 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

Table 1: LassoApp Tags

Tag Description

[LassoApp_Create] Creates a LassoApp. Requires three parameters: the
-Root of the LassoApp, the -Entry page or default page,
and the -Result path where to write the completed
LassoApp.

[LassoApp_Dump] Removes a LassoApp from the cache. Removes
a specific LassoApp if a name is specified or all
LassoApps if no name is specified.

[LassoApp_Link] Defines a link to a file within a LassoApp. This tag must
be used to mark all links in HTML anchor, form, and
image tags and format file references in [Include] and
[Library] tags.

-ResponseLassoApp Returns a specific page from a LassoApp.

Default LassoApps
Lasso Professional 7 relies on LassoApps for all of its administration inter-
faces, online documentation, and server start-up code. Lasso Professional 7
ships with the following LassoApps.

 • Admin.LassoApp – The Lasso Administration interface pre-installed
in the Lasso folder within the Web server root. This LassoApp is used
to configure Lasso Security, to establish the global preferences of Lasso
Service, to browse existing databases, to monitor the email and event
queues, and to create new databases and LassoApps.

 • DatabaseBrowser.LassoApp – The Database Browser allows site visi-
tors to browse through any databases that they have permission to
access. This LassoApp is an optional install. It can be found in the
Admin folder within the Lasso Professional 7 folder and must be copied
into the Web server root in order to be used.

 • GroupAdmin.LassoApp – The Group Administration interface pre-
installed in the Lasso folder within the Web server root. This LassoApp
allows group administrators to create users and assign them to groups
and for users to change their passwords.

 • LDMLReference.LassoApp – The LDML Reference is the defini-
tive source for information about each tag in Lasso Dynamic Markup
Language. This LassoApp is pre-installed in the Lasso folder within the
Web server root.

 • RPC.LassoApp – This LassoApp responds to incoming remote proce-
dure calls using the XML-RPC format.

1 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 1 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

 • Startup.LassoApp – This LassoApp defines custom tags and performs
initialization for Lasso Security, the email sender, and the event queue.
This LassoApp is installed in the LassoStartup folder and must be present
for Lasso Service to start.

The code for each of these LassoApps can be found within the
Documentation Folder > 3-ExtendingLassoGuide > LassoApps folder.
This code is provided as-is without any warranty or support.

Warning: Do not compile LassoApps with the same name as the Blue World
supplied LassoApps (e.g. Startup.LassoApp or Admin.LassoApp). Blue World cannot
provide any support for customized versions of these LassoApps or for Lasso
Professional 7 installations which make use of customized versions of these
LassoApps.

Administration
This section discusses how to enable or disable LassoApp support and
administer the LassoApp cache using LDML tags and within Lasso
Administration.

Enabling LassoApp Support
Lasso Administration includes a global setting to enable or disable
LassoApp support. This setting can be found in the Setup > Global
Settings > LassoApps section of Lasso Administration.

When LassoApp support is disabled only the LassoApps which ship
with Lasso Professional 7 can be served (including Admin.LassoApp,
GroupAdmin.LassoApp, LDMLReference.LassoApp, and Startup.LassoApp in the
LassoStartup folder.

Please see Chapter 7: Setup in the Lasso Professional 7 Setup Guide for
more information about enabling or disabling LassoApp support.

LassoApp Cache
LassoApps are cached in RAM for efficient serving. Each LassoApp only
needs to be read from disk once and from then on is served from high-
speed memory. LassoApps are read from disk automatically the first time
they are called so there is no need to pre-load them (unless the fastest
performance is required on the first load).

Since LassoApps are only read from disk the first time they are called it is
necessary to ask Lasso to dump any LassoApps that need to be re-read from

1 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 1 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

disk. For example, this is necessary if a new version of a LassoApp is copied
into the Web serving folder.

LassoApps can be removed from the cache using the Cache page in the
Setup > Global Settings > LassoApps section of Lasso Administration.
See Chapter 7: Setup of the Lasso Professional 7 Setup Guide for more
information. LassoApps can also be removed from the cache programati-
cally using the following steps.

To remove a LassoApp from the cache:

Use the [LassoApp_Dump] tag with the name of the LassoApp. The following
example shows how to remove a LassoApp named MySolution.LassoApp from
the cache. The LassoApp will be read from disk the next time the LassoApp
is called.

[LassoApp_Dump: 'MySolution.LassoApp']

To remove all LassoApps from the cache:

Use the [LassoApp_Dump] tag without any parameters The following example
shows how to remove all LassoApps from the cache. Each LassoApp will be
read from disk the next time it is called.

[LassoApp_Dump]

To preload a LassoApp into the cache:

LassoApps can be preloaded into the cache by calling them from a Web
browser or by using the [Include_URL] tag. The following example shows
how to preload a LassoApp named MySolution.LassoApp using [Include_URL].

[Include_URL: 'http://www.example.com/Lasso/MySolution.LassoApp']

If a LassoApp will be used frequently on the server it can be preloaded
using the [Event_Schedule] tag in a format file in LassoStartup. The following
code would preload a LassoApp named MySolution.LassoApp five minutes
after Lasso Service is started. The delay is specified so the other initializa-
tion steps have a chance to complete before the LassoApp is loaded.

[Event_Schedule: -URL='http://www.example.com/Lasso/MySolution.LassoApp',
 -Delay=5]

Serving LassoApps
LassoApps can be served the same way as Lasso format files. They can be
served from the Web server root, included in other format files, or placed
in the LassoStartup folder and executed at startup. This section includes
information about how to use LassoApps in each of these situations.

1 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 1 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

Web Serving Folder
LassoApps which are placed in the Web serving folder are served like any
Lasso-based format files. When they are referenced by name in HTML
anchor tags, HTML form actions, or as the target of a -Response… tag, the
entry page for the LassoApp is always the page that is served.

Since LassoApps are cached, only one copy of each named LassoApp can
be served from a single copy of Lasso Professional 7. If a second LassoApp
with the same name is called the cached copy of the first LassoApp will
be served in its place. It is important to ensure that multiple copies of the
same LassoApp are identical or unexpected results can occur.

The links in the entry page must be marked with the [LassoApp_Link] tag
in order to reference other files contained within the LassoApp. See the
section on Preparing Solutions for more details.

The [LassoApp_Link] tag modifies internal links to be of the form LassoA
ppName.FileNumber.LassoApp. For example, the link to the entry page of a
LassoApp named MySolution.LassoApp would be formated as follows in the
source of the LassoApp.

 Entry Page

After the LassoApp is compiled, this link will be changed to the following
code. The number referenced in the link is determined when the LassoApp
is compiled. This number should not be relied on since it may change if
the LassoApp is recompiled.

 Entry Page

The conversion of links marked [LassoApp_Link] is handled automatically.
No further action beyond marking internal links with the [LassoApp_Link]
tag is required. The site visitor will be able to visit any pages which can be
reached from the entry page within the LassoApp and will be able to view
any linked images within the LassoApp.

To reference pages in a LassoApp from outside the LassoApp:

Individual pages within a LassoApp can be referenced using the
-ResponseLassoApp tag as a parameter to the LassoApp name. For example,
the entry page (e.g. default.lasso) of the MySolution.LassoApp LassoApp could
be referenced explicitly using the following link.

 Entry Page

The path specified for the -ResponseLassoApp tag should be relative to the
folder which was compiled into the LassoApp. The -ResponseLassoApp tag
should not be used as part of a database action or to specify the response
file for a database action. It should only be used to return a specific format
file or image file from within a LassoApp.

1 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 1 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

Note: By using this technique, even files and images within a LassoApp which
cannot be reached from the entry page can be viewed if the visitor knows the
path to the file they want to view within the LassoApp.

Database Action Responses
The entry page of a LassoApp can be used as the response to a database
action by specifying the path to the LassoApp as the parameter for any of
the -Response… command tags. The following form returns the entry file of
MySolution.LassoApp as the response to a -FindAll action.

<form action="Action.Lasso" method="POST">
 <input type="hidden" name="-FindAll" value="">
 <input type="hidden" name="-Database" value="Contacts">
 <input type="hidden" name="-Table" value="People">
 <input type="hidden" name="-Response" value="MySolution.LassoApp">
 <input type="submit" name="-FindAll" value="Find All People">
</form>

Note: The -ResponseLassoApp tag cannot be used in conjunction with a data-
base action to return a particular page from within a LassoApp. Only the entry
page of a LassoApp can be returned as the result of a database action.

Lasso Startup Folder
The entry page of a LassoApp can be executed when Lasso Service starts
up by placing the LassoApp file within the LassoStartup folder inside the
Lasso Professional 7 application folder. The entry file can include as
many other files within the LassoApp as it needs in order to perform the
desired actions. For example, the Startup.LassoApp LassoApp located in
the LassoStartup folder executes code which defines a number of custom
tags (e.g. [Email_Send], [Include_URL]) in Lasso Professional 7. Because
Startup.LassoApp is located in the LassoStartup folder, these custom tags are
automatically available upon startup.

Preparing Solutions
Any Lasso-based solution can be compiled into a LassoApp following these
preparation instructions. These steps require changes to be made to each
format file which needs to link to another file within the LassoApp and
requires files that need to remain user customizable to be stored and refer-
enced outside the LassoApp.

1 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 1 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

The following steps need to be performed to prepare a solution for compi-
lation as a LassoApp.

 • The entire solution must be contained in a single folder including all
format files and image files which will be compiled into the LassoApp.
The folder should only contain text and GIF or JPEG image files.

 • The solution must have a single entry point. One file will be loaded
when the LassoApp is called, this file must reference other files within
the LassoApp either through HTML links, HTML form actions, redirects
or [Include] tags.

 • All links to files or images within the LassoApp must be marked with the
[LassoApp_Link] tag. This tag changes relative paths to a LassoApp specific
format.

Preparing Links
The biggest change required to make most solutions ready to be
compiled as a LassoApp is to mark all of the links which reference other
files within the solution with the [LassoApp_Link] tag. All HTML anchor
 ... , image , and form <form> … </form> tags which refer-
ence other files within the LassoApp need to be marked as well as [Include]
and [Library] tags. The [LassoApp_Link] tag is processed when the solution is
compiled into a LassoApp.

Named anchors, links to targets within the same file, mailto links to email
addresses, and links to Web sites on other servers do not need to be
marked with the [LassoApp_Link] tag.

The [LassoApp_Link] tag can be safely used in any Lasso solution whether it
is compiled into a LassoApp or not. When used in a non-compiled solu-
tion the [LassoApp_Link] simply returns the specified link value unchanged.

Note: The [LassoApp_Link] tag cannot be used within custom tags or custom
data types. Since a custom tag could be called from a different LassoApp
than the one in which it is defined (e.g. if a custom tag is defined in the
LassoStartup folder, there is no way for Lasso to determine to which LassoApp
the [LassoApp_Link] tag should refer. See the end of this section for tips on
working with custom tags within LassoApps.

To prepare links to other files within the LassoApp:

 • Anchor tags which reference other files within the LassoApp need to be
marked with the [LassoApp_Link] tag. The [LassoApp_Link] tag will accept
any relative path which is legal within an HTML anchor tag including
those which contain ../ to reference files higher in the folder structure.

2 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 2 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

The following example shows an HTML anchor tag that references a file
named default.lasso contained in a folder named People.

 People Page

After being marked with the [LassoApp_Link] tag this anchor tag appears as
follows.

 People Page

Note: Do not mark named anchors, links to targets within the same file,
mailto links to email addresses, or links to Web sites on other servers with
the [LassoApp_Link] tag.

 • Image tags should be marked with the [LassoApp_Link] tag if the refer-
enced image is contained within the compiled LassoApp. The following
example shows an HTML image tag that references a file named
boat.gif contained in a folder named Images.

After being marked with the [LassoApp_Link] tag this anchor tag appears as
follows.

 • The action parameter for HTML <form> tags should be marked with the
[LassoApp_Link] tag if it reference a format file explicitly. The following
example shows an HTML <form> tag that references a file named
result.lasso which is contained in the same folder as the current page.

<form action="result.lasso" method="POST">
 …
</form>

After being marked with the [LassoApp_Link] tag this HTML <form> tag
appears as follows.

<form action="[LassoApp_Link: 'result.lasso']" method="POST">
 …
</form>

 • If an HTML <form> tag references Action.Lasso as its action then the value
parameter for the appropriate <input> tag for the -Response command tag
should be marked with the [LassoApp_Link] tag. The following example
shows an HTML <form> tag that references Action.Lasso. The response
for the form is specified as response.lasso in a hidden input for the
-Response command tag.

<form action="Action.Lasso" method="POST">
 <input type="hidden" name="-Response" value="response.lasso">
 …
</form>

2 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 2 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

After being marked with the [LassoApp_Link] tag the hidden input appears
as follows.

<form action="Action.Lasso" method="POST">
 <input type="hidden" name="-Response"
 value="[LassoApp_Link: 'response.lasso']">
 …
</form>

 • The file parameter for an [Include] or [Library] tag needs to be marked using
the [LassoApp_Link] tag. The following examples show an [Include] tag for a
file named include.lasso and a [Library] tag for a file library.lasso.

[Include: 'include.lasso']

[Library: 'library.lasso']

After being marked with the [LassoApp_Link] tag the tags appear as follows.

[Include: (LassoApp_Link: 'include.lasso')]

[Library: (LassoApp_Link: 'library.lasso')]

 • The response parameter for a [Link_…] tag needs to be marked using the
[LassoApp_Link] tag. For example, the [Link_DetailURL] tag accepts a -Response
parameter which specifies the format file that should be returned when
the link is selected. The following example shows a [Link_DetailURL] tag
used within an HTML anchor <a> tag.

 …

After being marked with the [LassoApp_Link] tag, the [Link_DetailURL] tag
appears as follows.

<a href="[Link_DetailURL: -Response=(LassoApp_Link: 'response.lasso'),
 -Table='People']"> …

Notice that only the name of the response page is marked with the
[LassoApp_Link] tag, not the entire href attribute of the anchor tag.

To reference files within a LassoApp from a custom tag:

The [LassoApp_Link] tag cannot be used within custom tags and custom data
types. The following techniques can be used to reference files within a
LassoApp from custom tags or custom data types.

 • References to files can be stored in variables and referenced by variable
name within a custom tag. In the following example a reference to a file
include.lasso is stored in a variable named IncludeFile. This variable is then
referenced within a custom tag.

2 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 2 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

[Variable: 'IncludeFile' = (LassoApp_Link: 'include.lasso')]
…
[Define_Tag: 'myInclude']
 [Return: (Include: $IncludeFile)]
[/Define_Tag]

 • References to LassoApp files can be passed into custom tags as param-
eters. In the following example a reference to a file include.lasso is passed
as a parameter to a custom tag.

[Define_Tag: 'myInclude', -Required='IncludeFile']
 [Return: (Include: #IncludeFile)]
[/Define_Tag]
…
[myInclude: (LassoApp_Link: 'include.lasso')]

Building LassoApps
LassoApps can be built programmatically using the [LassoApp_Create] tag
or can be built using LassoApp Builder provided in the Build > LassoApp
Builder section of Lasso Administration.

Lasso Administration
In order to build a LassoApp using LassoApp Builder, the folder containing
the files which will be compiled into the LassoApp must be placed in the
Admin/BuildLassoApps folder within the Lasso Professional 7 application
folder.

The name of the folder to be converted to a LassoApp is selected from a
pop-up menu and the path to the entry file within the folder is specified.
Any errors which occur are reported within the interface. If successful, the
completed LassoApp is placed within the Admin/BuildLassoApps folder. The
completed LassoApp has the same name as the folder that was selected
with .LassoApp appended.

See Chapter 8: Build of the Lasso Professional 7 Setup Guide for complete
documentation of LassoApp Builder.

To create a LassoApp using LassoApp Builder:

 1 Place all of the files which will be compiled into the LassoApp into a
single folder. The folder should only contain Lasso format files and
image files. All of the format files should have been prepared following
the instructions in the Preparing Solutions section of this chapter.

2 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 2 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

For example, place the format files within a folder named MySolution. This
folder contains the entry file default.lasso, a folder of included sub-files,
and a folder of images.

Note: All of the files within the source folder will be compiled into the
LassoApp even if some of the files are never referenced. In order to create
the smallest LassoApps possible, any files which are not needed should be
removed from the source folder prior to compiling a LassoApp

 2 Place the folder MySolution into the Admin/BuildLassoApps folder within the
Lasso 7 application folder.

 3 Load Lasso Administration in a Web browser and go to the Build >
LassoApp Builder section.

http://www.example.com/Lasso/Admin.LassoApp

 4 Choose MySolution from the pop-up menu and ensure that the entry file is
default.lasso. Select the Create LassoApp button.

Note: If the name of the source folder is not present in the pop-up menu
select the Refresh button.

 5 If any errors are reported, correct them within the format files of the
solution and then return to Lasso Administration to build the LassoApp
again. The LassoApp Builder must complete without any errors in order for
a LassoApp file to be created.

 6 The completed LassoApp will be in the Admin/BuildLassoApps folder named
MySolution.LassoApp. This file should be copied into the Web serving folder
and can then be loaded through a Web browser. If this solution were
placed at the root of the Web serving folder it could be loaded through
the following URL.

http://www.example.com/MySolution.LassoApp

[LassoApp_Create] Tag
In order to build a LassoApp using the [LassoApp_Create] tag the files which
will be compiled into a LassoApp need to be placed in a single folder on
the same machine as Lasso Service. The source folder and destination file
path for the LassoApp will both be specified using fully qualified, plat-
form-specific paths on the same machine as Lasso Service.

The parameters for the [LassoApp_Create] tag are detailed in Table 2:
[LassoApp_Create] Tag Parameters. An example of using the tag to create
a LassoApp follows. The [LassoApp_Create] tag will return 0 if it is successful
creating a LassoApp or an error message otherwise. The tag will replace an
existing LassoApp file if the -Result parameter specifies a file that already
exists.

2 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 2 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

Table 2: [LassoApp_Create] Tag Parameters

Parameter Description

-Root The folder which contains the files that will be compiled
into the LassoApp. Should be specified using a fully
qualified, platform-specific path.

-Entry The default format file within the LassoApp which will be
loaded when the LassoApp is called. Should be specified
relative to the root folder.

-Result The destination file name for the created LassoApp.
Should be specified using a fully qualified, platform-
specific path and must end in the file suffix .LassoApp.

To create a LassoApp using the [LassoApp_Create] tag:

 1 Place all of the files which will be compiled into the LassoApp into a
single folder. The folder should only contain Lasso format files and
image files. All of the format files should have been prepared following
the instructions in the Preparing Solutions section of this chapter.

This folder contains the entry file default.lasso, a folder of included sub-
files, and a folder of images. Determine the platform-specific, fully quali-
fied path to this folder.

For example, if the folder is located at the root of the Web serving folder
on a Windows 2000 machine then the root path would be as follows.

C:\\InetPub\wwwroot\MySolution\

If the folder is located at the root of the Web serving folder on a Mac OS
X machine then the root path would be as follows.

/Library/WebServer/Documents/MySolution/

 3 Create a format file which contains the following [LassoApp_Create] tag.
This tag will build a LassoApp named MySolution.LassoApp stored at the
same location as the root folder defined above. The entry file for the
LassoApp will be default.lasso immediately inside the MySolution folder.

The [LassoApp_Create] tag for Windows 2000 would be as follows.

[LassoApp_Create: -Root='C:\\InetPub\wwwroot\MySolution\',
 -Entry='default.lasso',
 -Result='C:\\InetPub\wwwroot\MySolution.LassoApp\']

The [LassoApp_Create] tag for Mac OS X would be as follows.

[LassoApp_Create: -Root='/Library/WebServer/Documents/MySolution/',
 -Entry='default.lasso',
 -Result=''/Library/WebServer/Documents/MySolution.LassoApp']

2 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 2 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

 5 If any errors are reported, correct them within the format files of the
solution and then reload the format file to build the LassoApp again.

 6 The completed LassoApp should have been created within the Web
serving root and can be loaded through the following URL.

http://www.example.com/MySolution.LassoApp

Tips and Techniques
This section presents a number of tips and techniques which can make
creating professional quality LassoApps easier.

Naming Conventions
LassoApps should be named with the identifier of the company that
created the LassoApp followed by the name of the solution. For example,
if Blue World shipped a phone book LassoApp it could be named
BW_PhoneBook.LassoApp. This ensures that the LassoApp name will not
conflict with LassoApps created by other companies.

Warning: Do not compile LassoApps with the same name as the Blue World
supplied LassoApps (e.g. Startup.LassoApp or Admin.LassoApp). Blue World cannot
provide any warranty or support for customized versions of these LassoApps
or for Lasso Professional 7 installations which make use of customized
versions of these LassoApps.

Run-Time Errors
Errors which occur when a LassoApp is executing are reported the same
way they are for any Lasso format files. It is important to thoroughly test a
LassoApp to ensure that all errors are caught and properly reported to the
site visitor. The [Protect] … [/Protect], [Handle] … [/Handle] and [Fail] tags can be
used to trap for errors and handle them so that the errors are not reported
to the site visitor.

Auto-Building Databases
If a LassoApp requires a database table to store solution-specific data it can
be created automatically by the LassoApp using the [Database_Create…] tags.
Using this technique ensures that a LassoApp can be shipped as a single
file and cuts down on the installation required by the end-user.

2 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 2 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

 • LassoApps can safely create tables in the Site database within any instal-
lation of Lasso Professional 7. This database is the appropriate place to
store both preferences and solution-specific data.

 • Tables created in the Site database should follow a naming conven-
tion which includes the name of the LassoApp in each table name.
For example, a LassoApp named MySolution.LassoApp could create tables
named MySolution_Preferences and MySolution_Data. Using a clear naming
convention ensures that the global administrator knows why individual
tables were created and ensures that different LassoApps do not create
tables with the same name.

 • If necessary, the LassoApp may need to ask for additional permissions in
order to create new tables or to gain access to the tables that have been
created. See the section on Lasso Security below for more information.

 • Always check to make sure that a table does not exist before creating
a new table. A LassoApp should never overwrite data in the Site table
without explicitly ensuring that the administrator wants to do so.

Lasso Security
LassoApps are executed with the permissions of the current site visitor
the same as any Lasso format files. If a LassoApp needs to have access
to databases, tables, or tags that can be secured in Lasso Administration
then it should check that the appropriate permissions are present before
executing.

Tags

If a LassoApp requires access to tags which can be secured in Lasso
Administration such as the [Admin_…] tags, [Database_Create…] tags,
[File_…] tags, [Email_Send] or [Event_Schedule] tags, it should first check to
be sure those tags are allowed by the current user before executing. The
following code will check to be sure the [Email_Send] tag is available and
display an error message if it is not.

[If: (Lasso_TagExists: 'Email_Send') == False]

Error: The tag Email_Send is required in order for this LassoApp to execute.
 Please enable it within Lasso Administration before proceeding.
[/If]

LassoApps can be created even if the tags they require are not present when
they are built and compiled. However, syntax errors will be reported when
the LassoApp is served or executed.

2 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S 2 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

Databases and Tables

If a LassoApp requires access to certain databases or tables it should first
check to be sure they are available to the current user before executing. The
following code will check to be sure the People table of the Contacts data-
base is available.

[Inline: -Database='People', -Table='Contacts', -Show]
 [If: (Error_CurretError) != (Error_NoError) || (Field_Name: -Count) == 0]

Error: The People table of the Contacts database is required
 in order for this LassoApp to execute. Please enable it within Lasso
 Administration before proceeding.
 [/If]
[/Inline]

Groups and Users

The [Admin_…] tags can be used to create new users and assign them to
a group. These tags are essential if Lasso Security is going to be used
to handle multiple user accounts for a LassoApp. Since there is no tag
to create a group and assign it permissions, the documentation for a
LassoApp solution will need to walk a Lasso global administrator through
creating a group with the proper name, assigning permissions, and creating
a group administrator.

Lasso Startup
If code needs to be executed when Lasso Service starts up, then a LassoApp
can be placed within the LassoStartup folder within the Lasso Professional
7 application folder. Usually, a solution that requires startup code would
consist of two LassoApps, one that installs in LassoStartup and a second that
defines the user interface for the solution.

2 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 2 – L A S S O A P P S

3
Chapter 3

Custom Tags

This chapter introduces custom tags and shows how each can be created
using LDML tags.

 • Overview introduces the concepts behind custom tags.

 • Custom Tags describes how to create custom tags including information
about processing parameters and using local variables.

 • Container Tags describes how to create custom container tags.

 • Web Services, Remote Procedure Calls, and SOAP describes how to
create tags that function as remote procedure calls through XML-RPC or
SOAP and how to call those tags from another server.

 • Asynchronous Tags describes how to create custom asynchronous
process tags and background processes.

 • Overloading Tags describes how to use criteria to determine which tag
will execute and how to redefine built-in LDML tags.

 • Libraries describes how to package sets of custom tags for distribution.

Overview
Lasso Professional 7 allows Web developers to extend Lasso Dynamic
Markup Language (LDML) by creating custom tags programmed using
LDML tags.

LDML custom tags have the following features:

 • Custom tags operate just like built-in LDML substitution tags. They can
be used in nested expressions, return data of any data type, and allow
the use of encoding keywords.

 • Custom process, substitution, or container tags can be created.

2 9

E X T E N D I N G L A S S O 7 G U I D E

 • They can be created in any Lasso format file and used instantly.

 • They are written in LDML. No programming experience or knowledge of
a programming language other than LDML is required.

 • They can be collected into libraries of tags which can be loaded into any
format file using the [Library] tag.

 • Custom tags can be used as the target for remote procedure calls
enabling communication between Web servers.

 • Existing tags can be redefined.

 • Tags can be defined with criteria for when they will run. This allows the
same tag name to be used with different parameters and makes it easy to
redefine tags for custom purposes.

 • They can be defined in a format file or library within the
LassoStartup folder, making them available to all pages processed by
Lasso.

 • Asynchronous tags allow operations to be performed in a separate thread
so the current format file is served as fast as possible to the site visitor.

Custom data types can also be created in LDML. See Chapter 4: Custom
Types for more information.

Possible Uses
Custom tags can be used in any of the following ways:

 • To define a new LDML tag that can be called like any built-in LDML tags.

 • To reuse a portion of LDML code several times in the same format file.

 • To create a macro which allows the same HTML code to be reused
several times without being retyped.

 • To structure the logic of complex calculations using local variables and
tag parameters.

 • To redefine and customize existing LDML tags.

 • To defer processing of some code until after the visitor has already
received the format file.

 • To allow remote Web servers to make remote procedure calls to Lasso
through XML-RPC.

Naming Conventions
Custom tags and custom types should be named using a combination of
letters, numbers, and the underscore character, but should never start with
the underscore character. In order to prevent confusion between custom
tags created by different developers, all custom tags should start with an

3 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 3 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

identifier for the author of the custom tag, followed by an underscore, then
the name of the custom tag.

For example, if Blue World was providing a custom tag which wrapped
code with HTML bold tags it might be named [BW_Bold]. All of the tags in
this guide will be defined with an Ex_ prefix meaning Example.

RPC Note: Tags which will be used for XML-RPC are typically named with a
group named followed by a method, e.g. group.method.

Parameter References
All values are passed to and from custom tags by reference. This improves
the speed and efficiency of custom tags by reducing the number of times
that date needs to be copied. Parameeter references make tags that perform
operations on their parameters possible, but require careful programming
in order to avoid unintended side-effects.

Lasso is an object-oriented system and every value in a given format file
can be thought of as an object. Variables are simply references to objects
and it is possible to have multiple references to the same object.

For example, the [Iterate] … [/Iterate] tag accepts two parameters. The first is
an array of values. The second is a variable that will be set as a reference
to each element in the array in turn. The values are not copied out of the
array, but the variable points to each value in turn. If the variable modi-
fies the value then that new value is automatically modified in the array as
well. This code modifies each element in an array to be uppercase.

[Var: 'myArray' = (Array: 'one','two','three')]
[Iterate: $myArray, (Var: 'myItem')]
 [Var: 'myItem' = (String_Uppercase: $myItem)]
[/Iterate]
[Output: $myArray]

➜ Array: (ONE), (TWO), (THREE)

Custom tags work similarly. The following rules defined how values are
passed to and from custom tags.

 • All values passed into a custom tag are passed by reference. References
are stored in local variables with the same name as the parameter and in
a [Params] array.

 • Any modifications of the values in the automatically created local vari-
ables or the [Params] array will result in the original values outside the
custom tag being modified.

 • It is recommended to use a set of uniquely named local variables within
the custom tag so as not to interfere with the parameters passed by refer-

3 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 3 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

ence. The values of parameters can be copied into the local variables
making their modifications safe.

 • Local variables are created new for each custom tag call. References to
local variables do not persist from tag call to tag call.

 • All values are returned from a custom tag by reference. Normally this
will be a reference to a local variable. Since a new set of local variables
are created each time a tag is called the return value is safe.

 • The return value can also be a reference to one of the input parameters
or to a page or global variable. In this case any further modifications to
the return value after the custom tag has returned will be reflected in the
original value.

These rules are illustrated in the many examples that follow.

Custom Tags
Custom tags can be created in LDML using the [Define_Tag] … [/Define_Tag]
tags. The following table details the tags that are used to create custom
tags. These tags are used to process the parameters of the custom tag and to
return values from the custom tag.

Custom substitution and process tags can be created in any format file and
will be available immediately. Custom container tags can only be created
in the LassoStartup folder. See the section on Libraries for information
about how to create libraries of tags, load tags in LassoStartup, and create
tags which can be used by any format file.

It is not possible to create custom command tags using LDML. Command
tags are implemented in data source modules. See the documentation on
LCAPI later in this book for more information.

See Chapter 4: Custom Types for information about creating custom data
types and member tags.

3 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 3 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

Table 1: Tags For Creating Custom Tags

Tag Description

[Define_Tag] Defines a new substitution tag or a new member tag
if used within a type definition. Requires a single
parameter, the name of the tag to be defined. Other
parameters are defined in Table 2: [Define_Tag]
Parameters.

[Local] Sets or retrieves the value of a local variable within a
custom tag definition.

[Local_Defined] Checks to see if a local variable has been defined within
a custom tag definition.

[Locals] Returns a map of all the local variables which have been
defined within a custom tag definition.

[Params] Returns an array of all the parameters which were
passed to the custom tag.

[Params_Up] Returns an array of all the parameters which were
passed to the custom tag which called the current
custom tag.

[Return] Returns a value from a custom tag. No further
processing is performed.

[Run_Children] Process the contents of a custom tag created with the
-Container option.

[Tag_Name] Returns the name of the current tag.

The parameters for the [Define_Tag] … [/Define_Tag] tags are detailed in teh
following table. The type of tag created, required parameters, return data
type, and more are all specified in the opening [Define_Tag] tag.

3 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 3 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

Table 2: [Define_Tag] Parameters

Tag Description

'Tag Name' The name of the tag to be defined. Required.

-Async Specifies that the tag should be run asynchronously.
Asynchronous tags cannot return a value. Optional.

-Container Specifies that the tag is a container tag. [Run_Children]
can be used if this parameter is specified. Optional. See
also -Looping for looping container tags.

-Criteria Specifies the criteria under which the tag will run. If the
criteria is not met then the next tag in the calling chain
will be used instead. Optional.

-Description A brief description of the tag. Can include calling
instructions, author of the tag, etc. Optional.

-Looping Specifies that the tag is a looping container tag. [Run_
Children] can be used if this parameter is specified.
Optional. See also -Container for non-looping container
tags.

-Optional Names an optional parameter of the tag. Optional.

-Priority Requires the value 'High', 'Low', or 'Replace'. Specifies
whether the tag should replace an existing tag with the
same name or be placed before or after existing tags in
the calling chain. Optional.

-Privileged Specifies that the custom should run with the privileges
of the current user rather than with the privileges of the
user who ultimately calls the custom tag.

-Required Names a required parameter of the tag. If the parameter
is not specified then an error will result. Optional.

-ReturnType Specifies the type of the return value of the tag. If
a value of different type is returned then an error is
generated.

-RPC Specifies that the tag should be made available to
remote Web servers as a remote procedure call. The tag
can then be accessed through RPC.LassoApp.

-SOAP Specifies that the tag should be made available to
remote Web servers as a SOAP operation.The tag
can then be accessed through RPC.LassoApp. The
-Type and -ReturnType tags must be used to specify
parameter and return types.

-Type Specifies the type for the preceding -Required or
-Optional parameter. If the tag is called with a parameter
that is not of the proper type then an error is generated.

3 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 3 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

See the section on Libraries for information about how to create libraries
of tags, load tags in LassoStartup, and create tags which can be used by any
format file.

It is not possible to create custom command tags using LDML. See
Chapter 4: Custom Types for information about creating custom data
types and member tags.

Substitution Tags
A new substitution tag is defined using the [Define_Tag] … [/Define_Tag]
container tag within an enclosed [Return] tag that defines the value of the
tag. The opening [Define_Tag] tag requires the name of the new substitution
tag to be defined. All of the LDML code between the two tags is stored and
is executed each time the tag is called.

In the following example, a tag [Ex_EmailAddress] is defined which returns an
example email address for John Doe, johndoe@example.com.

[Define_Tag: 'Ex_EmailAddress']
 [Return: 'johndoe@example.com']
[/Define_Tag]

This tag can be called like any LDML substitution tag within the format file
where the tag is defined. The following code calls this tag twice, once to
provide the address for the HTML anchor tag and a second time to provide
the text of the anchor.

 [Ex_EmailAddress]

➜ johndoe@example.com

Process Tags
A new process tag is defined using the [Define_Tag] … [/Define_Tag] container
tags. The opening [Define_Tag] tag requires the name of the new process tag
to be defined. All of the LDML code between the two tags is stored and
is executed each time the tag is called. Since process tags do not return a
value, the body of the tag should not contain a [Return] tag.

In the following example, a tag [Ex_SendEmail] is defined which sends an
email to an example email address for John Doe, johndoe@example.com. The
tag is defined within a LassoScript.

<?LassoScript
 Define_Tag: 'Ex_SendEmail';
 Email_Send: -Host='mail.example.com',
 -To='johndoe@example.com',
 -From='lasso@example.com',

3 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 3 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

 -Subject='Sample Email',
 -Body='This email was sent from a custom tag.';
 /Define_Tag;
?>

This tag can be called like any LDML process tag within the format file
where the tag is defined. The following code calls this [Ex_SendEmail] so an
email will be sent to johndoe@example.com each time the page with this code
is served by Lasso.

[Ex_SendEmail]

Privileged Tags
Custom tags normally run with the permissions of the user that calls the
custom tag. Using the -Privileged keyword a custom tag will instead run with
the permissions of the user who defined the custom tag.

This allows the execution of privileged actions to be written into custom
tags. The privileged action can be performed without opening up general
permission for performing similar actions to the end-users.

For example, a custom tag which is defined in LassoStartup that has the
-Privileged keyword will always execute as the global administrator of the
machine. Priviliged custom tags can then be used to modify internal secu-
rity settings or perform other actions that require global administrator
permission.

Returning Values
In order for a custom tag to return a value it needs to use the [Return] tag.
The parameter for the [Return] tag will be returned as the value of the
custom tag and no further processing will be performed. A value of any
type can be returned using the [Return] tag including simple decimal or
integer numbers, strings, complex maps and arrays, or even custom types.

Custom tags can also return values by setting variables. See the section on
Page Variables that follows for additional details.

The following custom tag returns a string that informs the site
visitor of what day it is. If the current day is January 1st then
Happy New Year! is returned. Note that if the conditional returns True then
the [Return: 'Happy New Year!'] tag is executed and the tag is exited without
executing the second [Return] tag that follows.

3 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 3 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

[Define_Tag: 'Ex_Greeting']
 [If: (Date_GetDay) == 1 && (Date_GetMonth) == 1]
 [Return: 'Happy New Year!']
 [/If]
 [Return: 'The date is ' + (Server_Date: -Long) + '.']
[/Define_Tag]

When executed on any day other than the 1st of January this tag returns
the current date.

[Ex_Greeting]

➜ The date is August 27, 2001.

Encoding
Encoding is handled automatically by Lasso when values are returned from
a custom tag. Encoding follows the same rules as for built-in substitution
tags. These rules are summarized below.

 • If no encoding keyword is specified and the custom tag returns a string
value then the tag follows the same rules as built-in substitution tags.
The string value will be HTML encoded if it is output to the format file
or will have no encoding applied if the tag is used as a sub-tag or in an
expression.

The following custom tag [Ex_String] would have HTML encoding applied.

[Ex_String]

➜ Bold Text

However, if the same tag is used as a sub-tag, no encoding is applied.

[Variable: 'myString'=(Ex_String)]
[Variable: 'myString', -EncodeNone]

➜ Bold Text

Note: If the tag is used within [Encode_Set] … [/Encode_Set] tags then the
default encoding which is set in the opening [Encode_Set] tag will be used
instead of -EncodeHTML when the tag’s value is output directly to a format
file.

 • If no encoding keyword is specified and the custom tag returns any data
type other than string then no encoding is applied and the specified data
type is returned.

The following custom tag [Ex_Array] has no encoding applied since it
returns an array.

[Ex_Array]

➜ (Array: (Bold Text))

3 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 3 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

Note: Even if the tag is used within [Encode_Set] … [/Encode_Set] tag, no
encoding will by applied by default unless an explicit encoding keyword is
specified.

 • If an explicit encoding keyword other than -EncodeNone is specified then
the return value from the tag is converted to a string and the specified
encoding is applied. Use of an explicit encoding keyword guarantees that
the value from the tag will be of data type string.

The following custom tag [Ex_Array] has explicit HTML encoding applied.

[Ex_Array: -EncodeHTML]

➜ (Array: (Bold Text))

Note: The encoding keyword -EncodeNone instructs Lasso that no encoding
is desired for a custom tag. For custom tags which return any data type
other than string, -EncodeNone is equivalent to not specifying an encoding
keyword.

Parameters
Custom tags can accept any mix of named or unnamed parameters. These
parameters can be named using the -Required and -Optional parameters in
the opening [Define_Tag] tag. Each parameter is automatically defined as a
local variable within the tag. If a required parameter is omitted from a tag
call then an error is generated. If an optional parameter is omitted then the
local variable corresponding to that parameter will not be defined.

 • Named Parameters – The -Required and -Optional parameters for a
tag can be listed in any order. Each -Required parameter must have
a matching keyword/value parameter in the parameters for the tag.
Keywords must be preceded by a hyphen.

The following example defines a tag [Ex_Note] which accepts two param-
eters. -Message is required and is the message to be displayed. -Font is an
optional parameter that changes the font of the displayed message if it is
specified, otherwise Arial is used.

[Define_Tag: 'Ex_Note', -Required='Message', -Optional='Font']
 [If: (Local_Defined: 'Font') == False]
 [Local: 'Font' = 'Arial']
 [/If]
 [Return: ' ' + #Message + ' ']
[/Define_Tag]

The parameters can be used in any order when the tag is called, but the
-Message parameter must be present.

[Ex_Note: -Font='Helvetica', -Message='Hello World', -EncodeNone]

3 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 3 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

➜ Hello World

[Ex_Note: -Message="Hello World', -EncodeNone]

➜ Hello World

Note: Extra named parameters passed into a custom tag will also create
local variables automatically even if the -Required and -Optional parameters are
not used.

 • Unnamed Parameters – The -Required parameters for a tag should
be listed in the order they will be specified in the tag followed by any
optional parameters that may be specified. Each unnamed parameter of
the tag will be assigned in order to the -Required or -Optional parameter in
the corresponding position.

The tag [Ex_Note] defined above accepts two parameters. The first param-
eter is required and is assigned the name Message. The second parameter
is optional and is assigned the name Font if specified.

When the tag is called at least one parameter must be specified. If a
second parameter is specified it is used as the font for the message,
otherwise the default font is used..

[Ex_Note: 'Hello World', 'Helvetica', -EncodeNone]

➜ Hello World

[Ex_Note: 'Hello World', -EncodeNone]

➜ Hello World

 • Combination Parameters – A combination of named an unnamed
parameters can be used. First, all keyword/value parameters are
assigned to the -Required or -Optional parameters specified in the opening
[Define_Tag] tag. Then, any remaining parameters are assigned in order
to any -Required or -Optional parameters that have not yet been assigned
values.

For example, the tag [Ex_Note] defined above is called with one unnamed
parameter and one keyword/value -Font parameter. First, the -Font param-
eter is assigned to the -Optional font parameter. Then, the unnamed
parameter is assigned to the -Required message parameter.

[Ex_Note: 'Hello World', -Font='Helvetica', -EncodeNone]

➜ Hello World

 • Parameters Types – The type of each parameter can be specified by
including a -Type parameter immediately after the -Required or -Optional
parameter. When the tag is called if the specified parameter is not of the
proper type then an error will be generated.

3 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 3 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

The [Ex_Note] tag can be redefined to require that the -Message parameter
be a string.

[Define_Tag: 'Ex_Note', -Required='Message', -Type='String', -Optional='Font']
 [If: (Local_Defined: 'Font') == False]
 [Local: 'Font' = 'Arial']
 [/If]
 [Return: ' ' + #Message + ' ']
[/Define_Tag]

Now if the tag is called with a decimal value for the -Message parameter
an error will be generated..

[Ex_Note: -Message=99, -EncodeNone]

➜ Syntax Error

Any tag defined with -Required and -Optional parameters can always be called
with a combination of named and unnamed parameters. Documentation
for custom tags should always specify how a tag should be called.

Parameters Array
If greater control is required over the parameters which are passed into a
tag then the [Params] array can be inspected directly. This array contains one
element for each parameter that is passed into a custom tag.

 • Simple Parameters – Simple parameters are included as single elements
within the array. Each parameter has the same data type as the literal or
variable which was passed to the tag.

 • Name/Value Parameters – Name/Value parameters are included as
elements of the data type pair within the array. Each part of the pair has
the same data type as the literal or variable which was passed to the tag.

 • Keyword Parameters – Keyword parameters are included as string
parameters. They should be distinguished by requiring that all keyword
names start with a leading hyphen.

 • Keyword/Value Parameters – Keyword/Value parameters are included
as a pair with a string as the first element and the value as the second
element. They should be distinguished by requiring that all keyword
names start with a leading hyphen.

 • Encoding Keywords – Encoding keywords are handled automatically
by Lasso. They are not passed to custom tags within the [Params] array.
Custom tags do not need to do anything special to take advantage of
encoding nor is there any way to disable automatic encoding of returned
string values.

The [Params_Up] tag is a special purpose tag that allows inspection of the
[Params] array from the custom tag which called the current tag. This tag can

4 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 4 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

only be used if the current tag was called from within a custom tag and can
be used to create tags that change their values based on the parameters to
the calling tags.

To inspect the parameters of a custom tag:

The [Params] array provides access to all the parameters of the current tag.
The following example shows a custom tag [Ex_Echo] that outputs infor-
mation about all the parameters that were passed to the tag by looping
through the [Params] array.

[Define_Tag: 'Ex_Echo']
 [Local: 'Output' = '']
 [Loop: (Params)->Size]
 [Local: 'Temp' = (Params)->(Get: (Loop_Count))]
 [If: #Temp->Type == 'pair']
 [#Output += '
Pair: ']
 [#Output += '
 ' + #Temp->First->Type + ': ' + (#Temp->First)]
 [#Output += '
 ' + #Temp->First->Type + ': ' + (#Temp->Second)]
 [Else]
 [#Output += '
' + #Temp->Type + ': ' + (#Temp)]
 [/If]
 [/Loop]
 [If: (#Output == '')]
 [#Output = '
No Parameters']
 [/If]
 [Return: #Output]
[/Define_Tag]

When this tag is called with different parameters the following output is
created. Note that keywords are simply strings that start with a hyphen and
that the -EncodeNone encoding keyword is not represented in the output.

[Ex_Echo: 'One', 'Two='Three', -Four, -Five='Six', -Seven=8, -Nine=1.0, -EncodeNone]

➜ String: One
Pair:
 String: Two
 String: Three
String: -Four
Pair:
 String: -Five
 String: Six
Pair:
 String: -Seven
 Integer: 8
Pair:
 String -Nine
 Decimal: 1.0

4 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 4 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

To get the value of a keyword/value parameter:

The following custom tag uses the [Params->Find] tag to retrieve several
named keyword/value parameters from the [Params] array. The tag
[Ex_Greeting] accepts two parameters: -First which should have the first name
of a person as its value and -Last which should have the last name of its
person as its value. It returns a greeting to that person.

<?LassoScript
 Define_Tag: 'Ex_Greeting';
 Local: 'First' = Params->(Find: '-First')->(Get: 1);
 Local: 'Last' = Params->(Find: '-Last')->(Get: 1);
 Return: 'Dear ' + #First + ' ' + #Last;
 /Define_Tag;
?>

When the tag is called it parses the two defined parameters and ignores all
others.

[Ex_Greeting: -First='John', -Last='Doe'] ➜ Dear John Doe

[Ex_Greeting: -First='John', -Last='Doe', -Title='Mr.'] ➜ Dear John Doe

To get the value of all unnamed parameters:

The [Params] array provides access to all the parameters of the current tag.
The following example shows a custom tag [Ex_Concatenate] that concat-
enates the value of all simple, unnamed parameters together and ignores
all name/value and keyword/value parameters.

[Define_Tag: 'Ex_Concatenate']
 [Local: 'Output' = '']
 [Loop: (Params)->Size]
 [Local: 'Temp' = (Params)->(Get: (Loop_Count))]
 [If: #Temp->Type != 'pair']
 [#Output += #Temp]
 [/If]
 [/Loop]
 [Return: #Output]
[/Define_Tag]

When this tag is called with different parameters the following output
is created. Note that any named parameters are ignored and that the
-EncodeNone encoding keyword is not represented in the output.

[Ex_Echo: 'One', 'Two='Three', -Four, -Five='Six', -Seven=8, -Nine=1.0, -EncodeNone]

➜ One-Four

To get the parameters from the calling tag:

The [Params_Up] tag provides access to the parameters of the calling tag. The
following tag [Ex_UnnamedParams] returns an array of all unnamed param-

4 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 4 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

eters from the calling tag. This tag could be used to filter the [Params] array
so only unnamed parameters remained.

[Define_Tag: 'Ex_UnnamedParams']
 [Local: 'Output' = (Array)]
 [Loop: (Params_Up)->Size]
 [Local: 'Temp' = (Params_Up)->(Get: (Loop_Count))]
 [If: #Temp->Type != 'pair']
 [#Output->(Insert: #Temp)]
 [/If]
 [/Loop]
 [Return: #Output]
[/Define_Tag]

The [Ex_UnnamedParams] tag can now be used to rewrite the [Ex_Concatenate]
custom tag by looping through the [Ex_UnnamedParams] array rather than
through the [Params] array.

[Define_Tag: 'Ex_Concatenate']
 [Local: 'Output' = '']
 [Local: 'Unnamed_Params' = (Ex_UnnamedParams)]
 [Loop: (#Unnamed_Params)->Size]
 [#Output += (#Unnamed_Params)->(Get: (Loop_Count))]
 [/Loop]
 [Return: #Output]
[/Define_Tag]

When this tag is called with different parameters the following output
is created. Note that any named parameters are ignored and that the
-EncodeNone encoding keyword is not represented in the output.

[Ex_Echo: 'One', 'Two='Three', -Four, -Five='Six', -Seven=8, -Nine=1.0, -EncodeNone]

➜ One-Four

Page Variables
Custom tags can set and retrieve the values of variables which are defined
in the current format file. This provides a method of passing additional
parameters to custom tags by setting pre-defined variables and a method of
passing multiple values out of a custom tag.

Any use of page variables should be considered carefully. Local variables,
which are defined in the following section, are usually sufficient for storing
data required while executing a tag. If data needs to be stored between
executions of a tag then it might be more efficient to create a custom data
type. See the following section on Custom Types for more information.

If a custom tag must store values in page variables it should precede all
variable names with the full name of the custom tag followed by an under-

4 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 4 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

score. For example, the custom tag [Ex_Concatenate] would create variables
named Ex_Concatenate_Value, Ex_Concatenate_Output, etc.

Local Variables
Each custom tag can create and manipulate its own set of local variables.
These variables are separate from the page variables and are deleted when
the custom tag returns. Using local variables ensures that the custom tag
does not alter any variables which other custom tags or the page developer
is relying on having a certain value.

For example, many developers will use the variable Temp to store tempo-
rary values. If a page developer is using the variable Temp and then calls a
custom tag which also sets the variable Temp, then the value of the variable
will be different than expected.

The solution is for the custom tag author to use a local variable named
Temp. The local variable does not interfere with the page variable of the
same name and is automatically deleted when the custom tag returns. In
the following example, a custom tag returns the sum of its parameters,
storing the calculated value in Temp.

<?LassoScript
 Define_Tag: 'Ex_Sum';
 Local: 'Temp'=0;
 Loop: (Params)->Size;
 Local: 'Temp'=(Local: 'Temp') + (Params)->(Get: Loop_Count);
 /Loop;
 Return: #Temp;
 /Define_Tag;
?>

The final reference to the local variable temp is as #Temp. The # symbol
works like the $ symbol for page variables, allowing the variable value to
be returned using shorthand syntax.

When this tag is called, it does not interfere with the page variable named
Temp.

[Variable: 'Temp' = 'Important value:']
[Variable: 'Sum' = (Ex_Sum: 1, 2, 3, 4, 5)]
[Output: '
' + $Temp + ' ' + $Sum + '.', -EncodeNone]

➜
Important value: 15.

Parameter and Return Types
The -Type and -ReturnType parameters can be used to check that the param-
eters which are being passed to the tag are of the proper type before the tag

4 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 4 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

is executed and that the return value of the tag is the proper type when the
tag completes.

The -Type parameter is placed immediately after each -Required or -Optional
parameter. The corresponding parameter must be of the specified type
when the tag is executed or a syntax error is generated. Using these tags
reduces the amount of double checking of types that is required within the
body of the tag.

The -ReturnType parameter specifies the type that the returned value of the
tag must be. If the tag attempts to return a value of a different type then
an error is generated. Using this tag is useful as a double check for a tag
that is always expected to return a certain data type. It makes enforcement
of the return type explicit rather than relying on the custom tag author to
ensure that the return type is always proper.

[Define_Tag: 'Ex_Bold', -Required='theString', -Type='String', -ReturnType='String']
 [Return: '' + #theString + '']
[/Define_Tag]

If the [Ex_Bold] tag is called with a number then a syntax error will be
returned. The following example first shows a successful call to the tag,
then an unsuccessful call.

[Ex_Bold: 'Bold Text'] ➜ Bold Text

[Ex_Bold: 123.456] ➜ Syntax Error

Criteria
The -Criteria parameter allows custom tags to check certain conditions
before any code in the tag is executed. Usually this is used to confirm that
the appropriate parameters have been passed to the custom tag. If the
criteria fails then a syntax error will be generated.

The -Criteria parameter requires a conditional expression. If the evaluated
expression returns False then the tag execution is halted and an error is
returned.

The code within the -Criteria are executed as if they were specified within
the body of the [Define_Tag] … [/Define_Tag]. Locals can be used to reference
-Required or -Optional parameters and the [Params] array can be inspected.
-Criteria can also inspect page variables.

To use criteria to check the parameters of a custom tag:

Specify the -Criteria parameter in the opening [Define_Tag] tag. If the condi-
tion in the criteria fails then the tag will not be executed. The following
code checks to be sure that the tag’s required parameter is a string.

4 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 4 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

[Define_Tag: 'Ex_Bold', -Required='theString', -Criteria=(#theString->Type == 'string')]
 [Return: '' + #theString + '']
[/Define_Tag]

If the [Ex_Bold] tag is called with a number then a syntax error will be
returned. The following example first shows a successful call to the tag,
then an unsuccessful call.

[Ex_Bold: 'Bold Text'] ➜ Bold Text

[Ex_Bold: 123.456] ➜ Syntax Error

Error Control
Custom tags should use the -Required, -Optional, -Type, -ReturnType, and -Criteria
parameters to ensure that the parameters of the tag are of the proper type
and that the return value is of the proper type. These tags ensure that Lasso
developers are alerted of errors when the page is first executed, rather than
encountering obscure runtime errors later.

Errors can be returned from custom tags using the [Error_SetErrorMessage]
and [Error_SetErrorCode] tags. A custom tag which is explicitly returning an
error code should always return [Error_NoError] if no error occured or an
explicit error message otherwise.

Container Tags
A container tag can be created by specifying either the -Container or -Looping
keyword within the opening [Define_Tag] tag. When the tag is used both
an opening and a closing tag must be specified or an error will occur. The
return value of the tag replaces the entire container tag. The contents of the
container tag can be accessed using the [Run_Children] tag.

If the -Looping keyword is used the [Loop_Count] will be automatically
changed when the custom tag is called. If the -Container keyword is used
then the [Loop_Count] will not be modified by the container tag. This
distinction allows both looping and simple container tags to be created.

Note: The output of a container tag is not encoded. This allows HTML to be
output from container tags without requiring an -EncodeNone tag.

To create a simple container tag:

The following example creates a simple container tag [Ex_Font] … [/Ex_Font]
that wraps its parameters with an HTML tag. The tag takes three
optional parameters -Face, -Size, and -Color which correspond to the param-
eters of the HTML tag.

4 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 4 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

[Define_Tag: 'Ex_Font', -Container,
 -Optional='Face', -Optional='Size', -Optional='Color']
 [If: !(Local_Defined: 'Face')][Local: 'Face' = 'Verdana']
 [If: !(Local_Defined: 'Size')][Local: 'Size'= 1]
 [If: !(Local_Defined: 'Color')][Local: 'Color' = 'black']

 [Return: ' ' +
 (Run_Children) + ' ']
[/Define_Tag]

A call to this tag appears like this. The -Face and -Color of the output are
specified, but the -Size is left to the default of 1.

[Ex_Font: -Face='Helvetica', -Color='red'] My Message [/Ex_Font]

➜ My Message

To use the contents of the container tag multiple times:

The following example creates a tag [Ex_Link] that creates a pair of HTML
anchor tags with the contents of the container used as both the URL to
be followed and the text of the link. This could be used to automatically
create hyperlinks out of URLs contained in text. The tag does not require
any parameters.

[Define_Tag: 'Ex_Link', -Container]
 [Return: ' ' + (Run_Children) + ' ']
[/Define_Tag]

A call to this tag appears like this. The specified URL is included in the
results twice.

[Ex_Link] http://www.blueworld.com [/Ex_Link]

➜ http://www.blueworld.com

To create a looping container tag:

The following example creates a tag that loops ten times repeating its
contents. The -Looping keyword is used in the [Define_Tag] tag to indicate that
this is a looping tag rather than a simple container.

[Define_Tag: 'Ex_Loop10', -Looping]
 [Local: #Output = '']
 [Loop: 10]
 [#Output += Run_Children]
 [/Loop]
 [Return: #Output]
[/Define_Tag]

A call to this tag appears like this. The specified contents of the tag is
repeated ten times with the [Loop_Count] updated each time..

[Ex_Loop10]
This is loop [Loop_Count]. [/Ex_Loop10]

4 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 4 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

➜
This is loop 1.

This is loop 2.
…

This is loop 10.

If the -Container keyword rather than the -Looping keyword had been used
the tag still would have repeated its contents ten times, but the [Loop_Count]
would have returned the same value for each repetition.

Web Services, Remote Procedure
Calls, and SOAP
Lasso supports remote procedure calls through the XML-RPC and Simple
Object Access Protocol (SOAP) standards. Both types of remote procedure
calls allow one server on the Internet to call a function that is located on
another server. The parameters of the function call and the results of the
function call are transmitted between the servers using XML.

Custom tags can be automatically made available to remote servers by
specifying the -RPC or -SOAP parameter when the tag is created. Any tag
which is specified as a remote procedure call will be accessible through
RPC.LassoApp which is located in the LassoStartup folder. The LassoApp
handles all of the translation of parameters and the return value to and
from XML.

SOAP tags additionally require that each required and optional parameter
be assigned a type using the -Type parameter and that the return type of the
tag be specified using the -ReturnType parameter. The parameter and return
types are used to automatically translate incoming SOAP requests into
appropriate Lasso data types and to properly describe the return value.

When called, remote procedure call tags will be executed using the permis-
sions of the Anonymous user. If the tags require additional permissions a
username and password must be written into an [Inline] … [/Inline] container
within the tag or the tag must accept a username and password as param-
eters.

Tags are called within the context of a page load of the RPC.LassoApp. Tags
can access global variables, but will not be able to access any page vari-
ables from the page where they were defined. RPC and SOAP tags function
essentially as asynchronous tags described elsewhere in this chapter.

Remote procedure calls are well suited to a number of different applica-
tions. See Chapter 29: XML in the Lasso 7 Language Guide for more infor-
mation. Some possible applications of remote procedure calls include:

4 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 4 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

 • Serving news stories to remote servers. For example, creating a system
where other Web sites can show the latest news stories automatically.

 • Performing administrative tasks on remote servers. Tags can be created
which perform periodic administrative tasks and then those tasks can be
triggered using XML-RPC or SOAP calls.

 • Integrating with remote systems that communicate via XML-RPC or
SOAP. Both Windows 2000 and Mac OS X have systems for sending
XML-RPC or SOAP calls and processing the results.

To create a remote procedure call tag:

Use the -RPC parameter in the opening [Define_Tag] tag. In the following
example a method Example.Fortune is created which returns a random
message each time it is called. Since the tag will not have access to page
variables the array of messages is created inside the tag.

[Define_Tag: 'Example.Fortune', -RPC]
 [Local: 'Messages' = (Array: 'You will go on a long boat trip.',
 'You will meet a long lost friend',
 'You will strike it rich in the stock market')]
 [Local: 'Index' = (Math_Random: -Min=1, -Max=(#Messages->Size + 1))]
 [Return: #Messages->(Get: #Index)]
[/Define_Tag]

The tag can be called from a remote Lasso 7 server using the [XML-RPC]
tags. A call to the Example.Fortune remote procedure on the server at
http://www.example.com/ would look like as follows.

[Variable: 'Result' = XML_RPC->(Call: -Method='Example.Fortune',
 -URI='http://www.example.com/RPC.LassoApp')]
[Variable: 'Result']

The result will be one of the messages from the Messages array.

➜ You will meet a long lost friend.

To create a remote proecedure call tag with complex data types:

The previous example demonstrated how a remote procedure call tag could
be created and called using a simple tag which accepted no parameters
and returned a string result. Remote procedure calls can be used with any
number of parameters including any of Lasso’s built-in data types such as
array, map, boolean, integer, decimal, etc.

In the following example a method Example.TopStories is created that returns
an array of formatted URLs for the top stories from a Web site. An optional
-Count parameter allows the number of top stories to be returned to be
specified. The top stories are found by finding all records in the Stories table
of the News database and sorting the results first by Priority then by DateTime.

4 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 4 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

[Define_Tag: 'Example.TopStories', -Optional='Count']
 [Local: 'Results' = (Array)]
 [If: !(Local_Defined: 'Coun't)]
 [Local: 'Count' = 10]
 [/If]
 [Inline: -Findall,
 -Database='News',
 -Table='Stories',
 -SortField='Priority', -SortOrder='Descending',
 -SortField='DateTime', -SortOrder='Descending',
 -MaxRecords=#Count]

 [Records]
 [#Results->(Insert: '' + (Field: 'Headline') + '')]
 [/Records]

 [Return: #Results]
[/Define_Tag]

The tag can be called from a remote Lasso 7 server using the [XML-RPC]
tags. A call to the Example.TopStories remote procedure on the server at
http://www.example.com/ which requests the top 3 stories would look like as
follows.

[Variable: 'Result' = (XML_RPC: (Array: -Count=3))->(Call:
 -URI='http://www.example.com',
 -Method='Example.TopStories')]
[Variable: 'Result']

The result will be an array of the top three stories from the database each
formatted as a URL linking to the page which contains the story.

➜ (Array: (Annual Results),
 (Shareholder Meeting),
 (Company Picnic!))

To create a SOAP tag:

Use the -SOAP parameter in the opening [Define_Tag] tag. In the
following example a method Example.Repeat is created which returns
baseString repeated multiplier number of times. Both -Required parameters are
followed by -Type parameters and the -ReturnType for the tag is specified.

[Define_Tag: 'Example.Repeat', -SOAP,
 -Required='baseString', -Type='string',
 -Required='multiplier', -Type='integer,
 -ReturnType='string']
 [Return: (#baseString * #multiplier)]
[/Define_Tag]

The tag can be called from a remote server server that supports SOAP.

5 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 5 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

Asynchronous Tags
Asynchronous tags are LDML process tags that are executed in a separate
thread from the main portion of the page. Lasso does not have to wait
for completion of an asynchronous tag before processing and serving the
remainder of the format file in which the tag is called.

Since asynchronous tags usually finish executing after a page has been
served to the site visitor they cannot return values or modify the page vari-
ables for the format file from which they were called.

Asynchronous tags are usually used in one of the following situations:

 • To perform database actions which are a side effect of loading a format
file, but the results of which are not required for serving the file to the
current site visitor.

 • To create a background process that periodically checks for certain condi-
tions and performs a database action or sends an email if that condition
is met.

Asynchronous tags can be created using the [Define_Tag] … [/Define_Tag] tags.
Newly defined tags will be available below the point where they are
defined in a format file. They can be used as many times as needed.

Note: There is no control over when an asynchronous tag will be executed.
Depending on how busy the server is the tag may be executed immediately
or may be delayed until after the current page is served to the client. The
order of execution of asynchronous tags should never be assumed.

Defining Tags
A new asynchronous tag is defined using the [Define_Tag] … [/Define_Tag]
container tags. The opening [Define_Tag] tag requires the name of the new
substitution tag to be defined and the second parameter should be -Async
which specifies that the tag should be called asynchronously. All of the
LDML code between the two tags is stored and is executed each time the
tag is called.

In the following example, a tag [Ex_SendEmail] is defined which sends an
email to an example email address for John Doe, johndoe@example.com.
The tag is defined within a LassoScript and the second parameter is set to
True to ensure that the tag will be called asynchronously.

<?LassoScript
 Define_Tag: 'Ex_SendEmail', -Async;
 Email_Send: -Host='mail.example.com',
 -To='johndoe@example.com',
 -From='lasso@example.com',

5 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 5 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

 -Subject='Sample Email',
 -Body='This email was sent from a custom tag.';
 /Define_Tag;
?>

This tag can be called like any LDML process tag within the format file
where the tag is defined. The following code calls this [Ex_SendEmail] so an
email will be sent to johndoe@example.com each time the page with this code
is loaded in a Web browser.

[Ex_SendEmail]

The code immediately following this tag is executed immediately without
waiting for the tag to complete. The email will be queued for sending
shortly after the page is finished executing and is served to the client.

Page Variables
None of the page variables which are defined when an asynchronous tag is
called are available within the asynchronous tag. The only variables which
are available to a custom asynchrnous tag are server-wide global variables.
Any values which are going to be used by an asynchronous tag should be
set using the [Global] tag.

Calling Custom Tags
Only custom tags which are defined in the LassoStartup folder can be called
by an asynchronous tag. Tags which are defined in the same format file as
the asynchronous tag definition or call cannot be called by an asynchro-
nous tag.

Custom tags can be defined within the body of an asynchronous tag if
needed. These custom tags will be deleted as soon as the asynchronous tag
finishes executing.

Background Processes
Asynchronous tags can be used to create background processes that
continue to run independent of the visitors to a Lasso-powered Web site.
An asynchronous tag will continue executing until the end of the tag body
or a [Return] tag is reached. By putting an asynchronous tag into an infinite
loop it will continue to run until Lasso Service is quit.

Warning: There is no way to stop an asynchronous tag from executing once
it is started. Care should be taken to ensure that any background processes
which are implemented with asynchronous tags are well behaved.

5 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 5 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

The [Sleep] tag can be used to pause execution of an asynchronous tag for
a number of milliseconds. The asynchronous tag consumes virtually no
resources while it is paused.

Most background processes are started by a format file within the
LassoStartup folder. This ensures that the background process runs from
when Lasso Service starts up until it is quit.

To create a background process:

Place the following code in a format file within the LassoStartup folder. This
code will be executed the next time Lasso Service is started.

Two global variables are created. Since these variables are created in
the LassoStartup folder they can be read and set from any page which is
executed by Lasso. The first global variable Ex_Background_Pause can be used
to pause the background task if it is set to True. The second global variable
Ex_Background_Kill can be used to kill the background task if it is set to True.

[Global: 'Ex_Background_Pause' = False]
[Global: 'Ex_Background_Kill' = False]

These variables are not required to create a background task, but are useful
for debugging and to kill a runaway task. By setting the appropriate vari-
able to True in any format file the task can be paused or killed.

The task itself is defined in a [Define_Tag] … [/Define_Tag]. Notice that
the naming convention has the name of the tag which defines the
task Ex_Background as the first part of the name of the variables asso-
ciated with the task. The task contains a while loop that checks
the Ex_Background_Kill variable and a conditional that checks the
Ex_Background_Pause variable. After each execution, the tag pauses for
15 seconds (15000 milliseconds).

[Define_Tag: 'Ex_Background', True]
 [While: (Variable: 'Ex_BackGround_Kill) != True]
 [If: (Variable: 'Ex_Background_Pause') != True)]
 … Perform Task …
 [/If]
 [Sleep: 15000]
 [/While]
[/Define_Tag]

The task is started by calling the [Ex_Background] tag immediately after it is
defined. The task starts executing and does not stop until Lasso Service is
quit or the variable Ex_Background_Kill is set to True.

[Ex_Background]

It is important not to call the [Ex_Background] tag more than once or else
multiple instances of the background task will be created.

5 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 5 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

Background tasks can be made more robust by:

 • Adding a variable which is set when the background task is executed so
it cannot be executed again.

 • Adding variables which control how long the background task sleeps.

 • Outputting to the console window with [Log: -Window] … [/Log] or to a log
file in order to track the progress of a background task.

Overloading Tags
Lasso provides the ability to create several versions of a tag each with a
criteria that dictates when it should be called. Tag overloading makes
several advanced techniques possible.

 • Data Types – Different tags can be created which operate only when
their parameters are of a certain data type. The logic of each tag can be
made simpler by removing laborious [Select] … [Case] … [/Select] state-
ments.

 • Redefine Existing Tags – Existing tags can be redefined with a specified
criteria. The new version of the tag will be called only when the criteria
is met, but the old version of the tag is still available. The source code for
the original tag is not needed and even built-in tags can be redefined.

 • Debug Tags – Tags can be created which output debugging information
when a page variable is set appropriately. A page can be debugged and
then all status messages can be suppressed by resetting the variable.

When a given tag is called, Lasso will check each tag with the same name
in turn until the criteria of one of the tags is met. A tag with no criteria will
always execute. All built-in tags will always execute when called.

The -Priority and -Criteria parameters of the [Define_Tag] tag will be discussed
followed by examples of how to use those parameters to create systems of
overloaded custom tags.

Important: In Lasso Professional 7 many built-in tags which comprise the
core of the language can not be overloaded. See the LDML Reference for a
complete list of tags that cannot be overloaded.

Priority
The placement of each custom tag in the list of tags in the calling chain
can be specified using the -Priority parameter of the [Define_Tag] tag. The
following three priorities are available.

5 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 5 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

 • Replace – The tag will replace any tags of the same name. Only the
newly defined tag will be called when a tag of the given name is
called. This allows existing tags to be completely redefined. Aliases and
synonyms of the replaced tag will not be redefined.

 • High – The tag will be placed at the front of the calling chain. The
criteria of this tag will be checked first to see if it can be called. If
another tag is defined with high priority after this tag then that tag will
actually be checked first.

 • Low – The tag will be placed at the end of the calling chain. The criteria
of this tag will be checked only after all other tags have been checked.
If another tag is defined with low priority after this tag then that tag
will actually be checked last. If the tag is placed after a built-in tag or a
custom tag with no criteria then the tag will never be called.

Note: By default, tags have no priority. They must have unique names and
will be the sole tag in the calling chain.

To replace a built-in tag:

A built-in tag can be replaced by creating a new tag that has a -Priority of
Replace. This technique can be used to redefine a custom tag or to redefine
a built-in tag.

Note: Blue World does not support systems which have built-in tags
replaced. It is always advisable to create new tag names rather than rede-
fining existing tags.

For example, the [Form_Param] tag could be redefined so it only retrieved
parameters that were sent using the Post method in an HTML form. This
is done by inspecting the [Client_PostParams] tag and returning those items
from the array that match the parameter to the tag.

<?LassoScript
 Define_Tag: 'Form_Param', -Priority='Replace', -Require='name';
 Local: 'id_array' = (Client_PostParams)->(Find: #name);
 Local: 'output' = '';
 Iterate: #id_array, (Local: 'id_item');
 #output += (Client_PostParams)->(Get: #id_item)->Second + '\r';
 /Iterate;
 #output->(RemoveTrailing: '\r');
 Return: #output;
 /Define_Tag;
?>

This tag can now be used anywhere on a page to get access to the param-
eters that were passed through a form using the Post method. Since the tag
uses the [Client_PostParams] tag it can even be used within nested [Inline] tags.

5 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 5 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

If this tag is defined on a page then it will replace the [Form_Param] tag only
until the end of the page. If this tag is defined in the LassoStartup folder
then it will replace the [Form_Param] tag for all users of the site. The
[Action_Param] tag is not modified by redefining the [Form_Param] tag even
though they are aliases.

Criteria
If a tag has a -Criteria parameter defined then it will only be called when the
specified criteria are met. If the criteria are not met then the next tag in the
calling chain will be consulted or an error will be generated.

The -Criteria parameter should be a conditional expression that returns
True of False. It is called within the environment of the tag being defined
and has access to local variables created by the -Required and -Optional param-
eters and to the [Params] array. The -Criteria parameter can also reference
page variables.

Required parameters specified by the -Required tag are checked prior to the
-Criteria parameter. If a tag is missing a -Required parameter then a syntax
error is returned and no further checking of the tags in the calling chain
occurs. -Optional parameters should be used with appropriate an appro-
priate -Criteria expression to require parameters only on certain tags within a
calling chain.

To execute a tag when it is called with a parameter of a given type:

Create the tag with a -Required parameter and a -Criteria expression that
checks the type of the local defined by the -Required parameter. The
following tag prints a formatted message only when it is called with a
string parameter.

[Define_Tag: 'Ex_Print',
 -Priority='High',
 -Required='myParam',
 -Criteria=(#myParam->Type == 'string')]
 [Return: '(String: \'' + #myParam + '\')]
[/Define_Tag]

When this tag is called with a string parameter the formatted output is
generated, otherwise a syntax error is generated.

[Ex_Print: 'Text'] ➜ (String: 'Text')

[Ex_Print: 123.456] ➜ Syntax Error

Now, an additional tag can be added with the same name that executes
when it is called with a parameter of a different data type. The following
version of [Ex_Print] will be called when the parameter is of type decimal.

5 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 5 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

The -Priority of this tag is set to High ensuring that it is called before the other
version of [Ex_Print] in the calling chain.

[Define_Tag: 'Ex_Print',
 -Priority='High',
 -Required='myParam',
 -Criteria=(#myParam->Type == 'decimal')]
 [Return: '(Decimal: ' + #myParam + ')]
[/Define_Tag]

When this tag is called with a decimal parameter the formatted output is
generated. When it is called with a string parameter the prior version of the
tag is used and its formatted output is generated. If the tag is called with a
parameter of a different data type then a syntax error is generated.

[Ex_Print: 'Text'] ➜ (String: 'Text')

[Ex_Print: 123.456] ➜ (Decimal: 123.456)

[Ex_Print: 123] ➜ Syntax Error

Additional tags can be created for each of the built-in data types: arrays,
dates, maps, pairs, integers, boolean values, etc.

Rather than returning a syntax error when an unknown data type is speci-
fied as a parameter to the tag, a version of the tag can be created that
accepts parameters of any type. The following version of [Ex_Print] is used
for unknown data types. The -Priority is set to Low ensuring that this version
of the tag is checked after all other versions of [Ex_Print] in the calling chain.

[Define_Tag: 'Ex_Print',
 -Priority='Low',
 -Required='myParam']
 [Return: '(Unknown: ' + (String: #myParam) + ')]
[/Define_Tag]

When this tag is called with a parameter of type date for which no indi-
vidual version of the tag has been created the Unknown output is generated.

[Ex_Print: (Date)] ➜ (Unknown: 5/15/2002 12:34:56)

The real power of this type of system of tags—which are only used when
called with a parameter of a certain data type—is that it can be expanded
by third parties to include their own custom data types. For example, if
a new data type is created that represents currency then a new version
of the [Ex_Print] tag could be created as well. The end-user will see that
[Ex_Print] now works for the currency data type and doesn’t have to be
aware of the mechanism which has been used to extend this tag to the
additional data type.

5 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 5 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

Libraries
Libraries can be used to package custom tags and custom types into a
format which is easy for any Lasso developer to incorporate into a Lasso-
powered Web site.

The following types of libraries can be created:

 • Library Format File – A set of custom tag and custom type declara-
tions can be stored in a format file and then included in any other Lasso
format file using the [Library: 'library.lasso'] tag. This is a good way to create
and use a library file whose defined tags and types will only be needed
on a few pages in a site.

 • LassoStartup Format File – A set of custom tag and custom
type declarations can be stored in a format file placed within the
LassoStartup folder. After Lasso Service is restarted all tags, types, and page
variables which are defined within the format file will be available to all
format files which are executed on the server.

5 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 5 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

5 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S 5 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

6 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 3 – C U S T O M TA G S

4
Chapter 4

Custom Types

This chapter introduces custom data types and shows how they can be
created using LDML tags.

 • Overview introduces the concepts behind custom data types.

 • Custom Types describes how to create new data types including infor-
mation about callback tags and inheritance.

 • Libraries describes how to package sets of custom types for distribution.

Overview
Lasso Professional 7 allows Web developers to extend Lasso Dynamic
Markup Language (LDML) by creating custom data types programmed
using LDML tags.

LDML custom data types have the following features:

 • Tags for custom types operate just like built-in LDML member tags. They
can be used in nested expressions, return data of any type, and allow the
use of encoding keywords.

 • Custom types are fully object-oriented. Custom types can inherit proper-
ties from other custom types.

 • Custom types can provide support for the LDML comparison symbols
and automatic casting.

 • They can be created in any Lasso format file and used instantly.

 • They are written in LDML. No programming experience or knowledge of
a programming language other than LDML is required.

 • They can be collected into libraries of tags which can be loaded into any
format file using the [Library] tag.

6 1

E X T E N D I N G L A S S O 7 G U I D E

 • They can be defined in a format file or library within the
LassoStartup folder, making them available to all pages processed by
Lasso.

Naming Conventions
Custom types should be named using a combination of letters, numbers,
and the underscore character, but should never start with the underscore
character. In order to prevent confusion between custom types created by
different developers, all custom type names should start with an identi-
fier for the author of the custom type, followed by an underscore, then the
name of the custom type.

The member tags of a custom type do note need a prefix since member tags
only need to be unique within each data type. In fact, it is recommended
to use the same names as built-in member tags for custom member tags
if the functionality is equivalent. For example, a custom data type might
implement [Type->Get] and [Type->Size] member tags.

If either a member tag or instance variable of a custom tag starts with an
underscore then the tag or variable will be private to the data type. Private
member tags and instance variables will not be listed in the [Null->Properties]
or [Null->Dump] output for the type and can only be accessed using the [Self]
tag within the data type.

Table 1: Tags for Creating Custom Data Types

Tag Description

[Define_Tag] Defines a new new member tag within a type definition.

[Define_Type] Defines a new data type. Requires a single parameter,
the name of the type to be defined. Optional second
parameter defines a custom type which should be
inherited from.

[Local] Sets or retrieves the value of a member variable within a
custom type definition.

[Local_Defined] Checks to see if a member variable has been defined
within a custom type definition.

[Locals] Returns a map of all the member variables which have
been defined within a custom type definition.

[Params] Returns an array of all the parameters which were
passed to the custom tag.

[Self] Returns a reference to the current data type instance.

[Self->Parent] Returns a reference to the parent type for the current
data type instance. For use within custom type
declarations with inheritance.

6 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 6 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

Note: In addition to the listed tags all of the tags which are used for creating
custom tags are used when creating member tags.

Custom Types
Custom data types can be created in LDML using the
[Define_Type] … [/Define_Type] tags. Newly defined types will be available
below the point where they are defined in a format file.

See the section on Libraries for information about how to create libraries
of types, load types in LassoStartup, and create types which can be used by
any format file.

Defining a Type
A new data type is defined by specifying its name in the opening
[Define_Type] tag. The body of the [Define_Type] … [/Define_Type] tags contains
code which will be executed each time a new instance of the data type is
created.

For example, a new data type Ex_Dollar could be created which will store
dollar amounts. The basic type definition is as follows. Each of the parts of
this definition are discussed in more detail in the sections that follow.

[Define_Type: 'Ex_Dollar']
 [Local: 'Amount' = 0]
 [(Local: 'Amount')->(SetFormat: -DecimalChar=',', -Precision=2)]

 [Define_Tag: 'onCreate', -Optional='Amount']
 [If: (Local_Defined: 'Amount')]
 [Self->'Amount' = (Decimal: #Amount)]
 [Self->'Amount'->(SetFormat: -DecimalChar=',', -Precision=2)]
 [/If]
 [/Define_Tag]

 … Member Tags …

[/Define_Type]

The [Define_Type] … [/Define_Type] tags define a tag with the same name
as the data type. Each time a new instance of [Ex_Dollar] is created the
[Ex_Dollar->onCreate] tag is called to initialize the instance.

The code within [Define_Type] … [/Define_Type] should be used to set up a
generic instance of the type. The code within [Ex_Dollar->onCreate] should
be used to create a specific instance of the t ype based on the parameters
passed to the [Ex_Dollar] tag.

6 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 6 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

Instance Variables
A data type can contain definitions for local variables within the
[Define_Type] … [/Define_Type] tags. These local variables are called instance
variables since their values are stored separately for each instance of the
data type which is created.

In the example above, the local variable Amount is created. This variable
will store a dollar amount, the current value of the data type. Each time a
new instance of [Ex_Dollar] is created, a new instance of the Amount instance
variable will be created. For example, the following two lines create two
variables each of which stores a value of type Ex_Dollar. Each stores its own
independent Amount.

[Variable: 'Price' = (Ex_Dollar: 10)]

[Variable: 'Tax' = (Ex_Dollar: 0.93)]

Instance variables can be referenced explicitly by name using the
member symbol -> with the name of the instance variable. The values
for the Amount instance variable can be retrieved from each of the
Ex_Dollar amounts defined above using the following code.

[Output: (Variable: 'Price')->Amount] ➜ 10.00

[Output: (Variable: 'Tax')->Amount] ➜ 0.93

The quotes around the variable name Amount can be omitted if the type
does not define a tag with the same name as the member variable. Usually,
$Price->'Amount' is equivalent to $Price->Amount.

Private Variables
Instance variables which start with an underscore are private variables that
can only be accessed from within the custom type. Private variables should
be used for any values which are stored internally and do not need to be
acessed from outside the custom type.

Private variables are not copied with the data type or serialized. Private
variables should only be used to store static data that does not need to be
propagated to new instances of the data type and does not need to survive
being stored in a session and retrieved.

For example, in the prior example, the Amount variable can be renamed
_Amount to make it private to the data type.

[Define_Type: 'Ex_Dollar']
 [Local: '_Amount' = 0]
 [(Local: '_Amount')->(SetFormat: -DecimalChar=',', -Precision=2)]

6 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 6 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

 [Define_Tag: 'onCreate', -Optional='Amount']
 [If: (Local_Defined: 'Amount')]
 [Self->'_Amount' = (Decimal: #Amount)]
 [Self->'_Amount'->(SetFormat: -DecimalChar=',', -Precision=2)]
 [/If]
 [/Define_Tag]

 … Member Tags …

[/Define_Type]

Now, the following code will produce an error since the _Amount private
variable cannot be seen outside of the custom data type.

[Output: (Variable: 'Price')->_Amount] ➜ Syntax Error

Once private variables have been defined they can be accessed from within
the custom type using Self->'_VariableName'.

Member Tags

Built-In Member Tags
Each custom type can automatically make use of any of the tags of the
null data type. These tags are detailed in Table 2: Built-In Tags. These tags
are used by Lasso to provide information about data of any type and to
provide efficient storage for custom data types. None of the tags in this
table should be overriden by the custom data type.

In addition to these built-in member tags there are several tags that
are defined as placeholders on the null data type. The [Null->Size] and
[Null->SetFormat] tags are defined for every data type. [Null->Size] always
returns 0 and [Null->SetFormat] is a placeholder that returns no value if called.
Either of these tags can be overridden using custom member tags.

Note: It is desirable for custom data types to create custom [Type->Get] and
[Type->Size] member tags so the [Iterate] … [/Iterate] tags will function properly.

6 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 6 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

Table 2: Built-In Member Tags

Tag Description

[Null->DetachReference] Detaches the variable from the instance of the data type.

[Null->FreezeType] Freezes the type of a variable. After calling this tag the
current variable cannot be cast to another data type.

[Null->FreezeValue] Freezes the value of a variable, essentially creating
a read-only variable. After calling this tag the current
variable cannot have its value changed.

[Null->IsA] Accepts a single parameter which is the name of a type.
Returns True if the parameter matches the name of the
current data type or any of its parent data types.

[Null->Parent] Returns a references to the parent type of the current
data type instance.

[Null->Properties] Returns a pair which contains a map of all the instance
variables and a map of all the member tags defined for
the data type.

[Null->RefCount] Returns the number of variables that currently point at
the instance of the data type.

[Null->Serialize] Returns a bit-stream representation for the data type.
This tag can be used to store a custom data type in a
database or to pass it from page to page as an action
parameter.

[Null->Type] Returns the type which was specified when the custom
type was created.

[Null->Unserialize] Accepts a single parameter which is a bit-stream created
by [Null->Serialize]. This tag modifies the variable on
which it is called by setting it to the custom data type
represented by the bit-stream parameter.

See the Lasso 7 Language Guide for more information about using these
tags.

Custom Member Tags
Each custom type can define member tags which can be called to modify
the value stored in an instance of the custom type or to output values from
an instance of the custom type.

Member tags are defined within the [Define_Type] … [/Define_Type] tags
for the custom type using [Define_Tag] … [/Define_Tag] tags. The syntax for
creating member tags is the same as that for creating custom tags. However,
member tags cannot be called asynchronously. The [Define_Tag] tag for a
member tag should never have -Async as the value for the second param-
eter.

6 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 6 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

The [Self] tag allows member tags to reference the current instance of the
data type. This allows member tags to call other defined member tags or
to set or retrieve values stored in instance variables. See the example of
defining a custom member tag below for more information.

The [Self] tag also allows access to instance variables and private variables
that are stored within the custom data type. The [Self] tag is the only
method of accessing private variables since they are not availablef rom
outside the data type.

Custom member tags which are named starting with an underscore are
private member tags. These tags can only be called using the [Self] tag.
Private member tags should be used for helper tags that are called by
public member tags, but do not need to be called directly from outside the
data type.

To define custom member tags:

Two custom tags will be defined for the Ex_Dollar custom type. The
[Ex_Dollar->Set] tag will accept a single parameter, cast it to decimal, and
store it in the Amount instance variable. The [Ex_Dollar->Get] tag will simply
return the value of the Amount instance variable formatted as a dollar
amount.

 • The [Ex_Dollar->Set] member tag is defined within the body of the
[Define_Type] … [/Define_Type] tags. It checks that there is at least one
parameter in the [Params] array. The [Self] tag is a reference to the current
instance of the Ex_Dollar data type, so the (Self->'Amount') statement is a
reference to the Amount instance variable.

<?LassoScript
 Define_Tag: 'Set';
 If: (Params) && ((Params)->Size > 0);
 (Self->'Amount') = (Decimal: (Params)->(Get:1));
 /If;
 /Define_Tag;
?>

 • The [Ex_Dollar->Get] member tag is defined within the body of the
[Define_Type] … [/Define_Type] tags. It appends a dollar sign $ to the value
in the Amount instance variable and returns the value. The [Self] tag is
a reference to the current instance of the Ex_Dollar data type, so the
(Self->'Amount') statement is a reference to the Amount instance variable.

<?LassoScript
 Define_Tag: 'Get';
 Return: '$' + (Self->'Amount');
 /Define_Tag;
?>

6 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 6 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

To call a custom member tag:

Custom member tags are called in the same way that the member tags of
the built-in data types are called. The Ex_Dollar type has two member tags
[Ex_Dollar->Get] and [Ex_Dollar->Set]. They are used to set and retrieve dollar
amounts in the following example.

[Variable: 'Price' = (Ex_Dollar: 100)]

[Output: (Variable: 'Price')->Get]
[(Variable: 'Price')->(Set: 19.95)]

[Output: (Variable: 'Price')->Get]

➜
$100.00

$19.95

Callback Tags
Each custom type can define a number of callback tags using the
[Define_Tag] … [/Define_Tag] tags within the [Define_Type] … [/Define_Type] defi-
nition for the type. These callback tags will be executed with appropriate
parameters when the data type is cast to another type, a new instance is
created, or an instance is destroyed.

Table 3: Callback Tags details the tags that are available. These tag names
are reserved. No member tags with these names should be defined. These
tags are not normally called by a Lasso developer, they are called automati-
cally by Lasso in the specified situation. Although there is no protection to
prevent a Lasso developer from calling these tags directly, results should be
considered undefined if they do.

The primary callback tags are shown in Table 3: Callback Tags. Additional
callback tags allow the overriding of built-in symbols. These tags are
described in the next section.

6 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 6 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

Table 3: Callback Tags

Tag Description

[Null->onConvert] Called when the instance is cast to another data type.
Accepts a single parameter, the name of the type to
which the value should be converted. The return value
should be the converted value or Null if no conversion
was possible.

[Null->onCreate] Called immediately after a new instance is created. This
tag has full access to the variables and member tags
defined within the [Define_Type] … [/Define_Type] tags.

[Null->onDestroy] Called before the custom tag is destroyed, usually at the
end of the current format file or tag execution.

[Null->_UnknownTag] Called when an unknown member tag is referenced. The
[Tag_Name] tag can be used to decide what tag name
was referenced.

Note: These callback tags are not included in the LDML 7 tag list. They are
intended to be called by Lasso automatically rather than being called like
other member tags.

onCreate Callback
The [Null->onCreate] callback tag is called after a new instance of a type is
created. It is called once for each instance of a type with any parameters
that were passed to the tag that created the type.

For example, when the tag [Ex_Dollar] is used to create a new instance of the
dollar type the following steps are performed.

 1 The code within the [Define_Type] … [/Define_Type] container is executed,
creating all the custom tags and instance variables for the type.

 2 The [Ex_Dollar->onCreate] tag is called with the parameters passed to the
[Ex_Dollar] tag to set up the particular instance of the type.

Since the callback tag is called after the code within the
[Define_Type] … [/Define_Type] container is processed, the [Null->onCreate] tag
has access to the [Self] tag and to each of the member tags which have been
defined for the current type.

Order of operation:

A new instance of a custom type is created by calling the creator tag for the
type which has the same name as the type. For example, to create a new
Ex_Dollar type the [Ex_Dollar] tag must be called.

[Ex_Dollar: 10]

6 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 6 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

 1 The body of the [Define_Type] … [/Define_Type] tags for the Ex_Dollar type are
executed. Local instance variables are defined and all member tags are
defined.

 2 If the [Ex_Dollar->onCreate] callback tag is defined then it is called.

To define a [Null->onCreate] callback tag:

The Ex_Dollar data type is too simple to require an [Ex_Dollar->onCreate] call-
back tag. All the initialization which is needed is performed in the
creator tag. However, for debugging purposes it might be nice to know
each time an instance of the new data type is created. The following
[Ex_Dollar->onCreate] tag logs the current value of the instance variable
Amount each time a new instance of the data type is created.

[Define_Tag: 'onCreate']
 [Log: -Window] Create Ex_Dollar: [Output: Self->'Amount'].[/Log]
[/Define_Tag]

onConvert Callback
The [Null->onConvert] callback tag is called when an instance of a custom type
is cast to another data type. This tag will be called when an instance of a
custom type is used in an expression with built-in data types that requires
an integer, decimal, or string value. Each custom type must support being
cast to the string data type and should support being cast to the decimal or
integer data types if possible.

The [Null->onConvert] callback is called with the name of the type to which
the current instance is being converted. The type is the same value as
returned by the [Null->Type] tag and could identify any built-in type or any
custom type.

If the name of the type is not recognized then the [Null->onConvert] tag
should return Null. Lasso will attempt to convert the custom data type using
another method or will throw an error.

To define a [Null->onConvert] callback tag:

The [Ex_Dollar->onConvert] callback tag is called when an Ex_Dollar amount is
cast to any other data type. If the value is cast to a decimal or an integer
then the callback tag will cast the value in the Amount instance vari-
able to the appropriate data type. If the value is cast to a string then the
[Ex_Dollar->Get] member tag which was defined previously will be called.
Otherwise, the callback tag will return Null instructing Lasso that the
conversion is not supported.

7 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 7 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

<?LassoScript
 Define_Tag: 'onConvert';
 Local: 'Type' = (Params)->(Get: 1);
 If: (Local: 'Type') == 'String';
 Return: (Self->Get);
 Else: (Local: 'Type') == 'Integer';
 Return: (Integer: (Self->'Amount'));
 Else: (Local: 'Type') == 'Decimal';
 Return: (Decimal: (Self->'Amount'));
 /If;
 Return Null;
 /Define_Tag;
?>

In the following code a variable Price is set to a value of type Ex_Dollar. Then
that variable is cast to different data types. Notice that the [Output] tag auto-
matically casts all values to the string data type.

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[Output: (Variable: 'Price')]

[Output: (Integer: (Variable: 'Price'))]

[Output: (Decimal: (Variable: 'Price'))]

➜
$19.95

20

19.95

onDestroy Callback
The [Null->onDestroy] callback tag is the last member tag called for each
instance of a custom type. The [Null->onDestroy] callback tag allows any
cleanup code that needs to be performed to be executed before the tag
is purged from memory. The [Null->onDestroy] tag is called once for each
instance of a custom type.

The [Null->onDestroy] callback tag is called in the following instances.

 • If a custom type literal is created and not stored in a variable, the
instance is destroyed as soon as the current tag completes.

[Output: (Ex_Dollar: 10.0)]

 • If a custom tag is created within the [Define_Tag] … [/Define_Tag] tags of a
custom tag declaration and stored in a local variable then the instance is
destroyed as soon as the custom tag completes.

 • If a custom tag is created within the [Define_Type] … [/Define_Type] tags of
a custom type or is stored in an instance variable within a custom type
then the instance is destroyed as soon as the custom type within which it
is stored is destroyed.

7 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 7 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

 • If a custom type is stored within a page variable then it will be destroyed
as soon as the page finishes executing, but before it is served to the site
visitor.

To define a [Null->onDestroy] callback tag:

The Ex_Dollar data type is too simple to require an [Ex_Dollar->onDestroy] call-
back tag. The instance variable Amount and each of the member tags will
be destroyed automatically by Lasso. However, for debugging purposes
it might be nice to know each time an instance of the new data type is
destroyed. The following [Ex_Dollar->onDestroy] tag logs the current value of
the instance variable Amount each time a new instance of the data type is
destroyed.

[Define_Tag: 'onDestroy']
 [Log: -Window] Destroy Ex_Dollar: [Output: Self->'Amount'].[/Log]
[/Define_Tag]

Unknown Tag Callback
The [Null->_UnknownTag] callback tag is called when a tag that does not exist
for the current data type is referenced. This callback tag allows a custom
data type to respond to member tags which are not explicitly created. The
tag name which was called can be retrieved using the [Tag_Name] tag.

None of the callback tags are ever passed to the [Null->_UnknownTag] callback.
Callback tags must be defined explicitly in order to be implemented.

Order of operation:

When a member tag is called on a custom type:

 1 If a member tag with that name is defined then it is executed.

 2 If an instance variable with that name is defined then its value is
returned.

 3 If no member tag or instance variable with that name is defined then
the [Null->_UnknownTag] callback is executed.

 4 If the unknown tag callback is not defined then an error is returned.

To define a [Null->_UnknownTag] callback tag:

The Ex_Dollar data type could implement a conversion to different curren-
cies using the unknown tag callback.

Assume that there is a tag [Currency_Convert] which accepts a value, a -From
parameter with the code for what currency to convert from, and a -To
parameter with the code for what currency to convert to. The tag uses data
from a site on the Internet to get accureate real-time conversion rates.

7 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 7 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

Rather than coding in all currency codes explicitly and unknown
tag callback can be used to pass any unknown member tags to the
[Currency_Convert] tag. An error will be returned if the tag name is not a valid
currency code.

[Define_Tag: '_UnknownTag']
 [Local: 'Code' = (Tag_Name)]
 [Local: 'Result' = (Currency_Convert: (Decimal: Self->'Amount'),
 -From='USD', -To=#Code)]
 [Return: (Decimal: #Result)]
[/Define_Tag]

The following code would now work to convert the U.S. currency repre-
sented by the [Ex_Dollar] type to U.K. Pounds represented by UKP.

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[Output: (Variable: 'Price')->(UKP)]

➜
31.24

Symbol Overloading
Lasso allows complex expressions using math and string symbols to be
specified as tag parameters. In addition, a set of assignment symbols allow
a variable to be modified in place without returning a value. A list of
common symbols is shown in Table 4: Overloadable Symbols.

Each data type can assign its own meanings to each of the symbols that
Lasso provides. For example, the built-in integer and decimal data types
use the + symbol for addition while the built-in string data type uses the
+ symbol for concatenation. In general it is wisest to match the common
meanings of the symbols whenever possible. Ideally, the user will be able
to use each data type’s custom symbols interchangeably with the symbols
provided by the built-in data types.

The meaning of corresponding assignment symbols, unary symbols, and
binary symbols should be compatible whenever possible. The opera-
tion [(Variable: 'myVariable') += 'Value'] should be the same as the operation
[Variable 'myVariable' = $myVariable + 'Value'].

7 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 7 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

Table 4: Overloadable Symbols

Symbol Description

+ Unary/Binary symbol for addition or concatenation.

- Unary/Binary symbol for subtraction or deletion.

* Binary symbol for multiplication or repetition.

/ Binary symbol for division.

% Binary symbol for modulus.

++ Unary increment symbol prefix or postfix.

-- Unary decrement symbol prefix or postifx.

== Binary symbol for equality. Returns boolean.

!= Binary symbol for inequality. Returns boolean.

> Binary symbol for greater than. Returns boolean.

>= Binary symbol for greater or equal. Returns boolean.

< Binary symbol for less than. Returns boolean.

<= Binary symbol for less or equal. Returns boolean.

>> Binary symbol for contains. Returns boolean.

= Assignment symbol.

+= Addition assignment symbol.

-= Subtraction assignment symbol.

*= Multiplication assignment symbol.

/= Division assignment symbol.

%= Modulus assignment symbol.

Each of these symbols can be redefined or overloaded for a custom data
type. The data type of the left parameter to a binary operator determines
which tag is used to perform the operation. If a data type does not support
the symbol then the parameter is cast to string and the string symbol is
used instead.

Other symbols such as $, #, @ cannot be overloaded. These are core
language constructs. The logical symbols ||, &&, and ! cannot be overloaded,
but a custom behavior can be defined when a custom data type is cast to
boolean.

Callback Tags
Each custom type can define a number of callback tags using the
[Define_Tag] … [/Define_Tag] tags within the [Define_Type] … [/Define_Type] defi-
nition for the type. These callback tags will be executed with appropriate
parameters when the data type is used in a complex expression.

7 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 7 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

Table 5: Comparison Callback Tags, Table 6: Symbol Callback Tags,
and Table 7: Assignment Callback Tags detail the tags that are available.
These tag names are reserved. No member tags with these names should be
defined. These tags are not normally called by a Lasso developer, they are
called automatically by Lasso in the specified situation. Although there is
no protection to prevent a Lasso developer from calling these tags directly,
results should be considered undefined if they do.

Table 5: Comparison Callback Tags

Tag Description

[Null->onCompare] Called when the current instance is used in a
comparison expression. Accepts a single parameter, the
value to be compared against. Should return 0 if the
parameter is equal to the current instance, a positive
number if the parameter is greater, or a negative number
if the parameter is less. Called for the ==, !=, <, <=, >,
>= symbols.

[Null->>>] Called when an instance is used as the left parameter of
a contains symbol. Accepts a single parameter which is
the right parameter of the symbol. This tag should return
True if the right parameter is contained in the current
instance.

Note: These callback tags are not included in the LDML 7 tag list. They are
intended to be called by Lasso automatically rather than being called like
other member tags.

onCompare Callback
The [Null->onCompare] callback tag is called when an instance of a custom
type is used as the left parameter of a comparison symbol ==, !=, <, <=, >,
or >=. The callback tag is called with the value of the right parameter of the
symbol. The result of the tag should be one of the following.

 • Equality – If the value of the right parameter is equal to the value of the
current instance of the custom type then the return value should be 0.
This will evaluate to True for the ==, <=, and >= symbols.

 • Less Than – If the value of the right parameter is less than the value of
the current instance of the custom type then the return value should be
any number less than 0. This will evaluate to True for the <, <=, and !=
symbols.

 • Greater Than – If the value of the right parameter is greater than the
value of the current instance of the custom type then the return value

7 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 7 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

should be any number greater than 0. This will evaluate to True for the >,
>=, and != symbols.

If a comparison cannot be made then Null should be returned instead.
Lasso will attempt to perform a cast in order to compare the two values
instead. If no [Null->onCompare] callback tag is defined then Lasso will
attempt to perform a cast in order to compare the two values as well.

The value of the left parameter determines the type of comparison which
is used. If a custom type is used as the right parameter in a comparison
expression and a built-in data type is used as the left parameter then the
custom type is cast to the appropriate built-in data type and the values are
compared.

Note: The [Array->Find] and [Array->Sort] member tags use comparisons to
determine the found set or order of elements in the array. A custom data
type will be searched or sorted according to the results of the [Null->onCompare]
callback tag.

To define a [Null->onCompare] callback tag:

The [Ex_Dollar->onCompare] callback tag will simply cast any value that is
assigned to it to the decimal data type then compare that value to the value
stored in the Amount instance variable.

<?LassoScript
 Define_Tag: 'onCompare';
 Local: 'Temp' = (Decimal: (Params)->(Get: 1));
 If: (Local: 'Temp') == (Self->'Amount');
 Return: 0;
 Else: (Local: 'Temp') < (Self->'Amount');
 Return -1;
 Else: (Local: 'Temp') > (Self->'Amount');
 Return 1;
 /If;
 Return Null;
 /Define_Tag;
?>

In the following code a variable Price is set to a value of type Ex_Dollar. Then
that variable is compared to different data types.

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[Output: (Variable: 'Price') == (String: '19.95')]

[Output: (Variable: 'Price') == (Integer: 20)]

[Output: (Variable: 'Price') == (Decimal: 19.95)]

➜
True

False

True

7 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 7 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

Contains Callback
The [Null->>>] callback tag is called when an instance of a custom type is
used as the left parameter of a >> comparison symbol. The callback tag is
called with the value of the right parameter of the symbol. The result of the
tag should be one of the following.

 • True – If the value of the right parameter is contained within the current
instance.

 • False – If the value of the right parameter is not contained within the
current instance.

If the contains operation cannot be performed then Null should be returned
instead. Lasso will attempt to perform a cast in order to perform the
contains operation. If no [Null->>>] callback tag is defined then Lasso will
attempt to perform a cast in order to perform the contains operation as
well.

If a custom type is used as the right parameter in a contains expression and
a built-in data type is used as the left parameter then the custom type is
cast to the appropriate built-in data type and the values are compared.

To define a [Null->>>] callback tag:

The [Ex_Dollar->>>] callback tag will cast any value that is assigned to it to
the string data type. If the output from [Ex_Dollar->Get] run on the [Self] tag
contains the parameter then True is returned.

<?LassoScript
 Define_Tag: '>>';
 Local: 'Temp' = (String: (Params)->(Get: 1));
 Return: (Self->Get) >> #Temp;
 /Define_Tag;
?>

In the following code a variable Price is set to a value of type Ex_Dollar. Then
that variable is checked to see if it contains $ which it does.

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[Output: (Variable: 'Price') >> '$']

➜
True

7 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 7 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

Table 6: Symbol Callback Tags

Tag Description

[Null->+] Called when an instance is used as the left parameter of
an addition symbol. Accepts a single parameter which
is the right parameter of the symbol. If no parameter is
specified then the unary symbol is being used.

[Null->-] Called when an instance is used as the left parameter of
a subtraction symbol. Accepts a single parameter which
is the right parameter of the symbol. If no parameter is
specified then the unary symbol is being used.

[Null->*] Called when an instance is used as the left parameter
of a multiplication symbol. Accepts a single parameter
which is the right parameter of the symbol.

[Null->/] Called when an instance is used as the left parameter of
a division symbol. Accepts a single parameter which is
the right parameter of the symbol.

[Null->%] Called when an instance is used as the left parameter of
a modulus symbol. Accepts a single parameter which is
the right parameter of the symbol.

[Null->++] Called when an instance is used as the left or right
parameter of a unary increment symbol.

[Null->--] Called when an instance is used as the left or right
parameter of a unary decrement symbol.

Note: These callback tags are not included in the LDML 7 tag list. They are
intended to be called by Lasso automatically rather than being called like
other member tags.

Symbol Callback Tags
The symbol callback tags are called whenever the custom data type is
used as the left parameter to one of the built-in symbols +, -, *, /, or % or
when the custom data type is used as the lone parameter to the + , ++, - or
-- unary symbols. These tags usually return a value of the custom data type,
but can return a value of any data type.

For the binary operators, the right parameter to the symbol is provided as
the parameter of the callback function and could be of any data type. For
the unary operators, no parameter is specified.

If no callback tag is defined for a given symbol then Lasso will attempt to
cast values to string and will use the built-in string symbols.

7 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 7 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

To define a [Null->-] callback tag:

The [Ex_Dollar->-] callback tag will create a new [Ex_Dollar] data type. The
value of the new type will be found by either subtracting a value from the
Amount instance variable if a parameter is specified or by changing the sign
of the Amount instance variable if no parameter is specified.

<?LassoScript
 Define_Tag: '-';
 If: (Params->Size > 0);
 Return: (Ex_Dollar: (Self->'Amount') - (Decimal: Params->(Get: 1)));
 Else;
 Return: (Ex_Dollar: (Self->'Amount') * (-1));
 /If;
 /Define_Tag;
?>

In the following code a variable Price is initialized with a value of 19.95.
Then, 5.95 is subtracted from variable and the result is output. Notice
that even though the amount subtracted is a decimal, the result is of type
Ex_Dollar and outputs with proper formatting.

[Variable: 'Price' = (Ex_Dollar: 19.95)]

[Output: (Variable: 'Price') - 5.95]

➜
$14.00

7 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 7 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

Table 7: Assignment Callback Tags

Tag Description

[Null->onAssign] Called when an assignment is made to the current
instance from any other data type using the = symbol.
This tag should return True if the assignment was
successful.

[Null->+=] Called when an instance is used as the left parameter
of an addition assignment symbol. Accepts a single
parameter which is the right parameter of the symbol.
This tag should return true if the assignment was
successful.

[Null->-=] Called when an instance is used as the left parameter
of a subtraction assignment symbol. Accepts a single
parameter which is the right parameter of the symbol.
This tag should return true if the assignment was
successful.

[Null->*=] Called when an instance is used as the left parameter
of a multiplication assignment symbol. Accepts a single
parameter which is the right parameter of the symbol.
This tag should return true if the assignment was
successful.

[Null->/=] Called when an instance is used as the left parameter
of a division assignment symbol. Accepts a single
parameter which is the right parameter of the symbol.
This tag should return true if the assignment was
successful.

[Null->%=] Called when an instance is used as the left parameter
of a modulus assignment symbol. Accepts a single
parameter which is the right parameter of the symbol.
This tag should return true if the assignment was
successful.

Note: These callback tags are not included in the LDML 7 tag list. They are
intended to be called by Lasso automatically rather than being called like
other member tags.

onAssign Callback
The [Null->onAssign] callback tag is called when an instance of a custom type
is used as the left parameter of the assignment symbol =. The callback tag is
called with the value of the right parameter of the symbol. The tag should
attempt to store the value of the right parameter as the new value of the
current instance of the custom type. It should return one of the following
values.

8 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 8 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

 • True – The callback tag should return True if the assignment was
successful. This is the sign to Lasso that no further work needs to be
done.

 • False – If for any reason the assignment cannot be performed then the
callback tag should return False. Lasso will instead attempt to cast the
value of the right parameter to the data type of the left parameter and try
the assignment again.

If no [Null->onAssign] callback tag is defined then Lasso will attempt to cast
values to the current data type by calling the [Null->onConvert] tag of the right
parameter of the assignment operator. For maximum compatibility, each
data type should support at least all built-in data types for assignment and
conversion.

To define a [Null->onAssign] callback tag:

The [Ex_Dollar->onAssign] callback tag will simply cast any value
that is assigned to it to the decimal data type then store that value
in the Amount instance variable. This mimics the behavior of the
[Ex_Dollar->Set] member tag which was defined previously.

<?LassoScript
 Define_Tag: 'onAssign';
 (Self->'Amount') = (Decimal: (Params)->(Get: 1));
 /Define_Tag;
?>

In the following code a variable Price is initialized with a value of type
Ex_Dollar. The variable is then assigned a string value 19.95 which is cast to
a decimal value by the [Ex_Dollar->onAssign] tag called implicitly by Lasso to
perform the assignment operator.

[Variable: 'Price' = (Ex_Dollar)]
[(Variable: 'Price') = '19.95']

[Output: (Variable: 'Price')->Get]

➜
$19.95

Assignment Symbols Callbacks
The [Null->+=], [Null->-=], [Null->*=], [Null->/=], and [Null->%] callback tags are
called when an instance of a custom type is used as the left parameter of
the corresponding assignment symbol +=, -=, *=, /=, or %=. The callback
tag is called with the value of the right parameter of the symbol. The tag
should attempt to perform the desired operation and store the value of
the right parameter as the new value of the current instance of the custom
type. It should return one of the following values.

8 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 8 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

 • True – The callback tag should return True if the assignment was
successful. This is the sign to Lasso that no further work needs to be
done.

 • False – If for any reason the assignment cannot be performed then the
callback tag should return False. Lasso will instead attempt to cast the
value of the right parameter to the data type of the left parameter and try
the assignment again.

If no callback tag for a given assignment symbol is defined then Lasso will
attempt to cast values to the current data type by calling the [Null->onConvert]
tag of the right parameter of the assignment operator.

To define a [Null->+=] callback tag:

The [Ex_Dollar->=+] callback tag will simply cast any value that is assigned to
it to the decimal data type and add that value to the Amount instance vari-
able.

<?LassoScript
 Define_Tag: '+=';
 (Self->'Amount') += (Decimal: (Params)->(Get: 1));
 /Define_Tag;
?>

In the following code a variable Price is initialized with a value of type
Ex_Dollar and a value of 19.95. Finally, the += symbol is used to add an addi-
tional 5.95 to the variable.

[Variable: 'Price' = (Ex_Dollar: '19.95')]
[(Variable: 'Price') += '5.95']

[Output: (Variable: 'Price')->Get]

➜
$19.95

Inheritance
Custom types can be created which inherit properties from other custom
types. Each type which the custom type should inherit from is specified
after the name of the custom type in the opening [Define_Type] tag. These
are called parent types and the current type being defined is called a child
type. Usually, only one parent type is specified.

All instance variables and member tags of the parent types are inherited by
the child type. If the child type defines an instance variable or member tag
with the same name as one of the parent types then the child’s definition
overrides the parent’s definition.

8 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 8 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

Custom types can inherit properties from built-in data types. A custom
type will inherit any member tags which the built-in type defines, but will
not inherit any of the features that require callback functions. It will be
necessary to create custom casting and assignment callbacks and to imple-
ment any symbols which are desired.

All custom data types inherit from the null data type. The tags of the null
data type such as [Null->Type] can be used by any data type within Lasso.
These tags can be overridden, but doing so can cause unexpected results.

The member tags and instance variables of the parent tag can be accessed
using the [Parent] tag. This tag works like the [Self] tag, but returns the value
of the current data type instance as it would be if it were of the parent type.

The creator tag [Null->onCreate] and destructor tag [Null->onDestroy] for each
parent data type is called automatically when a new instance of the child
data type is created.

To define a custom type that inherits from another custom type:

The Ex_Dollar type which is defined in this chapter only works with U.S.
currency and outputs values using the dollar sign $. It is possible to create
a sub-type that works with a different type of currency. For example, a
new type Ex_UKPounds could be created which inherited from Ex_Dollar,
but output values with a British pound symbol £. by overriding the
[Ex_Dollar->Get] tag with a new [Ex_UKPounds->Get] tag.

The type is defined as inheriting from Ex_Dollar by specifying Ex_Dollar after
the name of the new type in the opening [Define_Type] tag. All the member
tags of Ex_Dollar are automatically defined as is the instance variable Amount.

The [Ex_UKPounds->Get] member tag is defined and overrides the equivalent
[Ex_Dollar->Get] member tag. The [Self->Parent] tag is used to reference the
Amount instance variable from the parent type.

<?LassoScript
 Define_Type: 'Ex_UKPounds', 'Ex_Dollar';

 Define_Tag: 'Get';
 Return: '£' + (Self->Parent->'Amount');
 /Define_Tag;

 /Define_Type;
?>

The following example sets two variables, one to a value of Ex_Dollar type
and the other to a value of Ex_UKPounds type, then outputs both values. The
types are converted to strings when they are output and the appropriate
[Ex_Dollar->Get] or [Ex_UKPounds->Get] tag is called to format the output.

8 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S 8 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

[Variable: 'American'= (Ex_Dollar: 100)]

[Variable: 'American']
[Variable: 'British'= (Ex_UKPounds: 100)]

[Variable: 'British']


$100.00

£100.00

Libraries
Libraries can be used to package custom tags and custom types into a
format which is easy for any Lasso developer to incorporate into a Lasso-
powered Web site.

The following types of libraries can be created:

 • Library Format File – A set of custom tag and custom type declara-
tions can be stored in a format file and then included in any other Lasso
format file using the [Library: 'library.lasso'] tag. This is a good way to create
and use a library file whose defined tags and types will only be needed
on a few pages in a site.

 • LassoStartup Format File – A set of custom tag and custom
type declarations can be stored in a format file placed within the
LassoStartup folder. After Lasso Service is restarted all tags, types, and page
variables which are defined within the format file will be available to all
format files which are executed on the server.

8 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 4 – C U S T O M TY P E S

5
Chapter 5

Advanced Programming
Topics

This chapter documents advanced programming techniques.

 • References shows how references to data can be used to optimize
Lasso’s speed and memory usage.

 • Global Variables describes server-wide variables and tags which make
working with them easier.

 • Bytes Type describes the data type which Lasso uses for binary data.

 • Tag Data Type introduces the tag data type and its member tags.

 • Compound Expressions shows how tags can be created using simple
expression notation.

 • Thread Tools explains the methodology for synchronizing and sharing
resources between threads.

 • Thread Communication explains how to send messages and data
between threads.

 • Network Communication provides an introduction to the [Net] type
which allows for TCP and UDP communication.

 • Post Processing provides information about how to schedule custom
code to run at the end of page execution.

8 5

E X T E N D I N G L A S S O 7 G U I D E

References
References in Lasso Professional 7 allow multiple variables to point to the
same value or object. When the shared value or object is changed, all vari-
ables that reference that value or object change. A reference can be created
using the [Reference] tag or the @ reference symbol.

An example will serve to illustrate how references can be used in Lasso. The
following LDML code creates two variables and sets them to default values,
then outputs those values. Each variable is independent. Changing the
value of the one variable will not change the value of the other variable.

[Variable: 'Alpha'= 1]
[Variable: 'Beta'= 2]

Alpha: [Variable: 'Alpha']

Beta: [Variable: 'Beta']

➜
Alpha: 1

Beta: 2

However, if we instead define the second variable to be a reference to
the first variable then the two variables will share a single value. In the
following example the variable Alpha is set to 3 and the variable Beta is set
to be a reference to the variable Alpha. When output, both variables return
3.

[Variable: 'Alpha'= 3]
[Variable: 'Beta'= (Reference: $Alpha)]

Alpha: [Variable: 'Alpha']

Beta: [Variable: 'Beta']

➜
Alpha: 3

Beta: 3

Now that the two variables are linked, changing either variable will effect a
change in both. For example, setting Alpha to 4 will also result in a change
to Beta.

[Variable: 'Alpha'= 4]

Alpha: [Variable: 'Alpha']

Beta: [Variable: 'Beta']

Alpha: 4

Beta: 4

Similarly, setting Beta to 5 will also result in a change to Alpha.

[Variable: 'Beta' = 5]

Alpha: [Variable: 'Alpha']

Beta: [Variable: 'Beta']

8 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 8 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

➜
Alpha: 5

Beta: 5

This simple example serves to illustrate the basic principle behind Lasso’s
references. The remainder of this section will provide demonstrations of
how references can be used to reduce the amount of memory that Lasso
needs to process complex pages and to increase page processing speed.

It is impossible to have a reference to a reference. Lasso always resolves
references back to the original object so if one variable is set as a reference
to a second variable, then a third variable is set as reference to the first vari-
able, all three variables end up pointing to the same object. A change to
any of the three variables results in the values of all three variables being
changed.

References can be detached using the [Null->DetachReference] tag. If a variable
is defined as a reference to a value then calling [Null->DetachReference] will
set the variable’s value to Null and detach it from the referenced object. The
variable can then be safely re-assigned without affecting the referenced
object.

A reference can also be detached by assigning a new reference to a variable.
If a variable is assigned a reference using the @ symbol or the [Reference]
tag then it will be linked to the new reference and any previous links will
be severed.

Types of References
References can be used to refer to any of the following objects within Lasso.

 • Variables – A reference to a variable allows the same underlying data to
be accessed through two different names. Changing the value of either
of the linked variables will result in the values of both variables being
changed. The data referenced by both variables is only stored once.

[Variable: 'Ref_Variable' = @$First_Variable]

 • Local Variables – A reference to a page variable can be made within
a custom tag. Rather than copying the page variable into a local vari-
able, the page variable can be referenced. This prevents duplicating data
and allows any changes made to the local variable to be automatically
applied to the page variable.

[Local: 'Local_Variable' = @$First_Variable]

 • Array Elements – A reference can be made to an array element. This
allows one or more array elements to be referenced as variables separate
from the array. Any changes made to the variables will be reflected in the
array. The [Array->Get] tag is used to identify the array element.

8 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 8 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

[Variable: 'Ref_Variable' = @($Array_Variable->(Get: 1)]

 • Map Elements – A reference can be made to the value of a map
element. This allows the values of one or more map elements to be
referenced as variables separate from the map. Any changes made to the
variables will be reflected in the map. The [Map->Find] tag is used to iden-
tify the map element.

[Variable: 'Ref_Variable' = @($Map_Variable->(Find: 'Key')]

 • Tag Parameters – In a custom tag a reference can be made to a tag
parameter rather than copying the parameter into a local variable. This
allows a referenced parameter to be modified in place.

[Local: 'Local_Variable' = @(Params->(Get: 1))]

Table 1: Reference Tags and Symbols

Tag / Symbol Description

@ Creates a reference to an object rather than copying
the object. Usually used in a [Variable] tag to assign a
variable as a link to an object.

[Reference] Creates a reference to an object rather than copying the
object. Equivalent to the @ symbol.

[Null->DetachReference] Can be called on a variable of any data type to detach
the variable from the linked object. The variable ends up
with a value of Null.

[Null->RefCount] Returns the number of references that refer to a value.

To create a custom tag that works on an array directly:

The following example creates a custom tag that works on the elements of
an array in place. Using this principle can greatly speed up the execution
speed of LDML code since Lasso does not have to copy each element of the
array multiple times.

References are used twice in this tag. The first parameter to the tag (which
is expected to be an array) is referenced by a local variable theArray. This
prevents the values of the array from being copied into the local variable.
Within the [Loop] …[/Loop] tags. The variable theItem is set to a reference to
each element of the tag in turn.

[Define_Tag: 'Ex_Square']
 [Local: 'theArray' = @(Params->(Get: 1))]
 [Loop: #theArray->Size]
 [Local: 'theItem' = @(#theArray->(Get: Loop_Count))]
 [#theItem *= #theItem]
 [/Loop]
[/Define_Tag]

8 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 8 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

This tag is used as follows to modify the items in an array in place. Note
that the tag does not have a [Return] tag so it does not return any value.

[Variable: 'myArray' = (Array: 1, 2, 3)]
[Ex_Square: $myArray]
[Variable: 'myArray']

➜ (Array: 1, 4, 9)

Lasso automatically uses references when referencing -Required or -Optional
tag parameters and when using the [Iterate]… [/Iterate] tags. It is possible to
rewrite the [Ex_Square] tag using these implicit references as follows. This
tag will function identically to the previous example.

[Define_Tag: 'Ex_Square', -Required='theArray']
 [Iterate: #theArray, (Local: 'theItem')]
 [#theItem *= #theItem]
 [/Itereate]
[/Define_Tag]

Global Variables
Lasso maintains a stack of environments as it processes LDML code. The
first environment is created when Lasso starts up and includes global,
server-wide variables. Each page has its own environment created when it
is parsed which includes normal, page-wide variables. Finally, each custom
tag and data type has its own environment that includes local variables. At
any point, tags can be used to examine and modify values in the environ-
ment above the current environment.

The globals tags allow direct access to global variables from any environ-
ment. These are the preferred way of setting and retrieving global values.
Globals can also be accessed implicitly from the page and local environ-
ments following the rules described in the sections below.

Note: Many global variables are used to set preferences for internal Lasso
processes such as the email queue, the session handler, and the scheduler.
Global variables which start with an underscore should never be modified.

8 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 8 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

Table 2: Global Tags

Tag Description

[Global] If called with a string parameter, retrieves the value of a
global variable. If called with a name/value pair sets the
value of a global variable.

[Global_Defined] Accepts a single string parameter. Returns True if the
global variable has been defined or False otherwise.

[Globals] Returns a map of all global variables that are currently
defined.

Startup Environment
When code is executed in LassoStartup it is executed in the startup or global
environment. Any variables which are set using the [Variable] tag at this level
will end up as global variables when pages are executed. Similarly, any tags
which are defined at this level will be made available to all pages that are
executed on the server.

To set a global variable at startup:

At startup, global variables can be set either using the [Global] tag or using
the [Variable] tag. All variables set at this level are implicitly global.

 • Use the [Global] tag to set the value of a global variable. The global vari-
able will be available to any page subsequently executed by Lasso. In the
following example a variable Administrator_Email is created and set with
the value of the administrator’s email address.

[Global: 'Administrator_Email' = 'administrator@example.com']

 • Use the [Variable] tag to set the values of global variables from code which
is executed in the LassoStarup folder. In the following example a variable
Administrator_Email is created and set with the value of the administrator’s
email address.

[Variable: 'Administrator_Email' = 'administrator@example.com']

Page Environment
From the page level the values of global variables can be retrieved using
the [Variable] tag provided that no page variable has been defined with the
same name or can be retrieved explicitly using the [Global] tag. The [Variable]
tag cannot be used to set a global variable. Instead, global variables should
be set using the [Global] tag.

9 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 9 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

To retrieve the value of a global variable:

 • Use the [Global] tag. In the following example the global variable
Administrator_Email which is set above is retrieved.

[Global: 'Administrator_Email']

➜ administrator@example.com

 • If the desired variable has not been overridden by a page variable
of the same name then use the [Variable] tag to retrieve the value of
the global variable. In the following example the global variable
Administrator_Email which is set above is retrieved.

[Variable: 'Administrator_Email']

➜ administrator@example.com

To set the value of a global variable:

Either of the two following techniques can be used to set the value of a
global variable from an LDML format file. The first method is preferred.

 • Use the [Global] tag to set the value of a global variable. The global vari-
able will be immediately available on any page executing by Lasso
through the [Global] or [Globals] tags.

[Global: 'Administrator_Email' = 'new_administrator@example.com']

Global: [Global: 'Administrator_Email']

➜
Global: new_administrator@example.com

 • Set the value of a global variable by reference. In the following example,
the variable Administrator_Email has not been overridden on the
current page. Using the $ and = symbols the global variable can be
changed.

$Administrator_Email = 'new_administrator@example.com']

Global: [Global: 'Administrator_Email']

➜
Global: new_administrator@example.com

To override the value of a global variable:

Use the [Variable] tag to set a variable of the same name. The global variable
will not be modified, but subsequent uses of the [Variable] tag will return
the page variable’s value. The [Global] tag can still be used to retrieve the
value of the global variable.

In the following example the global variable Administrator_Email is over-
ridden by a page variable of the same name. The values of both the page
variable and the global variable are displayed.

9 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 9 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

[Variable: 'Administrator_Email' = 'page_administrator@example.com']

Page: [Variable: 'Administrator_Email']

Global: [Global: 'Administrator_Email']

➜
Page: page_administrator@example.com

Global: administrator@example.com

Local Environment
When a custom tag is executing variables from any environment can be
accessed. Global variables should be accessed and set using the [Global]
tag, page variables should be accessed and set using the [Variable] tag or
$ symbol, and local variables should be accessed and set using the [Local]
tag or # symbol.

Bytes Types
All string data in Lasso is processed as double-byte Unicode characters. The
[Bytes] type is used to represent strings of single-byte binary data. The [Bytes]
type is often referred to as a byte-stream or binary data.

Lasso tags return data in the [Bytes] type in the following situations.

 • The [Field] tag returns a byte stream from MySQL BLOB fields.

 • When the -Binary encoding type is used on any tag.

 • The [Bytes] tag can be used to allocate a new byte stream.

 • Other tags that return binary data. See the LDML Reference for a
complete list.

Table 3: Byte Stream Tag

Tag Description

[Bytes] Allocates a byte stream. Can be used to cast a string
data type as a bytes type, or to instantiate a new bytes
instance. Accepts two optional parameters. The first is
the initial size in bytes for the stream. The second is the
increment to use to grow the stream when data is stored
that goes beyond the current allocation.

Byte streams are similar to strings and support many of the same member
tags. In addition, byte streams support a number of member tags that
make it easier to deal with binary data. These tags are listed in Table 4:
Byte Stream Member Tags.

9 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 9 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

Table 4: Byte Stream Member Tags

Tag Description

[Bytes->Size] Returns the number of bytes contained in the bytes
stream object.

[Bytes->Get] Returns a single byte from the stream. Requires a
parameter which specifies which byte to fetch.

[Bytes->SetSize] Sets the byte stream to the specified number of bytes.

[Bytes->GetRange] Gets a range of bytes from the byte stream. Requires a
single parameter which is the byte position to start from.
An optional second parameter specifies how many bytes
to return.

[Bytes->SetRange] Sets a range of characters within a byte stream.
Requires two parameters: An integer offset into the base
stream, and the binary data to be inserted. An optional
third and fourth parameter specify the offset and length
of the binary data to be inserted.

[Bytes->Find] Returns the position of the beginning of the parameter
sequence within the bytes instance, or 0 if the sequence
is not contained within the instance. Four optional integer
parameters (offset, length, parameter offset, parameter
length) indicate position and length limits that can be
applied to the instance and the parameter sequence.

[Bytes->Replace] Replaces all instances of a value within a bytes stream
with a new value. Requires two parameters. The first
parameter is the value to find, and the second parameter
is the value to replace the first parameter with.

[Bytes->Contains] Returns true if the instance contains the parameter
sequence.

[Bytes->BeginsWith] Returns true if the instance begins with the parameter
sequence.

[Bytes->EndsWith] Returns true if the instance ends with the parameter
sequence.

[Bytes->Split] Splits the instance into an array of bytes instances using
the parameter sequence as the delimiter. If the delimiter
is not provided, the instance is split, byte for byte, into
an array of byte instances.

[Bytes->RemoveLeading] Removes all occurrances of the parameter sequence
from the beginning of the instance. Requires one
parameter which is the data to be removed.

[Bytes->RemoveTrailing] Removes all occurrances of the parameter sequence
from the end of the instance. Requires one parameter
which is the data to be removed.

[Bytes->Append] Appends the specified data to the end of the bytes
instance. Requires one parameter which is the data to

9 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 9 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

append.

[Bytes->Trim] Removes all whitespace ASCII characters from the
beginning and the end of the instance.

[Bytes->ExportString] Returns a string represeting the byte stream. Accepts
a single parameter which is the character encoding
(e.g. ISO-8859-1, UTF-8) for the export. A parameter of
'Binary' will perform a byte for byte export of the stream.

[Bytes->Export8bits] Returns the first byte as an integer.

[Bytes->Export16bits] Returns the first 2 bytes as an integer.

[Bytes->Export32bits] Returns the first 4 bytes as an integer.

[Bytes->Export64bits] Returns the first 8 bytes as an integer.

[Bytes->ImportString] Imports a string parameter. A second parameter
specifies the encoding (e.g. ISO-8859-1, UTF-8) to
use for the import. A second parameter of 'Binary' will
perform a byte for byte import of the string.

[Bytes->Import8Bits] Imports the first byte of an integer parameter.

[Bytes->Import16Bits] Imports the first 2 bytes of an integer parameter.

[Bytes->Import32Bits] Imports the first 4 bytes of an integer parameter.

[Bytes->Import64Bits] Imports the first 8 bytes of an integer parameter.

[Bytes->SwapBytes] Swaps each two bytes with each other.

To cast string data as a bytes object:

Use the [Bytes] tag. The following example converts a string to a bytes vari-
able.

[Var:'Object'=(Bytes: 'This is some text')]

To instantiate a new bytes object:

Use the [Bytes] tag. The example below creates an empty bytes object with a
size of 1024 bytes and a growth increment of 16 bytes.

[Var:'Object'=(Bytes: 1024, 16)]

To return the size of a byte stream:

Use the [Bytes->Size] tag. The example below uses a [Field] tag that has been
converted to a bytes type using the -Binary parameter.

[Var:’Bytes’=(Field:’Name’, -Binary)]
[$Bytes->Size]

9 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 9 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

To return a single byte from a byte stream:

Use the [Bytes->Get] tag. An integer parameter specifies the order number of
the byte to return. Note that this tag returns a byte, not a fragment of the
orignial data (such as a string character).

[Var:’Bytes’=(Field:’Name’, -Binary)]
[$Bytes->(Get: 1)]

To find a value within a byte stream:

Use the [Bytes->Find] tag. The example below returns the starting byte
number of the value Blue World, which is contained within the byte stream.

[Var:’Bytes’=(Field:’Name’, -Binary)]
[$Bytes->(Find: 'Blue World')]

To determine if a value is contained within a byte stream:

Use the [Bytes->Contains] tag. The example below returns True if the value
Blue World is contained within the byte stream.

[Var:’Bytes’=(Field:’Name’, -Binary)]
[$Bytes->(Contains: 'Blue World')]

To add a string to a byte stream:

Use the [Bytes->Append] tag. The following example adds the string I am to
the end of a bytes stream.

[Var:’Bytes’=(Field:’Name’, -Binary)]
[$Bytes->(Append: 'I am')]

To find and replace values in a byte stream:

Use the [Bytes->Replace] tag. The following example finds the string Blue and
replaces with the string Green within the bytes stream.

[Var:’Bytes’=(Bytes: 'Blue Red Yellow')]
[$Bytes->(Replace: 'Blue', 'Green')]

To export a string from a bytes stream:

Use the [Bytes->ExportString] tag. The following example exports a string
using UTF-8 encoding.

[Var:’Bytes’=(Bytes: 'This is a string')]
[$Bytes->(ExportString: 'UTF-8')]

To import a string into a bytes stream:

Use the [Bytes->ImportString] tag. The following example imports a string
using ISO-8859-1 encoding.

9 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 9 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

[Var:'Bytes'=(Bytes: 'This is a string')]
[$Bytes->(ImportString: 'This is some more string', 'ISO-8859-1')]

Tag Data Type
Tags are represented by Lasso as objects which belong to a data type. Just
like arrays or maps, tag objects have member tags which allow them to be
manipulated. Tags can be stored in variables or in complex data types such
as maps or arrays.

Since calling a tag, e.g. [Action_Params], returns the value that results when
the tag is run rather than a reference to the tag, special steps must be taken
to get a reference to the tag itself. Tag objects can be found in four ways.

 • \ Symbol – The \ symbol can be used to find a tag object. For example,
\Field will return a reference to the [Field] tag and \Action_Params will return
a reference to the [Action_Params] tag. The following code stores a refer-
ence to [Action_Params] in a variable.

[Variable: 'myActionParamsTag' = \Action_Params]

 • Tags Map – Lasso maintains a global tag map which can be retrieved
using the [Tags] tag. An individual tag can be referenced using the
[Map->Find] tag. For example, the following code stores a reference to
[Action_Params] in a variable.

[Variable: 'myActionParamsTag' = Tags->(Find: 'Action_Params')]

[Tags] returns a reference to the global variable __tags__ which contains
all substitution, container, and process tags defined in Lasso. Custom
tags defined on the current page can be found in the page variable

__tags__.

 • Data Type Properties – Each instance of a data type maintains a list of
properties for that instance which can be retrieved using the
[Null->Properties] tag. These include both instance variables and member
tags. For example, the following code stores a reference to the [Array->Get]
tag in a variable.

[Variable: 'myGetTag' = Array->Properties->Second->(Find: 'Get')]

The member tags of the built-in data types can also be found in the
global variable __prototypes__.

 • Compound Expressions – These are discussed in the next section.
Compound expressions allow tags to be created on the fly. For example,
the following code stores a compound expression that returns the
number 5 in a variable.

[Variable: 'myTag' = { Return: 5; }]

9 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 9 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

Table 5: Tag Data Type Member Tags

Tag Description

[Tag->Run] Executes the tag as if it had been called normally. The
parameters to this tag are discussed in the table that
follows.

[Tag->Eval] Evaluates a tag or compound expression in the current
context. No parameters can be passed to the tag or
compound expression.

[Tag->asType] Executes the tag as a type initializer. Accepts the same
parameters as [Tag->Run]

[Tag->asAsync] Executes the tag in a new thread. Accepts the same
parameters as [Tag->Run].

[Tag->Description] Returns the description of the tag if defined.

[Tag->ParamInfo] Returns an array of information about the parameters
which the tag requires. Each element of the array has
members ParamName, ParamType, and IsRequired.

[Tag->ReturnType] Returns the type of value the tag will return.

The [Tag->Run] tag is most commonly used with built-in LDML tags and
with custom tags. This tag accepts the parameters outlined in the following
table.

Table 6: [Tag->Run] Parameters

Parameter Description

-Params An array of parameters to pass to the tag. Can be
omitted if the tag does not require any parameters.

-Owner Identifies the variable which contains the data type
that should be operated on, i.e. the object that would
be specified to the left of the -> symbol. Required for
member tags.

-Name Name of the tag. Many built-in LDML tags such as
[Math_…], [String_…], [Server_…], etc. behave
differently depending on what tag name they are called
with. The -Name parameter is required for these tags to
operate properly.

To run a tag:

Use the [Tag->Run] tag on a stored reference to the tag which is to be run.
The following examples each retrieve a tag from the [Tags] or [Null->Properties]
map and then run it using appropriate parameters.

 • The [Action_Params] tag can be called as follows. First a reference to the tag
is stored in a variable, then [Tag->Run] is called on the stored reference. It

9 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 9 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

is always best to specify the -Name parameter explicitly since it is required
by many built-in tags.

[Variable: 'myActionParamsTag' = Tags->(Find: 'Action_Params')]
[$myActionParamsTag->(Run: -Name='Action_Params')]

➜ (Array: (Pair: (-Nothing)=()), (Pair: (-OperatorLogical)=(and)),
(Pair: (-MaxRecords)=(50)), (Pair: (-SkipRecords)=(0)))

 • The [Array->Get] tag can be called by retrieving the tag from the
[Array->Properties] map and then calling it using [Tag->Run] with the array
that is to be acted upon referenced in the -Owner parameter.

[Variable: 'myArray' = (Array: 'Alpha', 'Beta', 'Gamma')]
[Variable: 'myGetTag' = Array->Properties->Second->(Find: 'Get')]
[$myGetTag->(Run: -Params=2, -Owner=$myArray, -Name='Get')]

➜ Beta

The previous examples demonstrate how to use the tag member tags to
execute tags, but each example is easy enough to write using simple LDML.
The following example demonstrates how tag references can be used to
create a new type of custom tag that can operate on each element of an
array.

To run a tag on each element of an array:

Create a custom tag which accepts an array and a reference to a tag as
parameters. The referenced tag will be used on each element of the array in
turn. The custom tag [Ex_VisitArray] is defined as follows.

[Define_Tag: 'Ex_VisitArray', -Required='myArray', -Required='myTag']
 [Iterate: #myArray, (Local: 'myItem')]
 [#myItem= #myTag->(Run: -Params=(Array: #myItem))]
 [/Iterate]
[/Define_Tag]

This tag can now be used to apply a tag to each element of an array. For
example, it could be used to replace each element of an array by the value
of a variable of the same name. An array and three variables are created
and the [Variable] tag is found in the [Tags] map.

[Variable: 'theArray' = (Array: 'Alpha', 'Beta', 'Gamma')]

[Variable: 'Alpha' = 100, 'Beta' = 1234, 'Gamma' = 987]

[Ex_VisitArray: $theArray, Tags->(Find: 'Variable')]

[Variable: 'theArray']

➜ (Array: 100, 1234, 987)

9 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 9 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

Combined with the use of compound expressions which are described in
the next section this can be a very powerful technique for batch processing
of data which is stored in an array.

To get information about a tag:

The [Tag->Description], [Tag->ParamInfo], and [Tag->ReturnType] tags can be used
to get information about a tag. For properly defined tags this information
can prove invaluable in determining how to use an unknown tag.

The following example shows the definition of a tag [myTag] and then the
information that can be retrieved about it.

[Define_Tag: 'Ex_Repeat',
 -Required='String', -Type='string',
 -Optional='Repeat', -Type='integer',
 -ReturnType='String',
 -Description='[Ex_Repeat: String, Integer] => String']
 [Return: #String * (Integer: (Local: 'Repeat'))]
[/Define_Tag]

Description: [Output: \Ex_Repeat->Description]

Returns: [Output: \Ex_Repeat->ReturnType]

Params [Iterate: \Ex_Repeat->ParamInfo, (Var: 'param')]

[Loop_Count]: [Output: $param->ParamName]
 [If: $param->ParamType == 'null'] (Any) [Else] ([Output: $param->ParamType]) [/If]
 [If: $param->IsRequired]Required[/If]
[/Iterate]

 Description: [Ex_Repeat: String, Integer] => String
Returns: String
Params:
1: String (string) Required
2: Repeat (integer)

Compound Expressions
Compound expressions allow for tags to be created within LDML code and
executed immediately. Compound expressions can be used to process brief
snippets of LDML code inline within another tag’s parameters or can be
used to create reusable code blocks.

Evaluating Compound Expressions
A compound expression is defined within curly braces { }. The syntax within
the curly braces should match that for LassoScripts using semi-colons
between each LDML tag. For example, a simple compound expression that

9 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 9 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

adds 6 to a variable myVariable would be written as follows. The expression
can reference page variables.

[Variable: 'myExpression' = { $myVariable += 6; }]

The compound expression will not run until it is asked to execute using
the [Tag->Eval] tag. The expression defined above can be executed as follows.

[Variable: 'myVariable' = 5]
[$myExpression->Eval]
[Variable: 'myVariable']

➜ 11

A compound expression returns values using the [Return] tag just like a
custom tag. A variation of the expression above that simply returns the
result of adding 6 to the variable, without modifying the original variable
could be written as follows.

[Variable: 'myExpression' = { Return: ($myVariable + 6); }]

This expression can then be called using the [Tag->Eval] tag and the result of
that tag will be the result of the stored calculation.

[Variable: 'myVariable' = 5]
[$myExpression->Eval]

➜ 11

Alternately, the expression can be defined and called immediately. For
example, the following expression checks the value of a variable myTest and
returns Yes if it is True or No if it is False. Since the expression is created and
called immediately using the [Tag->Eval] tag it cannot be called again.

[Variable: 'myTest'= True]
[Output: { If: $myTest; Return: 'Yes'; Else; Return: 'No'; /If; }->Eval]

➜ Yes

Running Compound Expressions
The same conventions for custom tags may be used within a compound
expression provided it is executed using the [Tag->Run] tag. Compound
expressions which are run can access the [Params] array and define local
variables.

For example, the following expression accepts a single parameter and
returns the value of that parameter multiplied by itself. The expression is
formatted similar to a LassoScript using indentation to make the flow of
logic clear.

1 0 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 0 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

[Variable: 'myExpression' = {
 Local: 'myValue' = (Params->(Get: 1));
 Return: #myValue * #myValue;
}]

This expression can be used as a tag by calling it with the [Tag->Run] tag
with an appropriate parameter. The following example calls the stored tag
with a parameter of 5.

[Output: $myExpression->(Run: -Params=(Array: 5))]

➜ 25

When combined with the [Ex_VisitArray] tag that was defined in the previous
section, a compound expression can be used to modify every element of
an array in place. In the following example, the compound expression
above is used to square every element of an array.

[Variable: 'myArray' = (Array: 1, 2, 3)]
[Ex_VisitArray: $myArray, $myExpression]

➜ (Array: (1), (4), (9))

Thread Tools
Lasso is a fully multi-threaded environment. Each page is parsed and
executed within its own thread, asynchronous custom tags are executed in
their own threads, and background processes such as the email queue or
schedule watcher are executed in their own threads.

It is important in a multi-threaded environment to synchronize access to
resources such as files, global variables, or database records so that two
threads do not attempt to modify the same resource at the same time.
Communication between threads is discussed in the section that follows.

Consider an LDML format file which maintains a global variable recording
how many times the page has been visited. At the top of the page the vari-
able is displayed to the visitor. At the bottom of the page the variable is
incremented by one. Everything will work fine as long as the page is only
loaded by one visitor at a time. However, if the page is loaded by two visi-
tors who overlap a situation can develop where the following sequence of
events happens.

Thread Example

 1 Visitor A loads the format file by loading the URL in their Web browser.

 2 Page A starts processing with the value of the global variable, e.g. 100.

 3 Visitor B loads the format file by loading the URL in their Web browser.

1 0 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 0 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

 4 Page B starts processing with the value of the global variable, e.g. 100.
This is the same value as what visitor A received.

 5 Page A finishes processing and the global variable is set to a new value,
e.g. 101. The new value is based on the value of the variable that was
fetched at the top of the page.

 6 Page B finishes loading and the global variable is set to a new value, also
101. The new value is based on the value of the variable that was fetched
at the top of the page and does not take into account the fact that visitor
A’s page load has already modified the variable.

At the end of the process the global variable has effectively lost track of one
visitor. This particular example could be fixed by reading and incrementing
the variable at the top of the page, but for other resources it is necessary to
restrict access so only one thread or page can have access to the resource at
a time.

Table 7: Thread Tools

Type Description

[Thread_Lock] A simple per-thread lock which allows sequential access
to a shared resource.

[Thread_Semaphore] A counter that can be incremented or decremented to
provide multiple threads access to a shared resource.

[Thread_RWLock] A lock that allows multiple readers, but only one writer
for a shared resource.

Thread Lock
A [Thread_Lock] allows multiple pages or asynchronous tags to use a shared
resource sequentially. A [Thread_Lock] is usually created and stored in a
global variable so all pages or tags can access it. The [Thread_Lock] has two
member tags.

Table 8: [Thread_Lock] Member tags:

Tag Description

[Thread_Lock->Lock] Accepts an optional parameter which is the number of
milliseconds to wait before timing out. Returns True if
the lock was successful or False if the timeout value
was reached.

[Thread_Lock->Unlock] Unlocks a previously established lock. If there is a
thread waiting for a lock then it will be allowed to
continue.

1 0 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 0 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

To control concurrent access to a shared resource:

In the following example, a global variable Counter is used by a Web page
to store the number of times that the Web page has been accessed. A
[Thread_Lock] is used to ensure that only one page accesses the variable at a
time. A timeout of 1000 (one second) is used to ensure that no page ends
up waiting too long for access to the variable.

In a page in the LassoStartup folder the following two variables are defined.
Counter is the global variable that will store the number of times the page
has been loaded. Counter_Lock is the [Thread_Lock] that allows for sequential
access to the variable.

[Variable: 'Counter' = 0]
[Variable: 'Counter_Lock' = (Thread_Lock)]

In the format file that visitors will load the following code attempts to lock
Counter_Lock. The Counter is only modified if the attempt to get the lock is
successful.

[If: $Counter_Lock->(Lock: 1000) == True]
 [$Counter += 1]
 [$Counter_Lock->Unlock]
[/If]

The timeout can be used to weigh the importance of having an accurate
counter against the length of delay that a site visitor should be subjected to
in a busy site. With a simple example like this the timeout will likely never
be reached even on a very busy site.

Use of [Thread_Lock] is entirely voluntary and can be used to handle access
to any shared resource. It is up to the site designer to create the necessary
[Thread_Lock] variables and then use them when accessing shared resources.

Thread Semaphore
A [Thread_Semaphore] is a thread lock which has a counter. The
[Thread_Semaphore] is initialized with a maximum number of concurrent
accesses that can occur. [Thread_Semaphore] has two member tags which are
used to increment or decrement the number of current accesses.

1 0 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 0 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

Table 9: [Thread_Semaphore] Member Tags

Tag Description

[Thread_Semaphore->Increment] Requires a single parameter which is the amount to
increment the semaphore. Does not return until the
semaphore can be incremented by that amount. A
second, optional parameter specifies the number
of milliseconds to wait before timing out.

[Thread_Semaphore->Decrement] Requires a single parameter which is the amount
to decrement the semaphore.

To allow a fixed number of accesses to a shared resource:

A [Thread_Semaphore] can be used with an appropriate maximum value. For
example, a page which displays site-wide statistics might take a long time
to load so it is desirable to only allow five users to access the page at the
same time. A semaphore can be used to block any additional users from
seeing the page until one or more of the other users’ page loads complete.

The following code would be placed into the LassoStartup folder in order
to store the semaphore in a global variable. The semaphore is set to only
allow five concurrent users.

[Variable: 'Page_Semaphore' = (Thread_Semaphore: 5)]

On the page which displays the site wide statistics the semaphore is incre-
mented at the top of the page (with a timeout of 5 seconds) and then
decremented at the bottom. If more than five users are already loading the
page then the increment at the top will pause until one of the users’ page
finishes.

[If: $Page_Semaphore->(Increment: 1, 5000)]
 … Contents of the Page …
 [$Page_Semaphore->(Decrement: 1)]
[Else]
 <p>Page is busy. Try again later.
[/If]

Thread Read/Write Lock
A [Thread_RWLock] is a thread lock which allows an unlimited number of
simultaneous reads to occur on a shared resource, but only allows one
thread to write to the resource at a time. Write access will not be granted
until all reads and writes have completed. Read access will not be granted
as long as the write access is currently in use. [Thread_RWLock] has four
member tags which are used to establish and release read access and write
access.

1 0 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 0 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

Table 10: [Thread_RWLock] Member Tags

Tag Description

[Thread_RWLock->ReadLock] Establishes a read lock. If a write lock is currently
in place then the tag will pause until the write lock
is released. Since read locks are not exclusive it
will not pause if additional read locks have already
been granted.

[Thread_RWLock->ReadUnlock] Releases a read lock.

[Thread_RWLock->WriteLock] Establishes a write lock. If one or more read locks
or a write lock is in place then the tag will pause
until the locks are released.

[Thread_RWLock->WriteUnlock] Releases a write lock.

To control write access to a resource while allowing multiple reads:

Most resources can be accessed by multiple threads which only need
to read from the resource, but require that only one client write to the
resource at the same time. In the following example a global variable
contains a set of server-wide preferences that can be read by many pages at
the same time, but must only be modified by one page at a time.

In a page in the LassoStartup folder the following two variables are defined.
Preferences is the global variable that will store server-wide preferences such
as the administrator’s email address and a count of how many page loads
there have been. Preferences_Lock is the [Thread_RWLock] that controls access
to the variable.

[Variable: 'Preferences' = (Map: 'Email' = 'administrator@example.com')]
[Variable: 'Preferences_Lock' = (Thread_Lock)]

In each format file in the site a read lock is established on the preferences.
As many format files as are needed can concurrently read the preferences.

[$Preferences_Lock->(ReadLock)]
 … Contents of the Page …
[$Preferences_Lock->(ReadUnlock)]

In a page which modifies the preferences a write lock needs to be estab-
lished. The following code first releases the read lock, then establishes a
write lock, modifies the global Preferences variable, and finally releases the
write lock and re-establishes the read lock for the remainder of the page.

[$Preferences_Lock->(ReadUnlock)]
 [$Preferences_Lock->(WriteLock)]
 [$Preferences->(Insert: 'Email' = (Action_Param: 'Email'))]
 [$Preferences_Lock->(WriteUnlock)]
[$Preferences_Lock->(ReadLock)]

1 0 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 0 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

The [Thread_RWLock] tags do not have a timeout value like the
[Thread_Lock] page. In the example above the page which is loaded by the
visitor who wants to change the preferences will simply idle until each of
the pages which have established a read lock are finished loading.

Thread Communication
The previous section documented methods for sharing data between
threads using global variables. Often it is desirable to not just share data,
but to push data from thread to thread. This section documents techniques
for sending signals and data between threads.

Table 11: Thread Communication

Type Description

[Thread_Event] A simple signalling method which allows threads to idle
until they receive a signal to continue.

[Thread_Pipe] Allows variables and data objects to be sent from thread
to thread. The foundation of more complex messaging
systems.

Thread Events
Thread events are simple signals that are either in an active or inactive state.
One or more threads can wait for a signal to occur. A triggering thread
can cause one or all of the threads waiting for the signal to continue
processing. No data can be passed using thread events.

Table 12: [Thread_Event] Member Tags:

Tag Description

[Thread_Event->Wait] Accepts an optional timeout value in milliseconds. If
a signal is received before the timeout then True is
returned otherwise False is returned. With no timeout
value the tag will pause forever.

[Thread_Event->Signal] Allows one thread which is waiting for this signal to
continue.

[Thread_Event->SignalAll] Allows all threads which are waiting for this signal to
continue.

1 0 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 0 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

To create an asynchronous tag that waits for a signal:

Create a [Thread_Event] signal in a page variable. Within a custom asynchro-
nous tag, wait until the signal is triggered before continuing.

In the following example a custom tag waits for one second for the page
to reach the end. It then logs whether the page completed in one second
or not to the console using the [Log_Warning] tag. At the top of the page the
custom tag and the signal are defined. The custom tag is called to start the
one second timer. At the bottom of the page the signal is triggered.

[Variable: 'mySignal' = (Thread_Event)]
[Define_Tag: 'OneSecond']
 [If: $mySignal->(Wait: 1000) == True]
 [Log_Warning: 'The page took less than 1 second to load.']
 [Else]
 [Log_Warning: 'The page took more than 1 second to load.']
 [/If]
[/Define_Tag]
[OneSecond]

 … Page Contents …

[$mySignal->Signal]

Each time the page loads one of the messages will be logged to the console
depending on how long the page took to process.

Thread Pipes
Thread pipes allow data to be passed from thread to thread. The
[Thread_Pipe] type has two member tags.

Table 13: [Thread_Pipe] Member Tags:

Tag Description

[Thread_Pipe->Set] Accepts a value which will be placed into the pipe. A
subsequent (or waiting) call to [Thread_Pipe->Get] will
retrieve the value.

[Thread_Pipe->Get] Accepts an optional parameter which is a timeout value
in milliseconds. If an object is waiting in the pipe or is
placed in the pipe before the timeout value then it is
returned. Otherwise null is returned when the timeout
value is reached. If the timeout value is omitted then the
tag will wait forever for an object to arrive.

To create an asynchronous tag that will process messages:

Create a [Thread_Pipe] in a global variable and an asynchronous tag in the
LassoStartup folder. The asynchronous tag will idle until an event is placed

1 0 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 0 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

into the pipe. For this example, the tag will log each received event to the
console, but more complex processing is possible.

In a page in the LassoStartup folder the [Thread_Pipe] and custom tag
[Ex_Watcher] are defined. The custom tag has a [While: True] loop that
ensures that it loops forever since the condition will always be true. The
[Thread_Pipe->Get] tag has a timeout value of 10000 (10 seconds) so it can
send a Still Waiting… message to the console. If a message of Abort is received
then the tag aborts without doing any further processing.

[Variable: 'myPipe'= (Thread_Pipe)]
[Define_Tag: 'Ex_Watcher']
 [While: True]
 [Local: 'Message' = $myPipe->(Get: 10000)]
 [Select: #Message]
 [Case: 'Abort']
 [Return]
 [Case: Null]
 [Log_Warning: 'Message: Still Waiting…']
 [Case]
 [Log_Warning: 'Message: ' + #Message]
 [/Select]
 [/While]
[/Define_Tag]
[Ex_Watcher]

In a format file a message can be sent to the watcher by placing it into the
pipe using the [Thread_Pipe->Set] tag. For example, the following code places
a message saying I Got It! into the pipe. The message will appear in the
console immediately, but no results will be returned to the page.

[$myPipe->(Set: 'I Got It!')]

Network Communication
Network communication in Lasso are provided by the [Net] type and its
member tags. These tags allow for direct communication between Lasso
and remote servers using low-level communication standards. These tags
are the foundation for the implementation of specific protocols such as
HTTP, RPC, or SMTP communication.

Note: Using the [Net] type requires an understanding of Internet communica-
tion standards. The examples in this chapter are purely for demonstration
purposes of the [Net] tags.

1 0 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 0 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

The [Net] type supports the following features:

 • TCP (Transmission Control Protocol) – Connection oriented communi-
cation with remote servers. TCP allows communication with full duplex
capabilities and guaranteed delivery of data.

 • UDP (User Datagram Protocol) – Connectionless communication with
remote servers. UDP is a lightweight format that allows communication
without guaranteed delivery of data.

 • Listeners – Lasso allows sockets to be opened to listen for either TCP or
UDP traffic. Lasso can act as either the source or the recipient of TCP or
UDP communication.

 • Non-Blocking – Connections can be non-blocking so data is sent and
received without synchronization with the remote host.

 • Timeouts – Lasso has an efficient set of timeout controls that allow
different timeout periods to be used when establishing connections and
when participating in communication.

Note: The [TCP_…] tags from prior versions of Lasso have been deprecated.
Solutions which rely on the [TCP_…] tags should be rewritten to make use of
the new functionality afforded by the [Net] type.

The [Net] tag and the constants that are returned from some network
operations are detailed in Table 11: [Net] Tags. The member tags of the
[Net] type are split into three categories. The tags which are used to control
connections for either TCP or UDP communication are listed in Table 12:
[Net] Type Members Tags. The tags specific to TCP communication are
listed in Table 13: [Net] TCP Member Tags and the tags specific to UDB
communication are listed in Table 14: [Net] UDP Member Tags.

The discussion that follows is split into three sections: TCP
Communication, TCP Listening, and UDP Communication.

1 0 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 0 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

Table 14: [Net] Tags

Tag Description

[Net] Create a new network data type. Requires no parameter.
All interaction with the network data type is performed
through the member tags detailed below.

[Net_ConnectOK] Returned by [Net->Connect] if the connection was
established.

[Net_Connect InProgress] Returned by [Net->Connection] if another connection is
in progress.

[Net_TypeTCP] Passed to [Net->SetType] to establish TCP
communication.

[Net_TypeSSL] Passed to [Net->SetType] to establish SSL over TCP
communication.

[Net_TypeUDP] Passed to [Net->SetType] to establish UDP
connectionless communication.

[Net_WaitRead] Passed into and/or returned from [Net->Wait] to signal
that bytes are available for reading from a connection.

[Net_WaitWrite] Passed into and/or returned from [Net->Wait] to signal
that bytes can be written into a connection.

[Net_WaitTimeout] Returned from [Net->Wait] to signal that a timeout
occurred.

Note: All of the [Net_…] tags represent values that are either passed into [Net]
type member tags or returned from them. None of these tags are used on
their own.

1 1 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 1 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

Table 15: [Net] Type Member Tags

Tag Description

[Net->Bind] Binds to a specific port on the local machine. Requires
a single parameter which is the port on which to bind.
Required for establishing a listener or reading bytes from
a connectionless protocol (like UDP).

[Net->Close] Closes an open or bound connection. Every connection
which is opened should be explicilty closed when its use
is completed.

[Net->LocalAddress] Returns the address of the local host.

[Net->RemoteAddress] Returns the address of the remote host.

[Net->SetBlocking] Specifies whether connects, sends, and receives should
block until the operation completes. Requires a single
boolean parameter. The default is True to require
blocking.

[Net->SetType] Specifies whether the connection should use TCP or
UDP. Requires a single parameter either [Net_TypeTCP],
[Net_TypeSSL], or [Net_TypeUDP]. Defaults to TCP
communication.

[Net->Wait] For non-blocking sockets only. Waits for a specified
number of seconds for the connection to enter a state.
Requires one parameter which is the number of seconds
to wait before timing out. A negative value will cause
the tag to wait forever. An optional second parameter
can be either [Net_WaitRead] or [Net_WaitWrite]
specifying the state to wait for, otherwise either state
will trigger a return. The tag returns the current state of
the connection [Net_WaitRead] or [Net_WaitWrite] or
[Net_WaitTimeout] if the timeout value was reached.

SSL Communication
SSL connections and listeners are established in exactly the same fashion
as TCP connections and listeners. All of the same member tags are used
except that [Net->(SetType: Net_TypeSSL)] must be called to instruct Lasso that
SSL-based communication is required.

Notes are provided throughout the examples for TCP connections and
listeners which provide details of how to establish SSL communication.

1 1 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 1 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

TCP Communication
TCP connections are some of the most common on the Internet. They are
used for communication with Web servers, email servers, FTP servers, and
for protocols like SSH and Telnet.

Table 16: [Net] TCP Member Tags

Tag Description

[Net->Accept] Accepts a single connection and returns a new [Net]
instance for the connection.

[Net->Connect] Connects to a remote host. Requires two parameters.
The first is the DNS host name or IP address of the
remote host. The second is the port on which to connect.
Returns [Net_ConnectOK] if the connection was
established or [Net_ConnectInProgress] if a connection
attempt is already in progress.

[Net->Listen] Switches the connection to an incoming, listening socket.

[Net->Read] Reads bytes from the connection. Requires a single
parameter which is the maximum number of bytes to be
read. Returns the bytes read from the connection.

[Net->Write] Writes bytes into the connection. Requires a single
parameter which is the string to be written into the
connection. Optional second and third parameters
specify an offset and count of characters from the string
to be written into the connection. Returns the number of
bytes written.

To use a blocking TCP connection:

By default a TCP connection uses blocking to ensure that each commu-
nication completes before the next begins. This mode works best for
command/response protocols in which commands are issued to the
remote host and then the response to those commands is received back.
Many standard Internet protocols like HTTP, SMTP, and FTP rely on this
mechanism.

The basic outline of a TCP communication session is as follows.

 1 A [Net] object is created and stored in a variable. This object will repre-
sent the communication channel with a remote server.

[Var: 'myConnection' = (Net)]

Note: If SSL communication is desired for the TCP connection then
[$myConnection->(SetType: Net_TypeSSL)] should be called immediately after
creating the [Net] object.

1 1 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 1 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

 2 A connection to a remote server is established. The connection requires
the DNS host name or IP address of the remote server and the port on
which to connect.

[$myConnection->(Open: 'localhost', 80)]

 3 At this point the remote server might send a welcome message. HTTP
servers (port 80) don’t send any message. SMTP servers (port 25) send a
message like the following. The parameter to [Net->Read] is the maximum
number of characters to fetch. There are only about 32 characters in the
connection buffer so that is all that is returned.

[$myConnection->(Read: 1024)]

➜ 220 localhost Mail Ready for action

 4 A message can be sent through the channel to the remote server using
the [Net->Write] tag. For example, sending GET / (followed by \r\n) to an
HTTP server will get the HTML of the home page of the default site.

[$myConnection->(Write: 'GET /\r\n')]

 5 The return value from the Web server can be read using [Net->Read].
Since this is a blocking connection the [Net->Read] tag will wait until
the response from the remote server is complete before returning. The
parameter to [Net->Read] is the maximum number of characters to fetch
and should be larger than the expected result. In this case we will fetch
the first 32 kilobytes of the Web page.

[$myConnection->(Read: 32768)]

➜ <html>\r<head>\r\t<title>Default Page</title>\r</head>\r<body>…</body>\r</html>

 6 The connection should be closed once communication is complete.

[$myConnection->Close]

To use a non-blocking TCP connection:

When using a non-blocking TCP connection each [Net->Read] tag will return
immediately with whatever data is currently available to be read. This
means that if no data has been received from the remote server [Net->Read]
will return with no bytes. Rather than repeatedly calling [Net->Read], the
[Net->Wait] tag can be used to wait until there are bytes available to be read.

The basic outline of a non-blocking TCP session is as follows.

 1 A [Net] object is created and stored in a variable. This object will repre-
sent the communication channel with a remote server.

[Var: 'myConnection' = (Net)]

1 1 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 1 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

Note: If SSL communication is desired for the TCP connection then
[$myConnection->(SetType: Net_TypeSSL)] should be called immediately after
creating the [Net] object.

 2 A connection to a remote server is established. The connection requires
the DNS host name or IP address of the remote server and the port
which is to be connected to.

[$myConnection->(Open: 'localhost', 80)]

 3 The connection is switched over to non-blocking mode using the
[Net->SetBlocking] tag.

[$myConnection->(SetBlocking: False)]

 4 A message can be sent through the channel to the remote server using
the [Net->Write] tag. For example, sending GET / (followed by \r\n) to an
HTTP server will get the HTML of the home page of the default site.

[$myConnection->(Write: 'GET /\r\n')]

 5 A [Net->Wait] tag is used to wait until there is data which can be read
through the connection. The [Net->Wait] tag takes two parameters. The
first is the condition which is being waited for, in this case [Net_WaitRead],
and the second is the number of seconds to wait. The tag below will
wait for 60 seconds for data to be available.

[$myConnection->(Wait: Net_WaitRead, 60)]

This tag should be incorporated into a conditional statement so its
return value can be checked. The return value from [Net->Wait] will be
either [Net_WaitRead] if a read is not possible or [Net_WaitTimeout] if the
60 seconds timeout was reached. The following code will perform a read
from the connection only if data is available.

[If: ($myConnection->(Wait: Net_WaitRead, 60) == Net_WaitRead)]
 [$myConnection->(Read: 32768)]
[Else]
 Timeout!
[/If]

➜ <html>\r<head>\r\t<title>Default Page</title>\r</head>\r<body>…</body>\r</html>

 6 The connection should be closed once communication is complete.

[$myConnection->Close]

TCP Listening
The [Net] type can be used to listen for connections coming in from remote
clients. This allows Lasso to act as the server for different protocols. In

1 1 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 1 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

theory, with this functionality Lasso itself could be used as an HTTP server
or SMTP server.

The basic outline of a TCP listening session is as follows.

 1 A [Net] object is created and stored in a variable. This object will repre-
sent the communication channel with a remote server.

[Var: 'myListener' = (Net)]

Note: If SSL communication is desired for the TCP listener then
[$myListener->(SetType: Net_TypeSSL)] should be called immediately after
creating the [Net] object.

 2 The connection must be switched into listening mode and bound to a
port on the local machine. This is the port that remote clients will access
in order to communicate with the new service. In this example port
8000 is used.

[$myListener->(Bind: 8000)]
[$myListener->(Listen)]

 3 Since this is a listener no further action is required until a remote client
attempts a connection. The [Net->Accept] tag is used to wait for and
accept a connection when one comes in. The result of the [Net->Accept]
tag is a new [Net] object specific for the remote client that has connected.
The listener is then free to call [Net->Accept] again and wait for the next
connection.

[Var: 'myConnection' = $myListener->(Accept)]

 4 Now, using the connection that has been established with the remote
host, the particular needs of the protocol that is being implemented
must be met. For this example, the connection will wait for a command
from the remote client and then return a Web page in response.

[Var: 'myCommand' = $myConnection->(Read: 1024)]

[If: ($myCommand >> 'GET")]
 [$myConnection->(Write: '<html> … </html>')]
[Else]
 [$myConnection->(Write: 'Error: Unrecognized Command')]
[/If]

➜ <html>\r<head>\r\t<title>Default Page</title>\r</head>\r<body>…</body>\r</html>

 6 The connection should be closed once communication is complete and
if no further connections will be processed by the listener it should be
closed as well.

[$myConnection->Close]
[$myListener->Close]

1 1 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 1 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

A listener can be blocking or non-blocking and can use the [Net->Wait]
command to implement timeouts. The [Net] type can be used to create a
listener that only accepts one connection at a time or to create a listener
that spawns an asynchronous tag for each incoming connection so many
connections can be handled simultaneously.

UDP Connections
UDP connections are generally used for simpler protocols on the Internet.
UDP is considered connectionless. Rather than establishing a connec-
tion and then sending data, data will simply be sent to the remote host
and a response listened for. UDP is an excellent method for one way
communication, such as a status logging service, or for single command/
response communication. UDP connections make use of the general
[Net->Bind] and [Net->Wait] and [Net->Close] tags as well as two UDP specific
tags, [Net->ReadFrom] and [Net->WriteTo].

Table 17: [Net] UDP Member Tags

Tag Description

[Net->ReadFrom] Reads whatever data is available from a UDP
connection. Requires one parameter which is the
maximum number of bytes to read. Returns a pair
where the first part is the data and the second part is
the name of the host that sent the data.

[Net->WriteTo] Sends data to a specified host and port. Requires three
parameters. The DNS host name or IP address of the
remote host, the port to connect to, and the string data
to be written. Optional additional parameters allow an
offset and count into the string data to be specified.
Returns the number of bytes written.

To send a message using UDP:

A message can be sent to a remote host with UDP using only
the [Net->WriteTo] tag. This tag includes the connection information and
message to send all in one call. This example implements a fictional
TIME command that is sent to port 8000 on a remote machine. The remote
machine will then send back the current time on port 8000.

 1 A [Net] object is created and stored in a variable. This object will repre-
sent the communication channel with any remote UDP servers.

[Var: 'myConnection'= (Net)]

1 1 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 1 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

 2 The [Net] object must be switched to UDP mode using the [Net->SetType]
tag.

[$myConnection->(SetType: Net_TypeUDP)]

 3 A message is sent to the remote server. The [Net->WriteTo] tag requires the
DNS host name or IP address of the remote server and the port which is
to be connected to as well as the message which is to be sent.

[$myConnection->(WriteTo: 'time.example.com', 8000, 'TIME')]

 4 The connection should be closed once all UDP communication have
completed. However, this same connection can be used to communicate
with many different servers.

[$myConnection->Close]

Once a UDP message has been sent a listener must be established to wait
for a reply. Since no connection is established there is no way to simply
hold the channel open so the remote host can reply immediately.

To listen for a message using UDP:

Listening for a UDP message involves opening a port and then waiting for
a message using the [Net->ReadFrom] tag. Messages can come in from any
machine on the Internet. The incoming data is returned as the first part of
the result from [Net->ReadFrom] and the address of the remote host is sent
as the second part of the result.

 1 A [Net] object is created and stored in a variable. This object will repre-
sent the communication channel with any remote UDP servers.

[Var: 'myListener'= (Net)]

 2 The [Net] object must be switched to UDP mode using the [Net->SetType]
tag.

[$myListener->(SetType: Net_TypeUDP)]

 3 The [Net] object is bound to a local port using the [Net->Bind] tag. The local
port is the port that other machines will send messages on. For this
example, the listener is bound to port 8000.

[$myListener->(SetType: Net_TypeUDP)]

 4 Now the listener must be wait for a message to come in from a remote
server. The [Net->ReadFrom] tag will wait until a message comes in and
then return a pair containing the data that has been received and the
address of the host that sent the data. The parameter is the maximum
number of bytes to read.

[Var: 'myMessage' = $myListener->(ReadFrom: 32768)]
[Var: 'myData' = $myMessage->First]
[Var: 'myHost' = $myMessage->Second]

1 1 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S 1 1 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

The current time can now be output by displaying the data that was sent
from the remote host.

The current time is: [Var: 'myData'].

 5 The connection should be closed once all UDP communication have
completed. However, this same connection can be used to communicate
with many different servers.

[$myListener->Close]

 -Op='bw', 'store_key'='log';
 Records;
 Var: 'key' = (integer: (field: 'data'));
 Var: 'file' = 0, 'database' = 0, 'console' = 0;

Post Processing
Lasso will perform all tags or compound expressions which are stored
in the _at_end variable immediately after the rest of the format file has
completed executing, but before the formatted page is sent to the user. This
allows post processing to be performed on the page.

 Note: Several internal functions may be scheduled for post processing using
the _at_end variable. The default contents of the _at_end variable should never
be modified.

To post process a format file:

There are two methods to add code to the _at_end variable:

 • Custom tags can be added to the _at_end variable by reference. They
will be called without any parameters. IN the following example a tag
[Ex_PostProcess] is defined and then inserted into _at_end using a refer-
ence \Ex_PostProcess.

<?LassoScript
 Define_Tag: 'Ex_PostProcess';
 …
 /Define_Tag;
 $_at_end->(Insert: \Ex_PostProcess);
?>

 • Compound expressions can be inserted into the _at_end variable directly.

<?LassoScript
 $_at_end->(Insert: { … });
?>

1 1 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 5 – A D V A N C E D P R O G R A M M I N G TO P I C S

6
Chapter 6

Lasso C/C++ API 7

This chapter documents Lasso C/C++ API 7 (LCAPI 7), which can be used
to develop new Lasso data source connectors, data types, and LDML tags.

 • Overview introduces the API and describes the types of extensions that
can be built.

 • What’s Changed describes what is new and what has changed between
LCAPI versions 6 and 7.

 • Requirements includes platform-specific development environment
details.

 • Getting Started is a quick-start guide to building the samples included
with the Extending Lasso 7 Guide.

 • Debugging includes platform-specific information about how to debug
your projects.

 • Substitution Tag Operation introduces the theory of operation behind
creating substitution tags using LCAPI.

 • Substitution Tag Tutorial describes authoring and building a substitu-
tion tag.

 • Data Source Connector Operation introduces the theory of operation
behind creating data source connectors using LCAPI.

 • Data Source Connector Tutorial walks through authoring and building
a Lasso data source connector.

 • Data Type Operation introduces the theory of operation behind
creating custom data types using LCAPI.

 • Data Type Tutorial walks through authoring and building custom data
types.

1 1 9

E X T E N D I N G L A S S O 7 G U I D E

 • LCAPI Function Reference includes details of every function used in
LCAPI.

 • LCAPI Data Type Reference includes details of every data type used in
LCAPI.

 • Frequently Asked Questions includes troubleshooting information and
common questions.

Overview
LCAPI lets you write C or C++ code to add new LDML substitution tags,
data types, and data source connectors to Lasso Professional 7. LCAPI is
similar to LJAPI, but is optimized for C and C++ developers.

It is generally recommended that data source connectors be developed
using LCAPI because they will offer superior performance and easier
installation over connectors built using LJAPI. Writing tags in LCAPI offers
advantages over LJAPI and custom LDML tags in speed and system perfor-
mance. However, tags must be compiled separately for Windows 2000/XP
and Mac OS X in order to support each platform. Alternately, custom tags
written in LDML instantly support each platform. See Chapter 3: Custom
Tags and Types for more information on writing custom tags in LDML.

This chapter provides a walk-through for building an example substitu-
tion tag, data source connector, and data type in LCAPI. Source code
for the Lasso MySQL module as well as the code for the substitution
tag, data type, and data source connector examples are included in the
Lasso Professional 7/Documentation/4-ExtendingLasso/LCAPI folder on the hard
drive.

What’s Changed
LCAPI 6 expands on LCAPI 5 by providing functions that allow tag param-
eters to be retrieved while preserving the parameter’s data type, and it
allows page variables of any type to be set and retrieved. It also provides
functions to aid in logging critical errors and debugging messages, and
functions for querying Lasso security for access permissions.

LCAPI 6 includes new facilities for creating new data types, container tags,
and asynchronous tags that run in their own thread. Data types created via
LCAPI 6 may utilize tag members, data members, and callbacks. LCAPI 6
also provides the ability to manipulate native data types, LDML data types,
or other LCAPI data types by accessing their data members or running
their member tags. For instance, using LCAPI 6 functions, developers can

1 2 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 2 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

build custom arrays and maps that can be used in LDML scripts. LCAPI 6
also allows any type of data to be returned from an LCAPI tag, including
binary data and complex data types such as maps.

Requirements
In order to write your own LDML substitution tags or data source connec-
tors in C or C++, you need the following:

Windows

 • Microsoft Windows 2000 or Microsoft Windows XP Professional.

 • Microsoft Visual C++ 7.

 • Lasso Professional 7 for Windows 2000/XP.

Mac OS X

 • Mac OS X 10.2 or 10.3 with GNU C++ compiler and linker (Dev Tools)
installed.

 • Lasso Professional 7 for Mac OS X.

Getting Started
This section provides a walk-through for building sample LCAPI tag
modules in Windows 2000/XP and Mac OS X.

To build a sample LCAPI tag module in Windows 2000/XP:

 1 Locate the following folder in the hard drive.

C:\Program Files\Blue World Communications\Lasso Professional 7\
Documentation\4-ExtendingLasso\Tags\MathFuncsTags

 2 In the MathFuncsTags folder, double-click the MathFuncsCAPI.dsp project file
(you need Microsoft Visual C++ 7 in order to open it).

 3 Choose Build > Rebuild All to compile and make the MathFuncsCAPI.DLL.

 4 After building, Debug and Release folders will have been created inside
your MathFuncsCAPI project folder.

 5 Open the MathFuncsTags/Debug folder and drag MathFuncsCAPI.DLL into the
Lasso Professional 7/LassoModules folder on the hard drive.

 6 Stop and then restart Lasso Service.

 7 New tags [Example_Math_Abs], [Example_Math_Sin] and
[Example_Math_Sqrt] are now part of the LDML language.

1 2 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 2 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

 8 Drag the sample Lasso format file called MathFuncsCAPI.lasso into your
Web server root.

 9 In a Web browser, view http://localhost/MathFuncsCAPI.lasso to see the new
LDML tags in action. The source code for MathFuncsCAPI.cpp can be read
in the MathFuncsCAPI.lasso page.

To build a sample LCAPI tag module in Mac OS X:

 1 Open a Terminal window.

 2 Change the current folder to the Lasso Professional 7/Documentation folder
using the following command:

 cd /Library/Lasso Professional 7/Documentation/4-ExtendingLasso/LCAPI/Tags/
MathFuncsTags

 3 Build the sample project using the provided makefile. You must be
logged in as the root user to run this command.

make

 4 After building, a Mac OS X dynamic library file named
libMathFuncs.DYLIB will be in the current folder. This is the LCAPI module
you’ll install into the LassoModules folder.

 5 Copy the newly-created module to the Lasso modules folder using the
following command:

cp libMathFuncs.DYLIB /Applications/Lasso Professional 7/LassoModules

 6 Quit Lasso Service if it’s running, so that the next time it starts up, it will
load the new module you just built (you’ll need to know a root pass-
word to use sudo).

cd /Applications/Lasso Professional 7/Tools/
sudo ./stopLassoService.command

 7 Start Lasso Service so it will load the new module.

cd /Applications/Lasso Professional 7/Tools/
sudo ./startLassoService.command

 New tags [Example_Math_Abs], [Example_Math_Sin] and
[Example_Math_Sqrt] are now part of the LDML language.

 8 Copy the sample Lasso format file called MathFuncsCAPI.lasso from your
Lasso Professional 7/Documentation/4-ExtendingLasso/LCAPI folder into your
Web server document root.

 9 Use a Web browser to view http://localhost/MathFuncsCAPI.lasso to see the
new LDML tags in action. The source code for MathFuncsCAPI.cpp can be
read in the MathFuncsCAPI.lasso page.

1 2 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 2 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

Debugging
You can set breakpoints in your LCAPI DLLs or DYLIBs and perform source-
level debugging for your own code. In order to set this up, add path infor-
mation to your project so it knows where to load executables from. For this
section, we will use the provided substitution tag project as the example.

To debug in Windows 2000/XP:

 1 In Microsoft Visual C++ 7, choose the Project > Settings menu item.

 2 Make sure the Win32 Debug pull-down menu is selected, if available.

 3 Click the Debug tab.

 4 In the Executable for debug session box, enter the full path to your currently-
installed Lasso Professional application, typically as follows:

C:\Program Files\Blue World Communications\Lasso Professional 7\
LassoService.exe.

 5 In the Working folder box, enter the same path as step 4, but remove
LassoService.exe from the end of the path.

C:\Program Files\Blue World Communications\Lasso Professional 7\.

 6 Now click the Link tab.

 7 In the Output file name box, enter a full path to your module name in the
LassoModules folder.

C:\Program Files\Blue World Communications\Lasso Professional 7\LassoModules\
MathFuncsCAPI.DLL.

 8 Set a breakpoint in your source code; one good place to break is in the
registerLassoModule() function, which will cause a break during Lasso
Professional startup.

 9 Stop Lasso Service if it’s running so that the DLL may launch Lasso
Professional from the Visual C++ project.

 10 Run the DLL. A console window should now appear with the startup
information as Lasso Professional begins to execute from your project.

To debug in Mac OS X:

 1 From a Terminal window, change folder into the example LCAPI source
code folder by entering the following:

cd /Applications/Lasso\ Professional\ 7/Documentation/4-ExtendingLasso/LCAPI/
Tags/MathFuncsTags

 2 Build with debug options turned on by entering the following:

make "DEBUG += -g3 -O0"

1 2 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 2 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

Note: The last two characters of the command are a letter O followed by
a zero.

 3 Copy the built DYLIB into the LassoModules folder by entering the
following:

cp libMathFuncs.dylib /Applications/Lasso\ Professional\ 7/LassoModules/

 4 Change folder into the Lasso Professional 7/Tools folder:

cd /Applications/Lasso\ Professional\ 7/Tools/

 5 Quit Lasso Service if it’s running, so that the next time it starts up, it will
load the new module you just built (you’ll need to know a root pass-
word to use sudo).

./stopLassoService.command

 6 Start the Lasso Service back up, so it will load the new module.

./startLassoService.command

 7 Find out the process ID number of Lasso Service so you can attach to it
later with GNU Debugger. Make a note of the process id for ./LassoService.

ps aux|grep LassoService

 8 Start the GNU Debugger as a root user. You must be root in order to
attach to the running Lasso Service process.

sudo gdb

 9 From within GNU Debugger’s command line, attach to the Lasso Service
process ID by entering the following:

attach <type the process id from step 7 here>

 10 Instruct GNU Debugger to break whenever the function tagMathAbsFunc()
is called by entering the following:

break tagMathAbsFunc

 11 Use a Web browser to access the sample
http://localhost/MathFuncsCAPI.lasso. An example Lasso format file is
provided in the LCAPI folder; you must first copy it into your Web serv-
er’s Documents folder, which is typically Library/WebServer/Documents.

 12 GNU Debugger breaks at the first line in tagMathAbsFunc() as soon as
Lasso Service executes that tag in the format file

 13 Type help in GNU Debugger for more information about using the GNU
Debugger, or search for gdb tutorial on the Web for more in-depth tuto-
rials.

1 2 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 2 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

Substitution Tag Operation
When Lasso Professional first starts up, it looks for module files (Windows
DLLs or Mac OS X DYLIBS) in its LassoModules folder. As it encounters
each module, it executes that module’s registerLassoModule() function
once and only once. LCAPI developers must write code to register each
of the new custom tag (or data source) function entry points in this
registerLassoModule() function. The following function is required in every
LCAPI module. It gets called once when Lasso Professional starts up.

void registerLassoModule()
{
lasso_registerTagModule("CAPITester", "test_tag", myTagFunc, flag_
typeSubstitutionTag, "simple test LCAPI tag");
}

The following example registers a C function called myTagFunc to execute
whenever the LDML [test_tag] is encountered inside an xxx.lasso format
file. The first parameter CAPITester is just an arbitrary name that lets you
group similar tags together into groups of functions.

Once the tag function is registered, Lasso will call it at appropriate times
while parsing and executing Lasso format files. The custom tag func-
tions will not be called if none of the custom tags are encountered while
executing a format file. When Lasso Professional 7 encounters one of your
custom tags, it will be called with two parameters: an opaque data struc-
ture called a ”token”, and an integer ”action”. LCAPI provides many func-
tion calls which you can use to get information about the environment,
variables, parameters, etc., when provided with a token.

The passed-in token can also be used to return error codes and text from
your custom tag function. LCAPI provides several functions for setting
error numbers, error text, and returning string data. Any string data you
return from your function will be displayed in place of the raw LDML tag
in the format file, behaving just like any other built-in LDML tag.

To build a basic custom tag function:

Enter the following code:

osError myTagFunc(lasso_request_t token, tag_action_t action)
{
 if(action == tagFormatSubstitution)
 lasso_outputTagData(token, "Hello, World");
}

Below is the LDML needed in a Lasso format file in order to get the custom
tag to execute:

1 2 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 2 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

<html>
<body>
Here's the custom tag:
[test_tag] <!-- This should display "Hello, World" when this page executes -->
</body>
</html>

This will produce the following:

➜	Hello, World

Substitution Tag Tutorial
This section provides a walk-through of building an example tag to
show how LCAPI features are used. This code will be most similar to the
sample MathFuncsCAPI project, so in order to build this code, copy the
MathFuncsCAPI project folder and edit the project files inside it.

The tag will simply display its parameters, and will look like the example
below when called from an LDML format file. Notice the required conven-
tion of placing a dash in front of all named parameters, which is used to
make the parameters easier to spot in the LDML code and prevent ambi-
guities in the LDML parser.

Example of sample tag LDML syntax:

[sample_tag: 'some text here', -option1='named param', -option2=12.5]

Notice the tag takes one unnamed parameter, one string parameter named
-option1, and a numeric parameter named -option2. In general, LDML does
not care about the order in which you pass parameters, so plan to make
this tag as flexible as possible by not assuming anything about the order of
parameters. The following variations should work exactly the same:

Example of sample tag with different ordered parameters:

 [sample_tag: -option2=12.5, 'some text here', -option1='named param']

 [sample_tag: -option2=12.5, -option1='named param', 'some text here']

Substitution Tag Module Code
Shown below is the code for the substitution tag module. Line numbers
are provided to the left of each line of code, and are referenced in the
Substitution Tag Module Walk Through section.

1 2 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 2 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

Note: The line numbers shown refer to the line numbers of the code in the
actual file being created, not as shown in this page. Some single lines of code
may carry into two or more lines as shown on this page.

Substitution Tag Module Code

 1 void registerLassoModule()
 2 {
 3 lasso_registerTagModule("myModule", "sample_tag", myTagFunc, flag_

typeSubstitutionTag, "sample test");
 4 }
 5 osError myTagFunc(lasso_request_t token, tag_action_t action)
 6 {
 7 if(action == tagFormatSubstitution) {
 8 auto_lasso_value_t v;
 9 if(lasso_findTagParam(token, "-option1", &v) == osErrNoErr) {
 10 lasso_outputTagData(token, "The value of -option1 is ");
 11 lasso_outputTagData(token, v.data);
 12 }
 13 if(lasso_findTagParam(token, "-option2", &v) == osErrNoErr) {
 14 double tempValue;
 15 char tempText[32];
 16 sscanf(v.data, "%lf", &tempValue);
 17 sprintf(tempText, "%.15lg", tempValue);
 18 lasso_outputTagData(token, "The value of -option2 is ");
 19 lasso_outputTagData(token, tempText);
 20 }
 21 int count;
 22 lasso_getTagParamCount(token, &count);
 23 for (int i = 0; i < count; ++i) {
 24 lasso_getTagParam(token, i, &v);
 25 if(strcmp(v.data, "") == 0) {
 26 lasso_outputTagData(token, "The value of unnamed param is ");
 27 lasso_outputTagData(token, v.name);
 28 }
 29 }
 30 }
 31 return osErrNoErr;
 32 }

Substitution Tag Module Walk Through
This section provides a step-by-step walk through for building the substitu-
tion tag module.

To build a sample LCAPI tag module:

 1 First, register the new tag in the required registerLassoModule() export func-
tion, as shown in lines 1-4.

1 2 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 2 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

 1 void registerLassoModule()
 2 {
 3 lasso_registerTagModule("myModule", "sample_tag", myTagFunc, flag_

typeSubstitutionTag, "sample test");
 4 }

 2 Implement myTagFunc, which gets called when [sample_tag] is encountered.
All tag functions have this prototype. When the tag function is called, it’s
passed an opaque “token” data structure and an integer “action” telling
it what it should do.

 5 osError myTagFunc(lasso_request_t token, tag_action_t action)

 3 Check to see if tagFormatSubstitution is being called, which means the process
should be executed now, and all parameters are available for perusal.
The auto_lasso_value_t variable named v will be our temporary variable for
holding parameter values.

 6 if(action == tagFormatSubstitution) {
 7 auto_lasso_value_tv;
 8 if(lasso_findTagParam(token, "-option1", &v) == osErrNoErr) {
 9 lasso_outputTagData(token, "The value of -option1 is ");
 10 lasso_outputTagData(token, v.data);
 11 }
 12 }

 4 Call lasso_FindTagParam() in order to get the value of the other named
parameter -option2 and store its value into variable v. Only display it if
the parameter was actually found (no error while finding the named
parameter). Declare a temporary floating-point (double) value to hold
the number passed in and then declare a temporary string to hold the
converted number for display.

 13 if(lasso_findTagParam(token, "-option2", &v) == osErrNoErr) {
 14 double tempValue;
 15 char tempText[32];
 16 sscanf(v.data, "%lf", &tempValue);
 17 sprintf(tempText, "%.15lg", tempValue);
 18 lasso_outputTagData(token, "The value of -option2 is ");
 19 lasso_outputTagData(token, tempText);
 20 }

 All parameters passed to your custom tag function are strings. If you are
expecting a number, then it is up to you to convert it from a string to a
floating point. The variable v has a data member which can be treated
as a null-terminated C string, and that’s what we’ll pass to sscanf() for
conversion.

 The sprintf(tempText,"%.15lg", tempValue) line essentially takes care of any
problems with the passed-in number, such as leading or trailing spaces
or other non-numeric text. You could also take the opportunity here to

1 2 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 2 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

validate the data, and output an error message if the parameter is not
the correct type or is out of range.

 The lasso_outputTagData displays a descriptive line of text which precedes
the actual value for -option2, and then the value of the parameter. Notice
we are actually displaying our newly-converted string value, which
should be exactly the same as the passed-in number if the number was
formatted perfectly from the start.

 5 Now, we’re going to look for the unnamed parameter. Because there’s no
way to ask for unnamed parameters, we’re going to enumerate through
all the parameters looking for one without a name. The integer count will
hold the number of parameters found. Use lasso_getTagParamCount() to
find out how many parameters were passed into our tag. Variable count
now contains the number 3, if we were indeed passed three parameters.

 21 int count;
 22 lasso_getTagParamCount(token, &count);
 23 for (int i = 0; i < count; ++i) {
 24 lasso_getTagParam(token, i, &v);
 25 if(strcmp(v.data, "") == 0) {
 26 lasso_outputTagData(token, "The value of unnamed param is ");
 27 lasso_outputTagData(token, v.name)
 28 }
 29 }

 Use lasso_getTagParam() to retrieve a parameter by its index. If you design
tags that require parameters to be in a particular order, then use this
function to retrieve parameters by index, starting at index 0. If the
parameter is unnamed, that means it’s the one needed. Note that if the
user passes in more than one unnamed parameter, this loop will find all
of them, and will ignore any named parameters.

 Again, lasso_outputTagData displays a descriptive line of text which
precedes the actual value for the unnamed parameter. Output the actual
value of the unnamed parameter. Notice that the name member of the
variable is what holds the text we’re looking for, and the data member is
an empty string.

 6 Returning an error code is very important. If you return a non-zero error
code, then the interpreter will throw an exception indicating that this
tag failed fatally, and Lasso’s standard page error routines will display an
error message. Use this code for the error message.

 30 }
 31 return osErrNoErr;
 32 }

 For non-fatal errors, you can use lasso_setResultCode() and
lasso_setResultMessage() to provide error codes for LDML programmers;

1 2 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 2 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

just make sure your tag function returns osErrNoErr from your function,
otherwise Lasso’s fatal error routines will be triggered.

Data Source Connector Operation
When Lasso Professional 7 starts up, it looks for module files (Windows
DLLs or Mac OS X DYLIBS) in the LassoModules folder. As Lasso encoun-
ters each module, it executes the module’s registerLassoModule() function
once and only once. It is your job as an LCAPI developer to write code
to register each of your new data source (or custom tag) function entry
points in this registerLassoModule() function. Both substitution tags and data
sources may be registered at the same time, and the code for them can
reside in the same module. The only difference between registering a data
source and a substitution tag is whether you call lasso_registerTagModule() or
lasso_registerDSModule().

Data sources are a bit more complex than substitution tags because Lasso
Service calls them with many different actions during the course of various
database operations. Whereas a substitution tag only needs to know
how to format itself, a data source needs to enumerate its tables, search
through records, add new records, delete records, etc. Even so, this added
complexity is easily handled with a single switch() statement, as you will see
in the following tutorial.

Data Source Connectors and Lasso Administration
Once a custom data source connector module is registered by Lasso, it
will appear in the Setup > Data Sources > Connectors section of Lasso
Administration. If a connector appears here, then it has been installed
correctly.

The administrator adds the data source connection information to the
Setup > Data Sources > Hosts section of Lasso Administration, which
sets the parameters by which Lasso connects to the data source via the
connector. This information is stored in the Lasso_Internal Lasso MySQL
database, where the connector can retrieve and use the data via function
calls.

1 3 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 3 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

Figure 1: Custom Data Source Host Screen

Setup Build Browse Monitor Support

Global Settings Data Sources Tags Groups Users

Connectors Hosts Databases Tables Fields Search

Host Listing

Connector Custom Data Source Connector

Name Status Links

Custom_Hostname Enabled List Databases

Custom_Hostname2 Enabled List Databases

Showing 2 hosts from 1 to 2 out of 2.

1 Jump

Add Host... Refresh

Host Detail

Name Custom_Hostname

Connection URL www.example.com:port

Connection Parameters

Status Enabled

Default Username u s e r n a m e

Default Password ••••••

Update Delete

List Databases...

Lasso Professional 6 • Unlimited Users • 06/12/2002 11:03:08 • Current User: admin Logout

© 1996-2002 Blue World Communications, Inc.

The data that the administrator can submit in the Setup > Data Sources >
Hosts section of Lasso Administration includes the following:

 • Name – The administrator-defined name of the data source host.

 • Connection URL – The URL string required for Lasso to connect to a
data source via the connector. This typically includes the IP address of
the machine hosting the data source.

 • Connection Parameters – Additional parameters passed with the
Connection URL. This can include the TCP/IP port number of the data
source.

 • Status – Allows the administrator to enable or disable the connector in
Lasso Professional 5.

 • Default Username – The data source username required for Lasso to
gain access to the data source.

 • Default Password – The data source password required for Lasso to
gain access to the data source.

The Connection URL, Connection Parameters, Default Username, and
Default Password values are passed to the data source via the lasso_getDataHost
function, which is described later in this chapter.

LCAPICALL osError lasso_getDataHost(lasso_request_t token, auto_lasso_value_t *
host, auto_lasso_value_t * usernamepassword);

1 3 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 3 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

Data Source Connector Tutorial
This section provides a walk-through of an example data source to show
how some of the LCAPI features are used. This code will be most similar
to the sample SampleDataSource project, so if you want to actually build this
code, then you should copy that project folder and edit the project files
inside it.

The data source will simply display some simple text as each portion is
called from an LDML inline which does a simple database search. It is not
an effective or useful data source; it’s meant to just provide an overview of
what functions must be implemented. The sample data source will simu-
late a data source which has two databases, an Accounting database and a
Customers database. Each of those databases in turn will report that it has a
few tables within it. For a more complete example of a data source that is
useful, look at the MySQLDataSource project.

Data Source Connector Code
Below is the code for the substitution tag module. Line numbers are
provided to the left of each line of code, and are referenced in the Data
Source Connector Walk Through section.

Data Source Connector Code

 1 void registerLassoModule()
 2 {
 3 lasso_registerDSModule("SampleDatasource", sampleDS_func, 0);
 4 }
 5 osError sampleDS_func(lasso_request_t token, datasource_action_t action, const

auto_lasso_value_t *param)
 6 {
 7 osError err = osErrNoErr;
 8 auto_lasso_value_t v1, v2;
 9 switch(action)
 10 {
 11 case datasourceInit:
 12 break;
 13 case datasourceTerm:
 14 break;
 15 case datasourceNames:
 16 lasso_addDataSourceResult(token, "Accounting");
 17 lasso_addDataSourceResult(token, "Customers");
 18 break;
 19 case datasourceExists:
 20 if((strcmp(param->data, "Accounting") != 0)
 21 && (strcmp(param->data, "Customers") != 0))

1 3 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 3 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

 22 err = osErrWebNoSuchObject;
 23 break;
 24 case datasourceTableNames:
 25 if(strcmp(param->data, "Accounting") == 0) {
 26 lasso_addDataSourceResult(token, "Payroll");
 27 lasso_addDataSourceResult(token, "Payables");
 28 lasso_addDataSourceResult(token, "Receivables");
 29 }
 30 if(strcmp(param->data, "Customers") == 0) {
 31 lasso_addDataSourceResult(token, "ContactInfo");
 32 lasso_addDataSourceResult(token, "ItemsPurchased");
 33 }
 34 break;
 35 case datasourceSearch:
 36 lasso_getDataSourceName(token, &v1);
 37 lasso_getTableName(token, &v2);
 38 if(strcmp(v1.data, "Accounting") == 0) {
 39 int count, i;
 40 lasso_getInputColumnCount(token, &count);
 41 for(i=0; i<count; i++) {
 42 auto_lasso_value_t columnItem;
 43 lasso_getInputColumn(token, i, &columnItem);
 44 }
 45 if(strcmp(v2.data, "Payroll") == 0) {
 46 char *row1[] = {"Samuel Goldwyn", "1955-03-27", "15000.00"};
 47 unsigned int sizes1[3] = {14, 10, 8};
 48 lasso_addColumnInfo(token, "Employee", false, typeChar, kProtectionNone);
 49 lasso_addColumnInfo(token, "StartDate", false, typeDateTime,

kProtectionNone);
 50 lasso_addColumnInfo(token, "Wages", false, typeDecimal, kProtectionNone);
 51 lasso_addResultRow(token, (const char **)&row1, (unsigned int *)&sizes1,

(int)3);
 52 lasso_setNumRowsFound(token, 1);
 53 }
 54 }
 55 if(strcmp(v1.data, "Customers") == 0) {
 56 }
 57 break;
 58 case datasourceAdd:
 59 lasso_outputTagData(token, "datasourceAdd was called to append a record
"

);
 60 break;
 61 case datasourceUpdate:
 62 lasso_outputTagData(token, "datasourceUpdate was called to replace a

record
");
 63 break;
 64 case datasourceDelete:

1 3 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 3 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

 65 lasso_outputTagData(token, "datasourceDelete was called to remove a
record
");

 66 break;
 67 case datasourceInfo:
 68 lasso_outputTagData(token, "datasourceInfo was called
");
 69 break;
 70 case datasourceExecSQL:
 71 lasso_outputTagData(token, "datasourceExecSQL was called
");
 72 break;
 73 }
 74 return err;
 75 }

Data Source Connector Walk Through
This section provides a step-by-step walk through for building the data
source connector.

To build a sample LCAPI Data Source Connector:

 1 Register the new data source in the required registerLassoModule() export
function, as shown inlines 1-4. It’s similar to the way you register a
substitution tag.

 1 void registerLassoModule()
 2 {
 3 lasso_registerDSModule("SampleDatasource", sampleDS_func, 0);
 4 }

 2 Now implement sampleDS_func, the function which gets called when any
database operations are encountered.

 5 osError sampleDS_func(lasso_request_t token, datasource_action_t action, const
auto_lasso_value_t *param)

 All data source functions have this prototype. When your data source
function is called, it’s passed an opaque “token” data structure, an
integer “action” telling it what it should do, and an optional parameter
which sometimes contains extra information (like a database name)
needed by the action being requested at that time.

 3 Set a default error return value that indicates no error. Returning a non-
zero value will cause the Lasso Professional engine to report a fatal error
and stop processing the page.

 6 {
 7 osError err = osErrNoErr;
 8 auto_lasso_value_t v1, v2;
 9 switch(action)
 10 {

1 3 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 3 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

 Declare a couple of temporary variables to be used later to retrieve
important values such as database names and table names. This function
gets called with various different actions as Lasso Professional requests
information from our data source. This switch statement distinguishes
between those various actions.

 4 datasourceInit is called once when Lasso Professional starts up. This gives
us a chance to initialize any communications with our database back-
end, and set any global variables (including semaphores) we’ll need later.
This is called once when Lasso Professional starts up. Because this data
source is so simple, it needs no special initialization calls.

 11 case datasourceInit:
 12 break;
 13 case datasourceTerm:
 14 break;
 15 case datasourceNames:
 16 lasso_addDataSourceResult(token, "Accounting");
 17 lasso_addDataSourceResult(token, "Customers");
 18 break;
 19 case datasourceExists:
 20 if((strcmp(param->data, "Accounting") != 0)
 21 && (strcmp(param->data, "Customers") != 0))
 22 err = osErrWebNoSuchObject;
 23 break;

 datasourceTerm is called once when Lasso Professional shuts down.
Because this data source is so simple, it needs no special shutdown code.
Normally you would close your connection to your back-end data source
and release any semaphores you created.

 datasourceNames is called whenever Lasso Professional needs to get a list
of databases which your data source provides access to. The developer
must write code that discovers a list of all the databases your database
’knows about’ and call lasso_addDataSourceResult() once for each found
database, passing the name of the database. If the data source deals with
five databases, then you would call lasso_addDataSourceResult() five times,
once for each database name.

 Because we are simulating a data source which knows about the
Accounting and Customers databases, call lasso_addDataSourceResult() to add
Accounting and Customers to the returned list of database names.

 For datasourceExists, Lasso Professional is asking use if we know a
particular database exists (meaning, do we control this database). The
name of the database we should look up is passed in the C-string
param->data. If we don’t know about the database in question, then
return osErrWebNoSuchObject. The conditional statement does a simple
string comparison against our hard-coded database name Accounting,

1 3 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 3 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

and then against our hard-coded database name Customers. If neither
of the previous string comparisons matched, then return the error code
osErrWebNoSuchObject indicating that we do not know anything about the
requested database.

 5 Lasso Professional will also need to call on the database tables once
per database, passing the database name in the param->data value.
datasourceTableNames enumerates the list of tables within that named
database.

 24 case datasourceTableNames:
 25 if(strcmp(param->data, "Accounting") == 0) {
 26 lasso_addDataSourceResult(token, "Payroll");
 27 lasso_addDataSourceResult(token, "Payables");
 28 lasso_addDataSourceResult(token, "Receivables");
 29 }

 The conditional statement checks to see if we are being asked about our
Accounting database, and if so adds the Payroll table to the list of known
tables by calling lasso_addDataSourceResult(), and so forth.

 6 Next, Lasso Professional will need to check to see if there are inquiries
regarding the Customers database.

 30 if(strcmp(param->data, "Customers") == 0) {
 31 lasso_addDataSourceResult(token, "ContactInfo");
 32 lasso_addDataSourceResult(token, "ItemsPurchased");
 33 }
 34 break;

 Lasso Professional adds the ContactInfo table to the list of known tables
by calling lasso_addDataSourceResult().Continue adding table names to the
Customers database by calling lasso_addDataSourceResult(), this time for the
ItemsPurchased table.

 7 Use datasourceSearch to perform a search on the database.

 35 case datasourceSearch:
 36 lasso_getDataSourceName(token, &v1);
 37 lasso_getTableName(token, &v2);
 38 if(strcmp(v1.data, "Accounting") == 0) {
 39 int count, i;
 40 lasso_getInputColumnCount(token, &count);
 41 for(i=0; i<count; i++) {
 42 auto_lasso_value_t columnItem;
 43 lasso_getInputColumn(token, i, &columnItem);
 44 }
 45 }

 All of the information (database and table names, search arguments,
sort arguments, etc.) can be retrieved, and a search can be performed by
calling various LCAPI functions such as lasso_getDataSourceName() and

1 3 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 3 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_getTableName() to get the name of the database and table, respec-
tively. A complete list of data source functions is here.

 lasso_getDataSourceName asks Lasso Professional to give us the data-
base name which is to be searched. This is often the value of the

-Database parameter value in an inline tag. lasso_getTableName asks Lasso
Professional to give us the table name to be searched. This is often the
value from the -Layout or -Table parameter value from an inline tag.

 The conditional statement checks to see if the database being searched is
Accounting. If so, declare a couple of temporary integers, one for holding
the number of search parameters. lasso_getInputColumnCount asks Lasso
how many search fields (columns) were specified by the user for this
search. For instance, if the LDML inline tag passed three different fields
to be searched, then lasso_getInputColumnCount() returns 3.

 Declare a temporary variable which will receive the name/value pair
information from the next line of code. Retrieve the name/value text for
the n’th requested search parameter. For instance, an inline will fill the
columnItem variable with the values Employee, fred the first time through
the loop, and Wages, 15000 the second time through the loop.

[Inline: -Database='Accounting', -Table='Payroll', 'Employee'='fred',
'Wages'='15000']

 8 Next, set a conditional statement to ask if the Payroll table is being
searched. If so, we’ll set up some fake hard-coded data in the next few
lines of code. Declare an array of strings which represents the three fields
we will return for this search. Declare an array of field sizes to match the
lengths of the strings created on the previous line.

 46 if(strcmp(v2.data, "Payroll") == 0) {
 47 char *row1[] = {"Samuel Goldwyn", "1955-03-27", "15000.00"};
 48 unsigned int sizes1[3] = {14, 10, 8};
 49 lasso_addColumnInfo(token, "Employee", false, typeChar, kProtectionNone);
 50 lasso_addColumnInfo(token, "StartDate", false, typeDateTime, kProtectionNone

);
 51 lasso_addColumnInfo(token, "Wages", false, typeDecimal, kProtectionNone);
 52 lasso_addResultRow(token, (const char **)&row1, (unsigned int *)&sizes1(int)3

);lasso_setNumRowsFound(token, 1);
 53 }
 54 }
 55 if(strcmp(v1.data, "Customers") == 0) {
 56 }
 57 break;
 58 case datasourceAdd:
 59 lasso_outputTagData(token, "datasourceAdd was called to append a record
"

);
 60 break;

1 3 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 3 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

 61 case datasourceUpdate:
 62 lasso_outputTagData(token, "datasourceUpdate was called to replace a

record
");
 63 break;
 64 case datasourceDelete:
 65 lasso_outputTagData(token, "datasourceDelete was called to remove a

record
");
 66 break;
 67 case datasourceInfo:
 68 lasso_outputTagData(token, "datasourceInfo was called
");
 69 break;
 70 case datasourceExecSQL:
 71 lasso_outputTagData(token, "datasourceExecSQL was called
");
 72 break;
 73 }
 74 return err;
 75 }

 lasso_addColumnInfo tells LCAPI what the column names and data types
are. Do this by calling lasso_addColumnInfo() once per column. In this line,
the Employee column is described as text (typeChar) with no protection
(kProtectionNone). In the next line, the StartDate column is described as date
(typeDateTime) with no protection (kProtectionNone).

 The last column Wages is described as being numeric (typeDecimal), with
no protection (kProtectionNone). Now lasso_addResultRow() can be called as
many times as there are rows of data to return. In this case, only one row
is returned. Now LCAPI must be told how many total rows were found.

Data Type Operation
Creating a new data type in LCAPI 6 is similar to creating a substitution
tag. When Lasso Professional 7 starts up, it scans the LassoModules folder
for module files (Windows DLLs or Mac OS X DYLIBS). As it encounters
each module, it executes the registerLassoModule() function for that module.
The developer registers the LCAPI data types or tags implemented by
the module inside this function. Registering data type initializers differs
from registering normal substitution tags in that the third parameter in
lasso_registerTagMode is the value flag_typeInitializer.

void registerLassoModule()
{
 lasso_registerTagModule(“CAPITester”, “test_type”, myTypeInitFunc,
 flag_typeInitializer, “simple test LCAPI type”);
}

1 3 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 3 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

The prototype of a LCAPI type initializer is the same as a regular LCAPI
substitution tag function. Lasso will call the type initializer each time a
new instance of the type is created.

osError myTypeInitFunc(lasso_request_t token, tag_action_t action);

When the type initializer function is called, a new instance of the type is
created using lasso_typeAllocCustom. This new instance will be created with
no data or tag members.

osError myTypeInitFunc(lasso_request_t token, tag_action_t action)
{
 lasso_type_t theNewInstance = NULL;
 lasso_typeAllocCustom(token, &theNewInstance, “test_type”);

Once the type is created, new data and tag members can be added to it
using lasso_typeAddMember. Data members can be of any type and should
be allocated using any of the LCAPI type allocation calls. Tag members
are allocated using lasso_typeAllocTag. LCAPI tag member functions are
implemented just like any other LCAPI tag. In the example below,
myTagMemberFunction is a function with the standard LCAPI tag prototype.

 const char * kStringData = “This is a string member.”;
 lasso_type_t stringMember = NULL;
 lasso_typeAllocString(token, &stringMember, kStringData, strlen(kStringData));
 lasso_typeAddMember(token, theNewInstance, “member1”, stringMember);
 lasso_type_t tagMember = NULL;
 lasso_typeAllocTag(token, &tagMember, myTagMemberFunction);
 lasso_typeAddMember(token, theNewInstance, “member2”, tagMember);

The final step in creating a new LCAPI data type instance is to return the
new type to Lasso as the tag’s return value. After the type is returned, Lasso
will complete the creation of the type by instantiating the new type’s
parent types.

 lasso_returnTagValue(token, theNewInstance);
 return osErrNoErr;
}

Data Type Tutorial
This tutorial walks through the main points of creating a custom data type
using LCAPI 6. The resulting data type is a “file” type, and the ability to
open, close, read and write to the file are implemented via the following
member tags:

1 3 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 3 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

[File->Open]
[File->Close]
[File->Read]
[File->Write]

Data Types Code
The example project and source files contain over 800 lines of code, and
are located in the following folder:

Lasso Professional 7/Documentation/4-ExtendingLasso/LCAPI/Tags/CAPIFile

Do to the length of the project file (CAPIFile.cpp), the entire code is not
shown here. The Data Type Walk Through section provides a conceptual
overview of the operation behind the file type example, and describes the
basic LCAPI functions used to implement it.

Data Type Walk Through
This section provides a step-by-step conceptual walk through for building a
custom file data type.

To build a custom data type:

 1 The first step in creating a custom type is to register the type’s initializer.
Type initializers are registered in the same way that regular tag functions
are registered. The only difference being that flag_typeInitializer should be
passed for the fourth (flags) parameter:

void registerLassoModule()
{
 lasso_registerTagModule(“CAPIFile”, “file”, file_init, flag_typeInitializer, “Initializer
for the file type.”);
}

 This concept is illustrated in lines 95-129 of the CAPIFile.cpp file.

 95 void registerLassoModule()
 96 {
 ...
 128 lasso_registerTagModule(“CAPIFile”, “file”, file_init, flag_typeInitializer,

“Initializer for the file type.”);
 129 }

 2 The registered type initializer will be called each time a new file type is
created. In the above case, the LCAPI function file_init was registered as
being the initializer. The prototype for file_init should look like any other
LCAPI function:

osError file_init(lasso_request_t token, tag_action_t action);

1 4 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 4 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

 This concept is illustrated in line 272 of the CAPIFile.cpp file.

 272 osError file_init(lasso_request_t token, tag_action_t action)

 3 The file_init function will now be called whenever file is used in a script.
Within the type initializer, the type’s member tags are added. Each
member tag is implemented by its own LCAPI tag function. However,
before members can be added, the new blank type must be created using
lasso_typeAllocCustom.

osError file_init(lasso_request_t token, tag_action_t)
{
 lasso_type_t file;
 lasso_typeAllocCustom(token, &file, “file”);

 lasso_typeAllocCustom can only be used within a properly registered type
initializer. The value it produces should always be the return value of the
tag as set by the lasso_returnTagValue function.

 This concept is illustrated in lines 273-277 of the CAPIFile.cpp file.

 273 {
 274 lasso_type_t file;
 ...
 277 lasso_typeAllocCustom(token, &file, KFileTypeName);

 4 Once the blank type has been created, members can be added to it.
Members will be added for open, close, read and write.

 lasso_type_t mem;
 lasso_typeAllocTag(token, &mem, file_open);
 lasso_typeAddMember(token, file, “open”, mem);

 lasso_typeAllocTag(token, &mem, file_close);
 lasso_typeAddMember(token, file, “close”, mem);

 lasso_typeAllocTag(token, &mem, file_read);
 lasso_typeAddMember(token, file, “read”, mem);

 lasso_typeAllocTag(token, &mem, file_write);
 lasso_typeAddMember(token, file, “write”, mem);

 This concept is illustrated in lines 289-299 of the CAPIFile.cpp file.

 289 #define ADD_TAG(NAME, FUNC) { lasso_type_t mem;\
 290 lasso_typeAllocTag(token, &mem, FUNC);\
 291 MAKE_REF(mem);\
 292 lasso_typeAddMember(token, file, NAME, mem);\
 293 }
 ...
 296 ADD_TAG(kMemOpen, file_open);
 297 ADD_TAG(kMemClose, file_close);
 298 ADD_TAG(kMemRead, file_read);
 299 ADD_TAG(kMemWrite, file_write);

1 4 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 4 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

 5 The final member tag to add is the onDestroy member. This tag will be
called automatically by Lasso when the type goes away. Adding this tag
will ensure that the file on disk is closed properly if the member tag
function file_close is not called.

 lasso_typeAllocTag(token, &mem, file_close);
 lasso_typeAddMember(token, file, “onDestroy”, mem);

 This concept is illustrated in line 313 of the CAPIFile.cpp file.

 313 ADD_TAG(kMemOnDestroy, file_onDestroy);

 6 At this point, the return value should be set. Keep in mind that the new
file type is completely blank except for the members that were added
above. No inherited members are available at this point. Inherited
members are only added after the LCAPI type initializer returns.

 lasso_returnTagValue(token, file);

 This concept is illustrated in line 284 of the CAPIFile.cpp file.

 284 lasso_returnTagValue(token, file);

Note: For brevity, this example will not cover accepting parameters in the
type initializer. The full CAPIFile project illustrates accepting parameters in
the initializer to open the file under various read and write permissions.

 7 There were no errors in the type initialization process, so return a “no
error” code to Lasso, completing the type’s initialization.

 return osErrNoErr;
}

 This concept is illustrated in line 358 of the CAPIFile.cpp file.

 358 return osErrNoErr;

 8 The new file type has now been initialized and made available to the
caller in the script. The first member of the file type is [File->Open], which
is implemented as the LCAPI function file_open.

osError file_open(lasso_request_t token, tag_action_t)
{

 This concept is illustrated in lines 361-362 of the CAPIFile.cpp file.

 361 osError file_open(lasso_request_t token, tag_action_t action)
 362 {

 9 The first step in implementing a member tag is to acquire the “self”
instance. The self is the instance upon which the member call was made.

 lasso_type_t self = NULL;
 lasso_getTagSelf(token, &self);
 if (self)
 {

1 4 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 4 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

 This concept is illustrated in lines 434-437 of the CAPIFile.cpp file.
s

 434 lasso_type_t self = NULL;
 435 lasso_getTagSelf(token, &self);
 436 if (self)
 437 {

 10 Once the self is successfully acquired and is not null, the rest of the
member tag can proceed. This member tag accepts one parameter, which
is the path to the file that will be opened. Since the path is a string value,
it can be acquired using lasso_getTagParam. If the path parameter was not
passed to the open member tag, an error should be returned and indi-
cated to the user.

 auto_lasso_value_t path;
 if (lasso_getTagParam(token, 0, &path) != osErrNoErr)
 {
 lasso_setResultMessage(token, “file->open requires the path to the file to
open.”);
 return osErrInvalidParameter;
 }

 This concept is illustrated in lines 363-390 of the CAPIFile.cpp file.

 363 file_desc_t * desc = GetFileDesc(token, false);
 364 if (desc)
 365 {
 366 if (desc->fFileStr != NULL) // close it
 367 fclose(desc->fFileStr);
 368 // delete the struct
 369 desc->fFileStr = NULL;
 370
 371 // see what parameters we are being initialized with
 372 int count;
 373 lasso_getTagParamCount(token, &count);
 374
 375 if (count < 2)
 376 {
 377 lasso_setResultMessage(token, “file->open requires at least a file path and

open mode.”);
 378 lasso_setResultCode(token, osErrInvalidParameter);
 379 return osErrInvalidParameter;
 380 }
 381
 382 if (count > 0) // we are given *at the least* a path
 383 {
 384 // first param is going to be a string, so use the LCAPI 5 call to get it
 385 auto_lasso_value_t pathParam;
 386 pathParam.name = “”;
 387 lasso_getTagParam(token, 0, &pathParam);
 388

1 4 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 4 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

 389 desc->fPath = pathParam.name;
 390 }

 11 Now that the path parameter has been successfully acquired, permis-
sions should be checked to make sure access to the file is permitted by
Lasso security.

 if (lasso_operationAllowed(token, kWriteFiles, (void*)path.name) != osErrNoErr)
 {
 lasso_setResultMessage(token, “file->open: Permission to open the file was
denied by Lasso security.”);
 return osErrNoPermission);
 }

 This concept is illustrated in lines 232-237 of the CAPIFile.cpp file.

 232 if (lasso_operationAllowed(token, op, const_cast<char*>(path)) != osErrNoErr)
 233 {
 234 lasso_setResultMessage(token, “Permission to open the file was denied by

Lasso security.”);
 235 lasso_setResultCode(token, osErrNoPermission);
 236 return NULL;
 237 }

 12 If the current user has permission, the Lasso internal path should be
converted to the platform specific path. This is a three-step process that
begins with fully qualifying the path. This will ensure that relative paths
are converted to root paths. The second step is to resolve the path. This
converts root path to a complete path which will include the hard drive
name, or /// if used on a Unix platform. The final step is to convert the
path into a platform-specific format that will be understood by the plat-
form-specific [File->Open] calls.

 osPathname qualifiedPath;
 osPathname resolvedPath;
 osPathname platformPath;

 lasso_fullyQualifyPath(token, path.name, qualifiedPath);
 lasso_resolvePath(token, qualifiedPath, resolvedPath);
 lasso_getPlatformSpecificPath(resolvedPath, platformPath);

 This concept is illustrated in lines 197-203 of the CAPIFile.cpp file.
 197 {
 198 osPathname qualifiedPath;
 199 osPathname resolvedPath;
 200 lasso_fullyQualifyPath(token, inPath, qualifiedPath);
 201 lasso_resolvePath(token, qualifiedPath, resolvedPath);
 202 lasso_getPlatformSpecificPath(resolvedPath, outPath);
 203 }

1 4 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 4 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

 13 Once security is checked and the path is properly converted, the actual
file can be opened using the file system calls supplied by the operating
system.

 FILE * f = fopen(platformPath, “r+b”);

 This concept is illustrated in line 242 of the CAPIFile.cpp file.

 242 FILE * f = fopen(xformPath, openMode);

 14 If the file is opened without error, we want to save the resulting FILE
pointer for other member calls. LCAPI 6 provides a convenient storage
location for custom types. This location is not used by Lasso itself, and
the value will never be modified.

 lasso_typeSetCustomPtr(self, (void*)f);

 This concept is illustrated in line 281 of the CAPIFile.cpp file.

 281 lasso_typeSetCustomPtr(file, desc);

 15 The FILE pointer can now be retrieved using the lasso_typeGetCustomPtr
LCAPI function. No error has occurred while opening the file, so
complete the function call and return “no error”.

 }
 return osErrNoErr;
}

 This concept is illustrated in lines 416-418 of the CAPIFile.cpp file.
s

 416 }
 417 return osErrNoErr;
 418 }

 16 The next member tag to implement is [File->Read]. This member takes
one parameter and returns a value. The parameter is the number of bytes
to read from the file. The return value is the resulting file data, if any.

osError file_read(lasso_request_t token, tag_action_t action)
{
 lasso_type_t self = NULL;
 lasso_getTagSelf(token, & self);
 if (self)
 {

 This concept is illustrated in lines 432-437 of the CAPIFile.cpp file.

 432 osError file_read(lasso_request_t token, tag_action_t action)
 433 {
 434 lasso_type_t self = NULL;
 435 lasso_getTagSelf(token, &self);
 436 if (self)
 437 {

1 4 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 4 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

 17 The parameter of this tag is an integer. Use the lasso_getTagParam2 func-
tion to get the tag’s parameter, which will produce the parameter as a
lasso_type_t and convert it to a 64-bit integer.

 lasso_type_t numT = NULL;
 if (lasso_getTagParam2(token, 0, &numT) != osErrNoErr)
 {
 lasso_setResultMessage(token, “file->read required one parameter: the
number of bytes to read from the file.”);
 return osErrInvalidParameter;

 }
 osInt64 num = 0;
 lasso_typeGetInteger(token, numT, &num);

 This concept is illustrated in line 438-446 of the CAPIFile.cpp file.
s

 438 lasso_type_t num = NULL;
 439 if (lasso_getTagParam2(token, 0, &num) == osErrNoErr)
 440 {
 441 file_desc_t * desc = NULL;
 442 lasso_typeGetCustomPtr(self, reinterpret_cast<void**>(&desc));
 443 if (desc && desc->fFileStr != NULL)
 444 {
 445 osInt64 n;
 446 lasso_typeGetInteger(token, num, &n);

 18 Now fetch the pointer to the FILE that was stored when [File->Open] was
called and allocate a buffer into which we will read the data.

 FILE * f = NULL;
 lasso_typeGetCustomPtr(self, (void**)&f);

 int rNum = (int)num;
 char * buffer = new char[rNum];

 rNum = fread(buffer, sizeof(char), rNum, f);

 This concept is illustrated in lines 242-248 and lines 448-456 of the
CAPIFile.cpp file.

 242 FILE * f = fopen(xformPath, openMode);
 243 if (f == NULL)
 244 {
 245 lasso_setResultCode(token, osErrFile);
 246 SetResultMessage(token, errno);
 247 }
 248 return f;
 ...
 448 char * readInto = new char[(size_t)n];
 449
 450 size_t wasRead = fread(readInto, sizeof(char), (size_t)n, desc->fFileStr);
 451 if (wasRead > 0)

1 4 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 4 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

 452 {
 453 lasso_type_t ret;
 454 lasso_getTagReturnValue(token, &ret);
 455 lasso_typeSetString(token, ret, readInto, (int)wasRead);
 456 }

 19 The final step is to return the read data. Because the data is a string, we
can use lasso_outputTagData2, which will allow us to return a string along
with it’s length.

 lasso_outputTagData2(token, buffer, rNum);
 delete [] buffer;
 }
 return osErrNoErr;
}

 This concept is illustrated in lines 458-475 of the CAPIFile.cpp file.

 458 delete [] readInto;
 459 }
 460 else
 461 {
 462 lasso_setResultMessage(token, “file->read requires that the file be open with

read permission.”);
 463 lasso_setResultCode(token, osErrInvalidParameter);
 464 return osErrInvalidParameter
 465 }
 466 }
 467 else
 468 {
 469 lasso_setResultMessage(token, “file->read requires a single parameter: the

number of bytes to read.”);
 470 lasso_setResultCode(token, osErrInvalidParameter);
 471 return osErrInvalidParameter;
 472 }
 473 }
 474 return osErrNoErr;
 475 }

 20 The remaining tag functions are implemented in a similar manner. Study
the CAPIFile example for a more in-depth and complete example of how
to properly construct custom data types in LCAPI 6.

LCAPI Function Reference
This section lists all functions provided in LCAPI 6. These functions can
be used to register tags and data sources, allocate memory, return error
messages, get tag or parameter information, get client and server environ-
ment information, output text, read and set MIME headers, access LDML

1 4 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 4 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

variables, interpret and execute arbitrary LDML tags, store persistent data,
check if a user is an administrator, perform data source functions, and
safely access multiuser and multi-threaded resources.

Registration

registerLassoModule()

You must have a function of this name defined in your module’s exported
functions. Lasso calls this once at startup to give your module a chance to
register its tags and data sources.

void registerLassoModule();

lasso_registerTagModule()

Your code must call this once at startup (from within your
registerLassoModule() function) to register a tag with Lasso. When Lasso
encounters a custom tag of tagName, it calls the C function func. Tags can
be registered as being either a type initializer, asynchronus tag, container
tag, or normal substitution tag. The tag type is specified by the flags
parameter and must be one of the following values: flag_typeInitializer,
flag_typeSubstitutionTag, flag_typeAsync, or flag_typeContainerTag.

LCAPICALL osError lasso_registerTagModule(
const char * moduleName,
const char * tagName,
lasso_tag_func func,
int flags,
const char * description);

lasso_registerTagModuleW()

Same as lasso_registerLassoModule(), but Unicode-compliant for Lasso
Professional 7.

LCAPICALL osError lasso_registerTagModuleW(
const UChar * moduleName,
const UChar * tagName,
lasso_tag_func func,
int flags,
const UChar * description);

lasso_registerDSModule()

Your code must call this once at startup (from within your
registerLassoModule() function) to register a data source with Lasso

1 4 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 4 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

Professional. When Lasso encounters a data source request for moduleName,
it calls the C function func.

LCAPICALL osError lasso_registerDSModule(
const char * moduleName,
lasso_ds_func func,
int flags);

lasso_registerDSModuleW()

Same as lasso_registerDSModule(), but Unicode-compliant for Lasso
Professional 7.

LCAPICALL osError lasso_registerDSModuleW(
const UChar * moduleName,
lasso_ds_func func, int flags);

lasso_registerConstant()

This function registers a constant with Lasso.

LCAPICALL osError lasso_registerConstant(
const char * name,
lasso_type_t val);

lasso_registerConstantW()

Same as lasso_registerConstant(), but Unicode-compliant for Lasso
Professional 7.

LCAPICALL osError lasso_registerConstantW(
const UChar * name,
lasso_type_t val);

Memory Allocation

malloc(), free()

You may use malloc() and free() as you would in any normal program, just
make sure you don’t leave any memory leaks.

malloc(), free()

lasso_allocValue()

This is rarely used, but if you need to create your own lasso_value_t, you can
use this function to do it. lasso_allocValue() allocates a lasso_value_t with the
indicated data. Anything allocated with this function will not be garbage
collected by Lasso and must be freed using lasso_freeValue.

1 4 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 4 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

LCAPICALL osError lasso_allocValue(
lasso_value_t * value,
const char * name,
unsigned int nameSize,
const char * data,
unsigned int dataSize,
LP_TypeDesc dataType);

lasso_allocValueW()

Same as lasso_allocValue(), but is Unicode-compliant for Lasso Professional
7.

LCAPICALL osError lasso_allocValue(
lasso_value_w_t * result,
const UChar * name,
unsigned int nameSize,
const UChar * data,
unsigned int dataSize,
LP_TypeDesc type);

lasso_allocValueConv()

Converts a lasso_value_t value to Unicode.

LCAPICALL osError lasso_allocValueConv(
lasso_value_t * result,
const UChar * name,
unsigned int nameSize,
const char * nameEncoding,
const UChar * data,
unsigned int dataSize,
const char * dataEncoding,
LP_TypeDesc type);

lasso_freeValue()

This function frees all values allocated using lasso_allocValue(). Do not pass
an auto_lasso_value_t to this function.

LCAPICALL osError lasso_freeValue(
lasso_value_t * result);

lasso_freeValueW()

Same as lasso_freeValue(), but is Unicode-compliant for Lasso Professional 7.

LCAPICALL osError lasso_freeValueW(
lasso_value_w_t * result);

// Allows storage of an opaque value

1 5 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 5 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_setPtrMember()

This function sets a pointer member.

LCAPICALL osError lasso_setPtrMember(
lasso_request_t token,
lasso_type_t self,
const char * name,
void * data);

lasso_setPtrMemberW()

Same as lasso_setPtrMember(), but Unicode-compliant for Lasso Professional
7.

LCAPICALL osError lasso_setPtrMemberW(
lasso_request_t token,
lasso_type_t self,
const UChar * name,
void * data);

lasso_getPtrMember()

This function gets a pointer member.

LCAPICALL osError lasso_getPtrMember(
lasso_request_t token,
lasso_type_t self,
const char * name,
void ** data);

lasso_getPtrMemberW()

Same as lasso_getPtrMember(), but Unicode-compliant for Lasso Professional
7.

LCAPICALL osError lasso_getPtrMemberW(
lasso_request_t token,
lasso_type_t self,
const UChar * name,
void ** data);

Internal Values

lasso_getRequestParam()

Fetches an internal server value such as server port, cookies, root path,
username, etc. You may request the parameters shown below, not all of
which are available on all HTTP servers.

1 5 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 5 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

LCAPICALL osError lasso_getRequestParam(
lasso_request_t token,
RequestParamKeyword key,
auto_lasso_value_t * result);

Parameter Description

rpSearchArgKeyword All text in URL after the question mark.

rpUserKeyword Username sent from browser.

rpPasswordKeyword Password sent from browser.

rpAddressKeyword IP address of client browser.

rpPostKeyword HTTP object body (form data, etc.).

rpMethodKeyword GET or POST, depending on <form method>.

rpServerName IP address of server on which the Web server is
running.

rpServerPort IP port this hit came to (80 is common, 443 for SSL).

rpScriptName Relative path from server root to this Lasso format file.

rpContentType MIME header sent from client browser.

rpContentLength The length in bytes of the POST data sent from <form
POST>.

rpReferrerKeyword URL of referring page.

rpUserAgentKeyword Browser name and type.

rpClientIPAddress IP address of client browser.

rpFullRequestKeyword All MIME headers, uninterpreted.

Error Messages and Result Codes

lasso_setResultCode()

Sets the result code that can be displayed if the LDML programmer inserts
[Error_CurrentError: ErrorCode] into the format file after executing a custom
LCAPI tag.

LCAPICALL osError lasso_setResultCode(
lasso_request_t token,
osError err);

lasso_setResultMessage()

Sets the error message that can be displayed if the LDML programmer
inserts [Error_CurrentError: ErrorMessage] into the format file after executing a
custom LCAPI tag.

1 5 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 5 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

LCAPICALL osError lasso_setResultMessage(
lasso_request_t token,
const char * msg);

lasso_setResultMessageW()

Same as lasso_setResultMessage(), but Unicode-compliant for Lasso
Professional 7.

LCAPICALL osError lasso_setResultMessageW(
lasso_request_t token,
const UChar * msg);

Tag and Parameter Info

lasso_getTagName()

Fetches the name of the tag that triggered this call (e.g. in the case of
[my_tag: ...] the resulting value would be my_tag). This makes it possible
to design a single tag function which can perform the duties of many
different LDML tags, perhaps ones that all have similar functionality but
different names.

LCAPICALL osError lasso_getTagName(
lasso_request_t token,
auto_lasso_value_t * result);

lasso_getTagNameW()

Same as lasso_getTagName(), but Unicode-compliant for Lasso Professional
7.

LCAPICALL osError lasso_getTagNameW(
lasso_request_t token,
auto_lasso_value_w_t * result);

lasso_getTagParamCount()

Fetches the number of parameters that were passed to the tag. For instance,
[my_tag: 'hello', -option=1, -hilite=false] will report that three parameters were
passed (unnamed parameters are treated just like any other parameter).

LCAPICALL osError lasso_getTagParamCount(
lasso_request_t token,
int * result);

1 5 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 5 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_getTagParam()

Gets the name and value of a parameter given its index.
Parameters are numbered left-to-right, starting at index 0:
[my_tag: -param0='value0', -param1='value1', -param2=2].

LCAPICALL osError lasso_getTagParam(
lasso_request_t token,
int paramIndex,
auto_lasso_value_t * result);

lasso_getTagParamW()

Same as lasso_getTagParam(), but Unicode-compliant for Lasso Professional
7.

LCAPICALL osError lasso_getTagParamW(
lasso_request_t token,
int paramIndex,
auto_lasso_value_w_t * result);

lasso_getTagParam2()

Get the parameter using the parameter index. This function differs from
lasso_getTagParam() in that it preserves the actual type of the parameter
instead of automatically converting it to a string. Keyword/value pairs are
returned as a typePair type.

LCAPICALL osError lasso_getTagParam2(
lasso_request_t token,
int paramIndex,
lasso_type_t * result)

lasso_tagParamIsDefined()

Returns osErrNoErr if the parameter was defined, anything else means it
wasn’t.

LCAPICALL osError lasso_tagParamIsDefined(
lasso_request_t token,
const char * paramName);

lasso_tagParamIsDefinedW()

Same as lasso_tagParamIsDefined(), but Unicode-compliant for Lasso
Professional 7.

osError lasso_tagParamIsDefinedW(
lasso_request_t token,
const UChar * paramName);

1 5 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 5 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_findTagParam()

Finds and fetches a tag parameter by name. A return value of osErrNoErr
means the parameter was found successfully.

LCAPICALL osError lasso_findTagParam(
lasso_request_t token,
const char * paramName,
auto_lasso_value_t * result);

lasso_findTagParamW()

Same as lasso_findTagParam(), but Unicode-compliant for Lasso Professional
7.

osError lasso_findTagParamW(
lasso_request_t token,
const UChar * paramName,
auto_lasso_value_w_t * result);

lasso_findTagParam2()

Finds and returns a tag parameter by name while preserving the original
type. A returned value of osErrNoErr means the parameter was successfully
found.

LCAPICALL osError lasso_findTagParam2(
lasso_request_t token,
const char * paramName,
lasso_type_t * result);

lasso_findTagParam2W()

Same as lasso_findTagParam2(), but Unicode-compliant for Lasso Professional
7.

LCAPICALL osError lasso_findTagParam2W(
lasso_request_t token,
const UChar * paramName,
lasso_type_t * result);

lasso_getTagSelf()

This function is used in LCAPI tags that are members of a custom type. It
returns the type instance of which the current call is a member.

LCAPICALL osError lasso_getTagSelf(
lasso_request_t token,
lasso_type_t * self);

1 5 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 5 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_childrenRun()

Used to execute the contents of a container tag. Tags become containers
when the flag_typeContainerTag flag is used. The result parameter will contain
the combined result data for all tags contained.

LCAPICALL osError lasso_childrenRun(
lasso_request_t token,
lasso_type_t * result);

lasso_runRequest()

Creates and runs a new LCAPI call on the given lasso_tag_func. If there is
already an active request on the current thread, the lasso_tag_func will be
run within the context of that thread. If there is no active request on the
current thread, a new request will be created and run based on the global
context. The tag_action_t parameter is passed to the lasso_tag_func and can be
used to signal or pass information to the function.

LCAPICALL osError lasso_runRequest(
lasso_tag_func func,
tag_action_t action,
int unused);

Returning Tag Data

lasso_returnTagValue()

Specifies the return value for the tag. Note that only a single
lasso_returnTagValue can be used from within a tag. lasso_returnTagValue is the
prefered method for returning tag data as it allows data of any type to be
returned (including binary data), while lasso_outputTagData is restricted to
printable text data. lasso_returnTagValue() can also be optimized for boolean,
integer, decimal, string, and Unicode strings using specialized function
variations for each type, as shown below.

LCAPICALL osError lasso_returnTagValue(
lasso_request_t token,
lasso_type_t value);

LCAPICALL osError lasso_returnTagValueBoolean(
lasso_request_t token,
bool b);

LCAPICALL osError lasso_returnTagValueInteger(
lasso_request_t token,
osInt64 i);

1 5 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 5 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

LCAPICALL osError lasso_returnTagValueString(
lasso_request_t token,
const char * p,
int l);

LCAPICALL osError lasso_returnTagValueStringW(
lasso_request_t token,
const UChar * p,
int l);

LCAPICALL osError lasso_returnTagValueDecimal(
lasso_request_t token,
double d);

lasso_getTagReturnValue()

This function provides direct access to the tag’s return value. In many
cases, directly manipulating this value can yield better performance than
lasso_returnTagValue().

LCAPICALL osError lasso_getTagReturnValue(
lasso_request_t token,
lasso_type_t * outValue);

lasso_outputTagData()

Output some data onto the page. Lasso will take care of encoding. This can
be called as many times as needed.

LCAPICALL osError lasso_outputTagData(
lasso_request_t token,
const char * data);

lasso_outputTagData2()

Same as lasso_outputTagData(), but outputs a bytes data type and allows the
data length to be defined.

osError lasso_outputTagData2(
lasso_request_t token,
const char * data,
int length);

lasso_outputTagData2W()

Same as lasso_outputTagData2(), but Unicode-compliant for Lasso
Professional 7.

osError lasso_outputTagData2W(
lasso_request_t token,
const UChar * data,
int length);

1 5 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 5 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_outputTagBytes()

Outputs a bytes data type. This can be called as many times as needed.

osError lasso_outputTagBytes(
lasso_request_t token,
const char * data,
int length);

lasso_outputTagDataF()

lasso_outputTagDataF takes the same formatting flags as printf().

LCAPICALL osError lasso_outputTagDataF(
lasso_request_t token,
const char * format, ...);

Data Types

lasso_typeAlloc()

This function will allocate a new type instance. The type is specified by
the typeName parameter. An array of parameters can be passed to the
type initializer. Types created through this function will be automati-
cally destroyed after the LCAPI call has returned. In order to prevent
this, lasso_typeDetach should be used.

LCAPICALL osError lasso_typeAlloc (
 lasso_request_t token,
const char * typeName,
int paramCount,
lasso_type_t * paramsArray,
lasso_type_t * outType);

lasso_typeAllocW()

Same as lasso_typeAlloc(), but Unicode-compliant for Lasso Professional 7.

LCAPICALL osError lasso_typeAllocW (
lasso_request_t token,
const UChar * typeName,
int paramCount,
lasso_type_t * paramsArray,
lasso_type_t * outType);

lasso_typeFree()

Attempts to free a type created using lasso_typeAlloc or any other method.
The lasso_request_t token may be NULL if the provided type has been
detached using lasso_typeDetach.

1 5 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 5 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

LCAPICALL osError lasso_typeFree(
 lasso_request_t token,
lasso_type_t inType);

lasso_typeDetach()

Prevents the type from being destroyed once the LCAPI call returns. Types
that have been detached must eventually be destroyed using lasso_typeFree
(passing NULL as the request token) or a memory leak will occur.

LCAPICALL osError lasso_typeDetach(
lasso_request_t token,
lasso_type_t toDetach);

lasso_typeAllocNull()

This function allows new instances of NULL data types to be allocated.
Types allocated in this manner will be destroyed once the LCAPI call is
returned.

LCAPICALL osError lasso_typeAllocNull(
lasso_request_t token,
lasso_type_t * outNull);

lasso_typeAllocString()

This function allows new instances of string data types to be allocated.
Types allocated in this manner will be destroyed once the LCAPI call is
returned.

LCAPICALL osError lasso_typeAllocString(
lasso_request_t token,
lasso_type_t * outString,
const char * value,
int length);

lasso_typeAllocStringW()

Same as lasso_typeAllocString(), but Unicode-compliant for Lasso Professional
7.

LCAPICALL osError lasso_typeAllocStringW (
lasso_request_t token,
lasso_type_t * outString,
const UChar * value,
int length);

1 5 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 5 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_typeAllocInteger()

This function allows new instances of integer data types to be allocated.
Types allocated in this manner will be destroyed once the LCAPI call is
returned.

LCAPICALL osError lasso_typeAllocInteger(
lasso_request_t token,
lasso_type_t * outInteger,
osInt64 value);

lasso_typeAllocDecimal()

This function allows new instances of decimal data types to be allocated.
Types allocated in this manner will be destroyed once the LCAPI call is
returned.

LCAPICALL osError lasso_typeAllocDecimal(
lasso_request_t token,
lasso_type_t * outDecimal,
double value);

lasso_typeAllocPair()

This function allows new instances of pair data types to be allocated. Types
allocated in this manner will be destroyed once the LCAPI call is returned.

LCAPICALL osError lasso_typeAllocPair(
lasso_request_t token,
lasso_type_t * outPair,
lasso_type_t first,
lasso_type_t second);

lasso_typeAllocReference()

This function allows new instances of reference data types to be allocated.
Types allocated in this manner will be destroyed once the LCAPI call is
returned.

LCAPICALL osError lasso_typeAllocReference(
lasso_request_t token,
lasso_type_t * outRef,
lasso_type_t referenced);

lasso_typeAllocTag()

This function allows new instances of tag data types to be allocated. Types
allocated in this manner will be destroyed once the LCAPI call is returned.

1 6 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 6 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

LCAPICALL osError lasso_typeAllocTag(
lasso_request_t token,
lasso_type_t * outTag,
lasso_tag_func nativeTagFunction);

lasso_typeAllocArray()

This function allows new instances of array data types to be allocated.
Types allocated in this manner will be destroyed once the LCAPI call is
returned.

LCAPICALL osError lasso_typeAllocArray(
lasso_request_t token,
lasso_type_t * outArray,
int count,
lasso_type_t * elements);

lasso_typeAllocMap()

This function allows new instances of map data types to be allocated.
Types allocated in this manner will be destroyed once the LCAPI call is
returned.

LCAPICALL osError lasso_typeAllocMap(
lasso_request_t token,
lasso_type_t * outMap,
int count,
lasso_type_t * elements);

lasso_typeAllocBoolean()

This function allows new instances of boolean data types to be allocated.
Types allocated in this manner will be destroyed once the LCAPI call is
returned.

LCAPICALL osError lasso_typeAllocBoolean(
lasso_request_t token,
lasso_type_t * outBool,
bool inValue);

lasso_typeGetString()

This function gets the data from a previously created string instance.

LCAPICALL osError lasso_typeGetString(
lasso_request_t token,
lasso_type_t type,
auto_lasso_value_t * val);

1 6 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 6 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_typeGetStringW()

Same as lasso_typeGetString(), but Unicode-compliant for Lasso Professional
7.

LCAPICALL osError lasso_typeGetStringW(
lasso_request_t token,
lasso_type_t type,
auto_lasso_value_w_t * val);

lasso_typeGetStringConv()

This function converts a string instance to Unicode.

LCAPICALL osError lasso_typeGetStringConv(
lasso_request_t token,
lasso_type_t type,
auto_lasso_value_t * val,
const char * conv);

lasso_typeGetInteger()

This function gets the data from a previously created integer instance.

LCAPICALL osError lasso_typeGetInteger(
lasso_request_t token,
lasso_type_t type,
osInt64 * out);

lasso_typeGetDecimal()

This function gets the data from a previously created decimal instance.

LCAPICALL osError lasso_typeGetDecimal(
lasso_request_t token,
lasso_type_t type,
double * out);

lasso_typeGetBoolean()

This function gets the data from a previously created boolean instance.

LCAPICALL osError lasso_typeGetBoolean(
lasso_request_t token,
lasso_type_t type,
bool * out);

lasso_typeSetString()

This function sets the data from a previously created string instance.

1 6 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 6 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

LCAPICALL osError lasso_typeSetString(
lasso_request_t token,
lasso_type_t type,
const char * val,
int len);

lasso_typeSetStringW()

Same as lasso_typeSetString(), but Unicode-compliant for Lasso Professional
7.

LCAPICALL osError lasso_typeSetStringW(
lasso_request_t token,
lasso_type_t type,
const UChar * val,
int len);

lasso_typeSetStringConv()

This function converts a string instance to Unicode.

LCAPICALL osError lasso_typeSetStringConv(
lasso_request_t token,
lasso_type_t type,
const char * val,
int len,
const char * conv);

lasso_typeAppendString()

This function appends a string to an existing stirng instance.

LCAPICALL osError lasso_typeAppendString(
lasso_request_t token,
lasso_type_t type,
const char * val,
int len);

lasso_typeAppendStringW()

Same as lasso_typeAppendString(), but Unicode-compliant for Lasso
Professional 7.

LCAPICALL osError lasso_typeAppendStringW(
lasso_request_t token,
lasso_type_t type,
const UChar * val,
int len);

1 6 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 6 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_typeSetInteger()

This function sets the data from a previously created integer instance.

LCAPICALL osError lasso_typeSetInteger(
lasso_request_t token,
lasso_type_t type,
osInt64 val);

lasso_typeSetDecimal()

This function sets the data from a previously created decimal instance.

LCAPICALL osError lasso_typeSetDecimal(
lasso_request_t token,
lasso_type_t type,
double val);

lasso_typeSetBoolean()

This function sets the data from a previously created boolean instance.

LCAPICALL osError lasso_typeSetBoolean(
lasso_request_t token,
lasso_type_t type,
bool val);

lasso_arrayGetSize()

This function gets the size of a previously created array instance.

LCAPICALL osError lasso_arrayGetSize(
lasso_request_t token,
lasso_type_t array,
int * len);

lasso_arrayGetElement()

This function gets an array element from a previously created array
instance.

LCAPICALL osError lasso_arrayGetElement(
lasso_request_t token,
lasso_type_t array,
int index,
lasso_type_t * out);

lasso_arraySetElement()

This function sets an array element in a previously created array instance.

1 6 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 6 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

LCAPICALL osError lasso_arraySetElement(
lasso_request_t token,
lasso_type_t array,
int index,
lasso_type_t elem);

lasso_arrayRemoveElement()

This function removes an element from a previously created array instance.

LCAPICALL osError lasso_arrayRemoveElement(
lasso_request_t token,
lasso_type_t array,
int index);

lasso_mapGetSize()

This function gets the size of a previously created map instance.

LCAPICALL osError lasso_mapGetSize(
lasso_request_t token,
lasso_type_t mp,
int * len);

lasso_mapFindElement()

This function finds an element in a previously created map instance.

LCAPICALL osError lasso_mapFindElement(
lasso_request_t token,
lasso_type_t mp,
lasso_type_t key,
lasso_type_t * out);

lasso_mapGetNthElement()

This function gets an element from a previously created map instance
using the element number.

LCAPICALL osError lasso_mapGetNthElement(
lasso_request_t token,
lasso_type_t mp,
int index,
lasso_type_t * outPair);

lasso_mapSetElement()

This function sets an element in a previously created map instance.

1 6 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 6 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

LCAPICALL osError lasso_mapSetElement(
lasso_request_t token,
lasso_type_t mp,
lasso_type_t key,
lasso_type_t value);

lasso_mapRemoveElement()

This function removes an element from a previously created map instance.

LCAPICALL osError lasso_mapRemoveElement(
lasso_request_t token,
lasso_type_t mp,
lasso_type_t key);

lasso_pairGetFirst()

This function gets the first element from a previously created pair instance.

LCAPICALL osError lasso_pairGetFirst(
lasso_request_t token,
lasso_type_t pr,
lasso_type_t * out);

lasso_pairGetSecond()

This function gets the second element from a previously created pair
instance.

LCAPICALL osError lasso_pairGetSecond(
lasso_request_t token,
lasso_type_t pr,
lasso_type_t * out);

lasso_pairSetFirst()

This function sets the first element in a previously created pair instance.

LCAPICALL osError lasso_pairSetFirst(
lasso_request_t token,
lasso_type_t pr,
lasso_type_t frst);

lasso_pairSetSecond()

This function sets the second element in a previously created pair instance.

LCAPICALL osError lasso_pairSetSecond(
lasso_request_t token,
lasso_type_t pr,
lasso_type_t scnd);

1 6 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 6 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_typeGetMember()

This function is used to retrieve a member from a type instance. Members
are searched by name with tag members searched first. Data members are
searched if no tag member is found with the given name.

LCAPICALL osError lasso_typeGetMember(
lasso_request_t token,
lasso_type_t from,
const char * named,
lasso_type_t * out);

lasso_typeGetMemberW()

Same as lasso_typeGetMember(), but Uncode-compliant for Lasso
Professional 7.

LCAPICALL osError lasso_typeGetMemberW(
lasso_request_t token,
lasso_type_t from,
const UChar * named,
lasso_type_t * out);

lasso_typeGetProperties()

This function has two uses. If the targetType parameter is not NULL, it is
used to get all data and tag members from a given type. They are returned
as a pair of arrays in the outPair value. The first element of each pair is the
map of data members for the type. The second element is the map of tag
members. Each element in the array represents the members of each type
inherited by the targetType.

If the targetType parameter is NULL, lasso_typeGetProperties will return an array
containing the variable maps for the currently active request.

LCAPICALL osError lasso_typeGetProperties (
lasso_request_t token,
lasso_type_t targetType,
lasso_type_t * outPair);

lasso_typeGetName()

Retrieves the name of the target type.

LCAPICALL osError lasso_typeGetName(
lasso_request_t token,
lasso_type_t target,
auto_lasso_value_t * outName);

1 6 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 6 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_typeGetNameW()

Same as lasso_typeGetName(), but Unicode-compliant for Lasso Professional
7.

LCAPICALL osError lasso_typeGetNameW(
lasso_request_t token,
lasso_type_t target,
auto_lasso_value_w_t * outName);

lasso_typeIsA()

This function returns the type of an object.

LCAPICALL osError lasso_typeIsA(
lasso_request_t token,
lasso_type_t target,
LP_TypeDesc type);

lasso_typeRunTag()

Used to execute a given tag. The tag can be run given a specific name and
parameters, and the return value of the tag can be accessed. If the tag is a
member tag, the instance of which it is a member can be passed using the
final parameter. The params, returnValue, and optionalTarget parameters may all
be NULL.

LCAPICALL osError lasso_typeRunTag (
lasso_request_t token,
const char * name,
lasso_type_t tagType,
int paramCount,
lasso_type_t * params, lasso_type_t * returnValue,
lasso_type_t optionalTarget);

lasso_typeRunTagW()

Same as lasso_typeRunTag(), but Unicode-compliant for Lasso Professional 7.

LCAPICALL osError lasso_typeRunTagW (
lasso_request_t token,
const UChar * name,
lasso_type_t tagType,
int paramCount,
lasso_type_t * params,
lasso_type_t * returnValue,
lasso_type_t optionalTarget);

1 6 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 6 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_typeAssign()

This performs an assignment of one type to another. The result will be the
same as if the following had been executed in LDML.

// #left_hand_side = #right_hand_side
LCAPICALL osError lasso_typeAssign(
lasso_request_t token,
lasso_type_t left_hand_side,
lasso_type_t right_hand_side);

lasso_typeStealValue()

This function transfers the data from one type to another type. Both types
must be valid and pre-allocated. After the call, victim will still be valid, but
will be of type null.

LCAPICALL osError lasso_typeStealValue(
lasso_request_t token,
lasso_type_t thief,
lasso_type_t victim);

lasso_handleExternalConversion()

Converts a Lasso type into single-byte or binary data using the specific
encoding name. The default for all database, column, table names should
be “iso8859-1”.

LCAPICALL osError lasso_handleExternalConversion(
lasso_request_t token,
lasso_type_t instance,
const char * encoding,
auto_lasso_value_t * outVal);

lasso_handleInternalConversion()

Converts a single-byte or binary representation of a Lasso type back into an
instance of that type.

LCAPICALL osError lasso_handleInternalConversion(
lasso_request_t token,
const char * src,
unsigned int srcLen,
const char * encoding,
LP_TypeDesc closestLassoType,
lasso_type_t * outType);

1 6 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 6 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_typeInheritFrom

This function changes the inheritence structure of a type. Sets newParent
to be the new parent of child. Any parent that child currently has will be
destroyed.

LCAPICALL osError lasso_typeInheritFrom(
lasso_request_t token,
lasso_type_t child,
lasso_type_t newParent);

Custom Types

lasso_typeAllocCustom()

This function is used within lasso_tag_funcs that were registered as being
a type initializer (flag_typeInitializer). It initializes a blank custom type
and sets the type’s __type_name__ member to the provided value. The
new type does not yet have a lineage and has no members added to it
besides __type_name__. New data or tag members should be added using
lasso_typeAddMember. The new custom type should be the return value of
the type initializer. Any inherited members will be added to the type after
the LCAPI call returns.

Warning: Do not call this unless you are in a type initializer. If you are not in a
type initializer, the result will be a type that will never be fully initialized.

LCAPICALL osError lasso_typeAllocCustom(
lasso_request_t token,
lasso_type_t * outCustom,
const char * name);

lasso_typeAllocCustomW()

Same as lasso_typeAllocCustom(), but Unicode-compliant for Lasso
Professional 7.

LCAPICALL osError lasso_typeAllocCustomW(
lasso_request_t token,
lasso_type_t * outCustom,
const UChar * name);

lasso_typeSetCustomDtor()

Adds a function to be called on the custom type after onDestroy.

LCAPICALL osError lasso_typeSetCustomDtor(
lasso_type_t the_custom_type,
void (*dtor)(lasso_type_t the_custom_type));

1 7 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 7 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_typeAddMember()

This is used to add new members to type instances. The member can be
any sort of type including tags or other custom types.

LCAPICALL osError lasso_typeAddMember(
lasso_request_t token,
lasso_type_t to,
const char * named,
lasso_type_t member);

lasso_typeAddMemberW()

Same as lasso_typeAddMember(), but Unicode-compliant for Lasso
Professional 7.

LCAPICALL osError lasso_typeAddMemberW(
lasso_request_t token,
lasso_type_t to,
const UChar * named,
lasso_type_t member);

lasso_typeAllocFromProto()

Allocate a new type based on the given type. The given type’s tag members
will be referenced in the new type. No data members are added except for
the typename member. Proto must be a custom type.

LCAPICALL osError lasso_typeAllocFromProto(
lasso_request_t token,
lasso_type_t proto,
lasso_type_t * out);

lasso_typeAllocOneOff()

Allocate a new type with the given name. The type does not have to have
been registered as a type initializer or registered at all. The new type will
have no tag or data members, but those may be added using the appro-
priate LCAPI call at any time. If no parent type is provided (a NULL
pointer or empty string is passed in), type null will be the default. If a
parent type is provided, it must have been a validly registered type initial-
izer. onCreate will be called for the parent and beyond

LCAPICALL osError lasso_typeAllocOneOff(
lasso_request_t token,
const char * name,
const char * parentTypeName,
lasso_type_t * out);

1 7 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 7 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_typeAllocOneOffW()

Same as lasso_typeAllocOneOff(), but Unicode-compliant for Lasso
Professional 7.

LCAPICALL osError lasso_typeAllocOneOffW(
lasso_request_t token,
const UChar * name,
const UChar * parentTypeName,
lasso_type_t * out);

Logging Functions

lasso_log()

Logs a message. The message goes to the prefered destination for the
message level. Messages sent to a file are limited to 2048 bytes in length.
Messages sent to the console are limited to 512 bytes in length. Messages
sent to the database are limited a little less than 2048 bytes since the
total length of the sql statement used to insert the message is limited
to 2048 bytes. The msgLevel parameter must be one of the following:
LOG_LEVEL_CRITICAL, LOG_LEVEL_WARNING, or LOG_LEVEL_DETAIL.

LCAPICALL osError lasso_log(
log_level_t msgLevel,
const char * fmt, ...);

MIME Headers

lasso_getResultHeader()

Retrieves current value of the result (HTTP) header. Part of the header that
is returned to browsers is automatically built by Lasso, and can be modi-
fied or added to by LDML tags on the page. This function retrieves the
current set of MIME headers that would be sent back to the browser if page
processing were to stop now.

LCAPICALL osError lasso_getResultHeader(
lasso_request_t token,
auto_lasso_value_t * result);

lasso_getResultHeaderW()

Same as lasso_getResultHeader(), but Unicode-compliant for Lasso
Professional 7.

1 7 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 7 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

osError lasso_getResultHeaderW(
lasso_request_t token,
auto_lasso_value_w_t * result);

lasso_setResultHeader()

Sets the result header, any data will be validated so as to be in the proper
format.

LCAPICALL osError lasso_setResultHeader(
lasso_request_t token,
const char * header);

lasso_setResultHeaderW()

Same as lasso_setResultHeader(), but Unicode-compliant for Lasso
Professional 7.

osError lasso_setResultHeaderW(
lasso_request_t token,
const UChar * header);

lasso_addResultHeader()

Simply appends the supplied data to the header, any data will be validated
so as to be in the proper format.

LCAPICALL osError lasso_addResultHeader(
lasso_request_t token,
const char * data);

lasso_addResultHeaderW()

Same as lasso_addResultHeader(), but Unicode-compliant for Lasso
Professional 7.

osError lasso_addResultHeaderW(
lasso_request_t token,
const UChar * data);

lasso_getCookieValue()

Retrieves a cookie value from the passed-in data sent by the client browser.

LCAPICALL osError lasso_getCookieValue(
lasso_request_t token,
const char * named,
auto_lasso_value_t * value);

1 7 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 7 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_getCookieValueW()

Same as lasso_getCookieValue(), but Unicode-compliant for Lasso
Professional 7.

osError lasso_getCookieValueW(
lasso_request_t token,
const UChar * named,
auto_lasso_value_w_t * value);

Page Variables

lasso_getVariableCount()

Retrieves the number of array values which the named global variable has.
Returns 1 if the global variable is not an array. Global variables are the
same variables which you create in LDML statements, like [var: 'fred'=1234.56].
These variables last only as long as the current format file is executing;
as soon as the hit gets sent back to the browser, these variables all get
destroyed.

LCAPICALL osError lasso_getVariableCount(
lasso_request_t token,
const char * named,
int * count);

lasso_getVariableCountW()

Same as lasso_getVariableCount(), but Unicode-compliant for Lasso
Professional 7.

osError lasso_getVariableCountW(
lasso_request_t token,
const UChar * named,
int * count);

lasso_getVariable()

Retrieves the value of the named global variable. If the global variable is
an array, then the index specifies which array value to retrieve. If the global
variable is not an array, then 0 is the only valid index. Array indices start at
0.

LCAPICALL osError lasso_getVariable(
lasso_request_t token,
const char * named,
int index,
auto_lasso_value_t * value);

1 7 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 7 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_getVariableW()

Same as lasso_getVariable(), but Unicode-compliant for Lasso Professional 7.

osError lasso_getVariableW(
lasso_request_t token,
const UChar * named,
int index,
auto_lasso_value_w_t * value);

lasso_getVariable2()

Retrieves the value of the named global variable while preserving the vari-
able type.

LCAPICALL osError lasso_getVariable2(
lasso_request_t token,
const char * key,
lasso_type_t * value);

lasso_getVariable2W()

Same as lasso_getVariable2(), but Unicode-compiant for Lasso Professional 7.

LCAPICALL osError lasso_getVariable2W(
lasso_request_t token,
const UChar * key,
lasso_type_t * value);

lasso_setVariable()

Stores a new value into the named global variable. If the global variable is
an array, then the 0-based index determines which array item to replace.

LCAPICALL osError lasso_setVariable(
lasso_request_t token,
const char * named,
const char * value,
int index);

lasso_setVariableW()

Same as lasso_setVariable(), but Unicode-compliant for Lasso Professional 7.

osError lasso_setVariableW(
lasso_request_t token,
const UChar * named,
const UChar * value,
int index);

1 7 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 7 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_setVariable2()

Stores a new global variable while preserving the type.

LCAPICALL osError lasso_setVariable2(
lasso_request_t token,
const char * key,
lasso_type_t value);

lasso_setVariable2W()

Same as lasso_setVariable2(), but Unicode-compiant for Lasso Professional 7.

LCAPICALL osError lasso_setVariable2W(
lasso_request_t token,
const UChar * key,
lasso_type_t value);

lasso_removeVariable()

Removes the specified variable (destroys it so it becomes undefined, as
though it had never been created). If the named variable is an array, then
you may pass in an index (0-based) to remove that array element. Once
the array has 0 elements, then calling removeVariable on it will destroy the
array itself.

LCAPICALL osError lasso_removeVariable(
lasso_request_t token,
const char * named,
int index);

lasso_removeVariableW()

Same as lasso_removeVariable(), but Unicode-compiant for Lasso Professional
7.

osError lasso_removeVariableW(
lasso_request_t token,
const UChar * named,
int index);

Interpret LDML tags

lasso_formatBuffer()

Formats the supplied buffer and put the resulting data in the data member
of the auto_lasso_value_t. The buffer should consist of plain text and brack-
eted Lasso tags.

1 7 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 7 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

LCAPICALL osError lasso_formatBuffer(
lasso_request_t token,
const char * buffer,
auto_lasso_value_t * output);

Persistent Storage Tags

lasso_storeHasData()

Returns osErrNoErr if the data, specified by key, exists. The length of the
stored data can be returned in the length parameter if you pass a PTR to an
INT. You may pass NULL if for the length PTR if you don’t want to retrieve
the length of the stored data.

LCAPICALL osError lasso_storeHasData(
lasso_request_t token,
const char * key,
unsigned int * length);

lasso_storePutData()

Adds the data to Lasso’s storage. Key is the unique identifier for the data.

LCAPICALL osError lasso_storePutData(
lasso_request_t token,
const char * key,
const void * data,
unsigned int length);

Administration

lasso_isAdministrator()

Returns osErrNoErr if the current user has administrator privileges. This is
useful for doing module administration that only the administrator should
be able to do.

LCAPICALL osError lasso_isAdministrator(
lasso_request_t token);

Data Source Functions

lasso_addDataSourceResult()

Sometimes Lasso Professional will ask your data source function to return
some information, such as a list of database names or table names which
your data source module controls. Your module will call this function once

1 7 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 7 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

for each name you add to the list, so if you have three database names you
want to report back to Lasso Professional, you would call this function
three times, once per database name.

LCAPICALL osError lasso_addDataSourceResult(
lasso_request_t token, const char * data);

lasso_getDataSourceName()

Use this function when you want to ask Lasso Professional what database
is being operated on. For instance, if you’re being asked to perform a
search, then you would call this function to retrieve the name of the data-
base which Lasso Professional is asking you to search. It corresponds to the
value of the parameter -Database=blah passed to inlines. Optionally, you can
use the third (useHostDefault) parameter to determine whether the current
database inherits its host default settings.

Note: Even though the name of the function is lasso_getDataSourceName, it
really retrieves the database name. This is purely cosmetic, and just happens
to be how the APIs were spelled when they were originally designed.

LCAPICALL osError lasso_getDataSourceName(
lasso_request_t token,
auto_lasso_value_t * t,
bool * useHostDefault,
auto_lasso_value_t * usernamepassword)

lasso_getDSConnection()

This function accesses the current datasource connection. May recurse the
data source call by sending it the datasourceOpenConnection message

osError lasso_getDSConnection(
lasso_request_t token,
lasso_dsconnection_t * conn);

lasso_setDSConnection()

This function sets the current connection for the data source. May recurse
to deliver the datasourceCloseConnection message if there is already a valid
lasso_dbconnection_t set.

osError lasso_setDSConnection(
lasso_request_t token,
lasso_dsconnection_t conn);

1 7 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 7 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_getDataHost()

Use this function when you want to ask Lasso Professional 7 what data-
base host is being operated on. On return, auto_lasso_value_t will contain
the name and port of the database host.

LCAPICALL osError lasso_getDataHost(
lasso_request_t token,
auto_lasso_value_t * host,
auto_lasso_value_t * usernamepassword)

lasso_getDataHost2()

Same as lasso_getDataHost() but allows the usage of a host schema parameter
for JDBC data sources.

LCAPICALL osError lasso_getDataHost2(
lasso_request_t token,
auto_lasso_value_t * host,
auto_lasso_value_t * schema,
auto_lasso_value_t * usernamepassword)

lasso_getSchemaName()

Use this function when you want to ask Lasso Professional what host
schema is being operated on for a JDBC data source. For instance, if
you’re being asked to perform a search, then you would call this function
to retrieve the name of the schema which Lasso Professional is asking
you to use for the search. It corresponds to the value of the parameter

-Schema=blah passed to inlines.

LCAPICALL osError lasso_getSchemaName(
lasso_request_t token,
auto_lasso_value_t * t);

lasso_getTableName()

Use this function when you want to ask Lasso Professional what table is
being operated on. For instance, if you’re being asked to perform a search,
then you would call this function to retrieve the name of the table which
Lasso Professional is asking you to search. It corresponds to the value of
the parameter -Layout=blah or -Table=blah passed to inlines.

LCAPICALL osError lasso_getTableName(
lasso_request_t token,
auto_lasso_value_t * t);

1 7 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 7 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_getSkipRows()

You can ask Lasso Professional to tell you how many records should be
skipped during a search by calling this function. It corresponds to the
value of the -SkipRecords parameter in the inline search which is being
executed at the moment your data source function is being called.

LCAPICALL osError lasso_getSkipRows(
lasso_request_t token,
int * recs);

lasso_getMaxRows()

You can ask Lasso Professional to tell you the maximum number of
records to be returned during a search by calling this function. It corre-
sponds to the value of the -MaxRecords parameter in the inline search which
is being executed at the moment your data source function is being called.

LCAPICALL osError lasso_getMaxRows(
lasso_request_t token,
int * recs);

lasso_getPrimaryKeyColumn()

You can ask Lasso Professional to tell you which field is being used as the
primary key. This value corresponds to the -KeyField parameter value used
in the inline.

LCAPICALL osError lasso_getPrimaryKeyColumn(
lasso_request_t token,
auto_lasso_value_t * v);

lasso_getInputColumnCount()

Tells how many fields were sent as parameters to the inline. For instance,
if an LDML programmer wants to append a new record to a table, and
passes in name, address, city, state, zip with values for each field, then this
function will return the number 5 to indicate that five fields were passed to
the inline. You can then retrieve the values of each of these parameters by
calling lasso_getInputColumn by index, once per field. This function is smart
enough to ignore parameters which are not fields, such as -Database, -Layout,
etc.

LCAPICALL osError lasso_getInputColumnCount(
lasso_request_t token,
int * count);

1 8 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 8 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_getInputColumn()

Retrieve the name and value of field data parameters from the inline,
starting at index zero. If five fields were entered into the inline, then you
can retrieve each of their names and values by calling this function five
times, once per field.

[Inline: -Database='MyDatabase', -Table='Main', 'MyFirstField'='Bill',
'MySecondField'='Ted', -Search]

In the above example, calling lasso_GetInputColumn(token, 0, &v) will fill the
v variable with v.name=MyFirstField, v.data=Bill. Notice it is smart enough to
ignore well-known parameters such as -Table, thus only retrieving field
information.

LCAPICALL osError lasso_getInputColumn(
lasso_request_t token,
int index,
auto_lasso_value_t * v);

lasso_getSortColumnCount()

Analogous to lasso_GetInputColumnCount(), this function retrieves the number
of sort columns which were specified in the inline code. It basically counts
how many -SortField parameters were passed. You can use this count to tell
you how many times to enumerate through calls to lasso_getSortColumn().

LCAPICALL osError lasso_getSortColumnCount(
lasso_request_t token,
int * count);

lasso_getSortColumn()

Analogous to lasso_getInputColumn(), this function retrieves the names of sort
parameters, starting at index zero. After calling this, the value of variable
v.data will contain a c-string with the name of the sort field.

LCAPICALL osError lasso_getSortColumn(
lasso_request_t token,
int index,
auto_lasso_value_t * v);

lasso_getRowID()

Retrieves the current specified record ID (FileMaker Pro only).

LCAPICALL osError lasso_getRowID(
lasso_request_t token,
int * id);

1 8 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 8 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_setRowID()

Sets the record ID of the added record. After your custom LCAPI data
source finishes adding a record to a database, it can call this function to let
the caller know what the unique record ID of the added record was.

In FileMaker, this record ID is a standard feature of all records in its tables.
In MySQL, this value is 0 unless there exists an AUTO_INCREMENT column.
Results are not guaranteed for all database server software.

LCAPICALL osError lasso_setRowID(
lasso_request_t token,
int * id);

lasso_findInputColumn()

Analogous to lasso_getInputColumn(), except that it searches by name instead
of index. If you already know the name of a field parameter you’re inter-
ested in, then you can ask for the value of that parameter which was
passed into the inline.

[Inline: -Database='MyDatabase', -Table='Main', 'MyFirstField'='Bill',
'MySecondField'='Ted', -Search]

In the example above, calling lasso_findInputColumn(token, MySecondField, &v)
will fill the v variable’s data member with v.data=Ted.

LCAPICALL osError lasso_findInputColumn(
lasso_request_t token,
const char * name,
auto_lasso_value_t * value);

lasso_findInputColumnW()

Same as lasso_findInputColumn(), but Unicode-compliant for Lasso
Professional 7.

osError lasso_findInputColumnW(
lasso_request_t token,
const UChar * name,
auto_lasso_value_t * value);

lasso_getLogicalOp()

Call this to retrieve the logical operator (kLassoAND, kLassoOR) which was
passed to this inline. It corresponds to the value of -LogicalOperator passed
into the inline. This function simply retrieves a single logical operator
parameter. For more complex logical operations, with multiple operators,
you will have to design a convention whereby you name your input fields
in some unique way, and then retrieve those custom logical operators

1 8 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 8 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

using the lasso_getInputColumn() function in a particular order that matches
your convention.

LCAPICALL osError lasso_getLogicalOp(
lasso_request_t token,
LP_TypeDesc * op);

lasso_getReturnColumnCount()

You can ask Lasso Professional to tell you how many columns (fields) are
expected to be returned from a search operation. This counts how many

-ReturnField parameters were encountered.

LCAPICALL osError lasso_getReturnColumnCount(
lasso_request_t token,
int * count);

lasso_getReturnColumn()

Once you know how many return columns are expected (from
lasso_getReturnColumnCount), then you can enumerate through them to get
their fieldnames. Use this information to retrieve field data from your data-
base table, and populate the result rows when asked to perform a search
operation.

LCAPICALL osError lasso_getReturnColumn(
lasso_request_t token,
int num,
auto_lasso_value_t * v);

lasso_addColumnInfo()

In order to return a row of data from your data source (perhaps as a result
of a search), you must first indicate what the structure of the table columns
is. Call this function for as many table columns as your database has,
providing the fieldname, true/false if nulls are OK in this field, the field
type (numeric, string, date, etc), and field protection (readonly, writeable,
etc).

LCAPICALL osError lasso_addColumnInfo(
lasso_request_t token,
const char * name,
int nullOK,
LP_TypeDesc type,
LP_TypeDesc protection);

lasso_addResultRow()

Call this function once per row of records you want to return (perhaps
from a search operation). You must construct an array of pointers that

1 8 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 8 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

contains pointers to each of your fields (binary data is OK), and provide
an array of sizes (field data lengths) that corresponds to the length of each
field. Because you are providing length information, there is no need to
null-terminate c-strings.

LCAPICALL osError lasso_addResultRow(
lasso_request_t token,
const char ** columns,
unsigned int *sizes,
int numColumns);

lasso_setNumRowsFound()

Corresponds to [Found_Count] in LDML. Call this when you know how
many records your data source is going to return, and make sure you call
lasso_addResultRow() this many times in order to populate the rows.

LCAPICALL osError lasso_setNumRowsFound(
lasso_request_t token,
int num);

Semaphores

lasso_createSem()

Creates a named semaphore sufficient for synchronizing multithreaded
operations. Make sure you delete these when you’re done with them. The
Lasso Connector for MySQL example creates one of these at init time, and
destroys it at terminate time.

LCAPICALL osError lasso_createSem(
lasso_request_t token,
const char * name);

lasso_destroySem()

Destroys a named semaphore which had been created earlier by the
lasso_createSem() function.

LCAPICALL osError lasso_destroySem(
lasso_request_t token,
const char * name);

lasso_acquireSem()

Attempts to acquire a lock on a semaphore; waits until the owning thread
has released the semaphore before acquiring the lock and continuing
execution.

1 8 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 8 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

LCAPICALL osError lasso_acquireSem(
lasso_request_t token,
const char * name);

lasso_releaseSem()

When you are done with a semaphore whose lock you’ve acquired, call
lasso_releaseSem() to release it so other threads waiting for this semaphore
can continue execution.

LCAPICALL osError lasso_releaseSem(
lasso_request_t token,
const char * name);

LCAPI Data Type Reference

lasso_request_t

Opaque data structure which must be passed to/from all calls in LCAPI.
This token gives LCAPI the state information it needs to distinguish
between different simultaneous hits to Lasso Service.

lasso_type_t

Opaque data structure which represents data of any type. A lasso_type_t can
represent any of the native internal types or any custom type written in
LDML, LCAPI or LJAPI.

auto_lasso_value_t

Name/Value pair used to retrieve text from LCAPI calls. General-purpose
pair of strings which destroys itself automatically. Has name and data
member variables which can be treated like null-terminated c-strings.

auto_lasso_value_w_t

Same as auto_lasso_value_t, but used for Unicode text strings.

LP_TypeDesc

Used for both data types and field protection types. You pass these values
when you specify the field/column in your table.

1 8 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 8 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

Parameters Description

typeBlob Binary Large Object.

typeChar Null-terminated C-String.

typeDecimal Floating point number.

typeLongInteger Long long (8 bytes) signed integer.

typeBoolean True/false, 1/0.

typeDateTime String representing a date and time together.

typeArray Array data type.

typeMap Map data type.

typeTag Tag data type.

typeReference A type that is a reference to another type instance.

typePair Pair data type.

typeCustom Any custom data type.

kProtectionNone This field has no data protection.

kProtectionReadOnly This field cannot be modified.

Frequently Asked Questions
How do I install my custom tag?

Once you’ve compiled your tag module, you’ll need to move the module
to your installed Lasso Professional LassoModules folder, and then restart
Lasso Service. Step-by-step instructions are available in the Getting Started
section.

How do I return text from my custom tag?

Use either lasso_outputTagData() or lasso_outputTagDataF() to send text back to
the output HTML page. Any text you send out with these functions will
be streamed into the output HTML page send back to the browser, and
will replace (substitute) the raw [xxx] tag text, just like any other LDML tag
would do.

How do I debug my custom tag?

You can set breakpoints in your code and attach your module DLL to Lasso
Service. Read the section on debugging LCAPI modules.

How do I get parameters that were passed into my tag?

Most of the parameters passed into your custom tag can be retrieved
using the lasso_getTagParam() and lasso_findTagParam() parameter info APIs.

1 8 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 8 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

lasso_getTagParam() retrieves parameters by index and lasso_findTagParam()
retrieves them by name.

How do I get the value of unnamed parameters passed into my tag?

While there is no direct way to get unnamed parameters (how do you
know what name to ask for?), you can enumerate through all the param-
eters by index, and then pick out the ones which do not have names. If,
after retrieving a parameter, you discover that its data member is an empty
string, then that means it is an unnamed parameter, and you can get its
value from the name member. An example of this is in the substitution tag
tutorial.

What’s an auto_lasso_value_t and how do I use it?

It’s a data structure which contains both a name and a value (a name/value
pair). Many LCAPI APIs fill in this structure for you, and you can access the
name and data members directly as null-terminated C-strings.

How do I access variables from the LDML page I’m in?

You may need to get or even create LDML variables (the same variables
that an LDML programmer makes when using the [var: 'fred'=12] variable
syntax in a format file) from within your LCAPI module. You can retrieve a
global variable, as long as it has already been assigned before your custom
substitution tag is executed, by calling lasso_getVariable() with the variable’s
name.

How do I return fatal and non-fatal error codes?

It is very important that your substitution tag return an error code of 0 if
nothing fatal happened. An example of a fatal error would be a missing
required parameter, for instance. If you encounter a fatal error, then return
a non-zero result code from your tag function, and the Lasso will stop
processing the page at that point, and display an error page.

How do I write code that will compile easily across multiple operating
systems?

While we cannot provide a complete cross-platform programming tutorial
for you here, we can at least provide some guidance. The simplest way to
make sure things compile across platforms is to make sure you use stan-
dard library functions (from stdio.h and stdlib.h) as much as possible: func-
tions like strcpy(), malloc(), and strcmp() are always available on all platforms.
Also note that Unix platforms are case-sensitive, so when you #include files,
just make sure you keep the case the same as the file on disk. Finally, stay
away from platform-specific functions, such as Windows APIs, which most
often are not available on Unix platforms. Take a look at our Unix make-

1 8 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6 1 8 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

files which are provided with the sample projects: notice the same source
code is used for Windows, and all source files are saved with DOS-style cr/
lf linebreaks so as not to confuse the Windows compilers. As a last resort,
you can use #ifdef to show/hide portions of source code which are platform-
specific.

1 8 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 6 – L A S S O C / C + + A P I 6

7
Chapter 7

Lasso Connector Protocol

This chapter documents Lasso Connector Protocol (LCP) and describes
how to develop Lasso Web server connectors.

 • Overview introduces Lasso Connector Protocol.

 • Requirements includes platform specific development environment
details.

 • Lasso Web Server Connectors introduces the theory of operation
behind creating Lasso Web server connectors using LCP.

 • Building Web Server Connectors is a quick start guide to building the
provided samples.

 • Lasso Connector Operation describes the theory and operation behind
building Lasso Web server connectors.

 • Lasso Connector Tutorial provides a step-by-step walk-through of
building a sample Web server connector.

 • Lasso Connector Protocol Reference provides a reference of all
commands and parameters used in LCP.

Overview
Lasso Web server connectors are small modules written specifically for
a particular brand of Web server. Lasso Professional 7 initially includes
connectors for Microsoft IIS (Intel architecture), Apple Mac OS X’s Apache
(PowerPC architecture), and 4D WebSTAR Server Suite V for Mac OS X. A
connector for Red Hat Apache (Intel architecture) is also available.

The purpose of Lasso Connector Protocol (LCP) is to provide an effi-
cient and platform-independent way of communication between a Lasso

1 8 9

E X T E N D I N G L A S S O 7 G U I D E

connector (client) and Lasso Service (server). Included are sample projects
which give you full source code to the Web server connectors which ship
with Lasso (e.g. Lasso Connector for IIS and Lasso Connector for Apache).
Web servers you might want to develop connectors for include: Netscape
Enterprise Server, O’Reilly WebSite, Zeus, Cobalt RAQ Apache, Solaris
SPARC Apache, Microsoft IIS (Alpha chipset), and WebSTAR Server Suite 4.
Blue World encourages developers to create and distribute new Web server
connectors in order to give Lasso developers as many choices as possible
for developing Lasso-based data-driven Web sites.

Requirements
In order to write your own Lasso Web server connector in C or C++, you
will need the following:

Windows:

 • Microsoft Windows 2000 or Windows XP Professional

 • Microsoft Visual C++ 7.

 • Windows Lasso Professional version 7.0 or higher.

Mac OS:

 • Mac OS X 10.2 with GNU C++ compiler and linker (Dev Tools)
installed.

 • Mac OS X Lasso Professional version 7.0 or higher.

Lasso Web Server Connectors
All modern Web servers have some form of suffix mapping, where they
re-route HTTP requests to various modules based on their file suffix (e.g.
.lasso). Modules have different names depending on which Web server
you’re using: ISAPI DLL, Apache Module, W*API plugin, etc. Once the Web
server calls the Lasso Web server connector, it is the job of the Lasso Web
server connector to collect all the information from a particular request,
and pass it all along to a Lasso Service application that it’s set up to talk to.
Then it waits for Lasso Service to finish processing the request, and receives
back some MIME headers and HTML body text. At this point it’s the
connector’s job to pass the text back to the Web server, which in turn sends
it back out to the requesting browser. All communication is via TCP/IP, so
the Web server connector and Lasso Service may be on separate machines
with different architectures.

1 9 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 1 9 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

Lasso Web server connectors also have another job, which is to decode
and write out HTTP-upload files. As you examine the sample source code,
you’ll see that it interprets the incoming POST arguments, writes out
temporary files, and passes a special list of filename arguments through to
Lasso Service on the other side of the TCP connection.

Note: Only a single Lasso Web server connector can connect with Lasso
Service at a time in Lasso Professional 7.

Getting Started
This section provides a walk-through for building a custom Web server
connector in Windows 2000 and Mac OS X.

To build a sample Web server connector in Windows 2000:

 1 Browse to the Lasso Professional 7\Documentation\4-ExtendingLasso\LCP folder
on the hard drive.

 2 In the LCP folder, open the folder that corresponds to you operating
system (e.g. Win2000, OSXApache).

 3 Double-click the L6isapi.dsp project file — you need Microsoft Visual C++
6 in order to open it.

 4 Choose Build/Rebuild All to compile and make the Lasso6Isapi.DLL.

 5 After building, Debug and Release folders will have been created inside
your L6isapi project folder.

 6 Open IIS Admin and shut down IIS (so that any previous
Lasso6Isapi.DLL files will not be held open inside IIS).

 7 Open the L6isapi/Debug folder and drag Lasso6Isapi.DLL into your
WinNT/System32 folder.

 8 Restart IIS using the Services menu in the windows Control Panel.

 9 Assuming you already have Lasso installed on this machine, your suffix
mappings should all work, and Lasso should function just as it did
before.

 10 Use a Web browser to view http://your.Web.server/Lasso/ and make sure the
.lasso suffix mapping is still working.

To build a sample Web server connector in Mac OS X:

 1 Open a Terminal window.

 2 Change the current folder to the Documentation folder by entering the
following:

1 9 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 1 9 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

cd /Applications/Lasso\ Professional\ 7/Documentation/4-ExtendingLasso/LCP/
OSXApache/'

 3 Build the sample project using the provided makefile. You must be
logged in as the root user to run this command.

make

 4 After building, a Mac OS X dynamic library file will be in the current
folder: LassoConnectorforApache.so. This is the module you’ll install into
the ApacheModules folder.

 5 Copy the newly-created module to the LassoModules folder by entering the
following:

cp LassoConnectorforApache.so /usr/libexec/httpd/

 6 Logged in as root user, restart apache so it loads the new module.

su
<enter root password here>
apachectl restart

 Assuming you already have Lasso installed on this machine, your suffix
mappings should all work, and Lasso should function just as it did
before.

 7 In a Web browser, go to http://your.Web.server/Lasso/ and try a few things to
make sure the .lasso suffix mapping is still working.

Debugging
This section describes the procedures for debugging a Lasso Web server
connector built in Windows 2000 or Mac OS X.

Windows 2000

Detailed instructions for debugging Windows Internet Server extension
DLL files can be found at the following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/
_mfcnotes_tn063.asp

Mac OS X

The debugging procedures for Lasso Web server connectors in Mac OS X
are identical to the debugging procedures for LCAPI data source connectors
in Mac OS X, with the exception of the files names and paths. See Chapter
4: C/C++ API > Debugging for detailed instructions.

1 9 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 1 9 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

Lasso Connector Operation
Communication between the Lasso Web server connector (client) and
Lasso Service (server) is achieved by means of exchanging messages via
a regular TCP/IP socket on port 14550. A typical session is initiated by a
client and consists of the following steps:

 1 Connect to Lasso Service host on port 14550.

 2 Send the open request command.

 3 Handle requests sent back from Lasso.

 4 Repeat previous step until the close request command is received.

 5 Close the connection.

All messages to and from Lasso Service begin with the LPCommandBlock
structure, and are optionally followed by an arbitrary number of data bytes
if needed. The LPCommandBlock structure is defined as follows:

typedef enum LPCommand;
typedef int LPRequestID;
typedef unsigned int LPSequenceNum;
typedef struct LPCommandBlock
{
 LPCommand fCmd;
 int fResultCode;
 unsigned int fDataSize;
};

The meaning of each LPCommandBlock structure member is explained in the
following table.

Table 1: LPCommandBlock Structure Members

Command Description

fCmd The command. For a list of currently defined commands
see the Command Reference at the end of this chapter.

fResultCode The result of the command. Used if the command is a
reply.

fDataSize The size of the additional command-specific data to
follow (may be zero).

1 9 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 1 9 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

Lasso Connector Tutorial
This section provides a walk-through of building an example Lasso
connector for Mac OS X Apache to show how LCP features are used.

This code will be most similar to the sample LassoApache project, so in
order to build this code, copy the LassoApache project folder and edit the
project files inside it.

Lasso Connector Module Code
Shown below is the code for the Apache module. Line numbers are
provided to the left of each line of code, and are referenced in the Lasso
Connector Module Walk-Through section.

Note: The line numbers shown refer to the line numbers of the code in the
actual file being created, not as shown in this page. Some single lines of code
may carry into two or more lines as shown on this page.

Lasso Connector Module Code

 1 int sock = -1;
 2 module MODULE_VAR_EXPORT lasso_module =
 3 {
 4 STANDARD_MODULE_STUFF,
 5 NULL, /* initializer */
 6 NULL, /* dir config creater */
 7 NULL, /* dir merger ensure strictness */
 8 NULL, /* server config */
 9 NULL, /* merge server config */
 10 NULL, /* command table */
 11 handlers, /* handlers */
 12 NULL, /* filename translation */
 13 NULL, /* check_user_id */
 14 NULL, /* check auth */
 15 NULL, /* check access */
 16 NULL, /* type_checker */
 17 NULL, /* fixups */
 18 NULL, /* logger */
 19 NULL, /* header parser */
 20 child_init_handler, /* child_init */
 21 child_term_handler, /* child_exit */
 22 NULL /* post read-request */
 23 };
 24 static const handler_rec handlers[] =
 25 {
 26 { "lasso-handler", lasso_handler },
 27 { NULL }

1 9 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 1 9 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

 28 };
 29 void child_init_handler(server_rec*, pool*)
 30 {
 31 sock = open_connection();
 32 }
 33 int open_connection()
 34 {
 35 int tries = 0;
 36 go:
 37 int res = 0;
 38 int s = socket(AF_INET, SOCK_STREAM, 0);
 39 sockaddr_in addr;
 40 char buff[256];
 41 char server[128] = "127.0.0.1";
 42 char port[128] = "14550";
 43 addr.sin_family = AF_INET;
 44 addr.sin_port = htons((short)atoi(port));
 45 addr.sin_addr.s_addr = inet_addr(server);
 46 addr.sin_zero[0] = addr.sin_zero[1] = addr.sin_zero[2] = addr.sin_zero[3] = 0;
 47 res = connect(s, (sockaddr*)&addr, sizeof(sockaddr_in));
 48 if (res == 0)
 49 {
 50 return s;
 51 }
 52 if (s != -1)
 53 {
 54 close(s);
 55 s = -1;
 56 }
 57 return -1;
 58 }
 59 void child_term_handler(server_rec*, pool*)
 60 {
 61 close(sock);
 62 sock = -1;
 63 }
 64 int get_post(int sock, request_rec * r, POSTReader * reader)
 65 {
 66 if (ap_setup_client_block(r, REQUEST_CHUNKED_ERROR) == OK)
 67 {
 68 if (ap_should_client_block(r) == 1)
 69 {
 70 char * buffer = new char[r->remaining+1];
 71 int readLen = 0;
 72 int toRead = r->remaining;
 73 int readSize = r->remaining;
 74 ap_hard_timeout("rpPostKeyword", r);
 75 while ((readLen = ap_get_client_block(r, buffer, readSize)) > 0)

1 9 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 1 9 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

 76 {
 77 buffer[readLen] = '\0';
 78 reader->AddToBuffer(buffer, readLen);
 79 ap_reset_timeout(r);
 80 toRead -= readLen;
 81 readSize = toRead < DEFAULT_BUFFER ? toRead : DEFAULT_BUFFER;
 82 }
 83 ap_kill_timeout(r);
 84 delete [] buffer;
 85 }
 86 }
 87 return 1;
 88 }
 89 int lasso_handler (request_rec *r)
 90 {
 91 int res = 0;
 92 LPCommandBlock block;
 93 char * data = NULL;
 94 int reqOpen = 1;
 95 unsigned int timeout = 300;
 96 int openTries = 0;
 97 int read = 0;
 98 POSTReader reader(ap_table_get(r->headers_in, "Content-Type"));
 99 get_post(sock, r, &reader);
 100 openCon:
 101 if (sock == -1)
 102 {
 103 sock = open_connection(gChildPool, r->server);
 104 }
 105 if (sock == -1)
 106 return SERVER_ERROR;
 107 /* start reading command blocks from Lasso */
 108 while (reqOpen == 1 && (read = read_block(sock, &block, &data, &timeout)) == 1)
 109 {
 110 switch(block.fCmd)
 111 {
 112 case cmdGetParam:
 113 {
 114 char * myData = data;
 115 int numParams = 0;
 116 // scan to see how many params
 117 for (unsigned int pos = 0; pos < block.fDataSize;)
 118 {
 119 ++numParams;
 120 pos += sizeof(RequestParamKeyword);
 121 int dSize = *(int*)(data+pos);
 122 pos += (ntohl(dSize)+sizeof(int));
 123 }

1 9 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 1 9 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

 124 block.fCmd = cmdGetParamRep;
 125 block.fDataSize = 0;
 126 block.fResultCode = 0;
 127 struct ptr_size
 128 {
 129 char * data;
 130 int size;
 131 };
 132 ptr_size * rec = (ptr_size*)malloc(numParams*sizeof(ptr_size));
 133 for (int x = 0; x < numParams; ++x)
 134 {
 135 RequestParamKeyword word = ntohl(*(RequestParamKeyword*)myData);
 136 int dLen = ntohl(*(int*)(myData+sizeof(RequestParamKeyword)));
 137 char * pData = NULL;
 138 int dSize = 0;
 139 myData += (sizeof(RequestParamKeyword) + sizeof(int));
 140 if (word == rpPostKeyword)
 141 {
 142 const std::string * str = reader.GetPostArgs();
 143 if (str != NULL)
 144 {
 145 pData = (char*)malloc(str->size()+1);
 146 dSize = str->size()+1;
 147 memcpy(pData, str->c_str(), str->size());
 148 pData[str->size()] = '\0';
 149 }
 150 }
 151 else
 152 {
 153 int res = get_param(r, word, dLen > 0 ? myData : NULL, &pData, &dSize);
 154 if (res < 0)
 155 block.fResultCode = res;
 156 }
 157 rec[x].data = pData;
 158 rec[x].size = dSize;
 159 block.fDataSize += (dSize + sizeof(int));
 160 }
 161 /* alloc a buffer for the data portion of the block*/
 162 char * pData = (char*)malloc(block.fDataSize);
 163 char * ppData = pData;
 164 for (int x = 0; x < numParams; ++x)
 165 {
 166 int mSize = htonl(rec[x].size);
 167 memcpy(ppData, &mSize, sizeof(int));
 168 memcpy(ppData+sizeof(int), rec[x].data, rec[x].size);
 169 ppData += (sizeof(int) + rec[x].size);
 170 free(rec[x].data);
 171 }

1 9 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 1 9 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

 172 res = send_block(sock, &block, pData);
 173 // dispose rec and each pointer within!
 174 free(rec);
 175 free(pData);
 176 }
 177 break;
 178 case cmdPushData:
 179 ap_rwrite(data, block.fDataSize, r);
 180 break;
 181 case cmdCloseReq:
 182 reqOpen = 0;
 183 break;
 184 default:
 185 break;
 186 }
 187 free(data);
 188 data = NULL;
 189 }
 190 if (read != 1) // some error
 191 {
 192 close(sock);
 193 sock = -1;
 194 if (++openTries < 6)
 195 goto openCon;
 196 return SERVER_ERROR;
 197 }
 198 return OK;
 199 }

Lasso Connector Module Walk-Through
This section provides a step-by-step walk through for building a Lasso Web
server connector for Mac OS X Apache.

To build a Lasso connector:

 1 Define a global variable to hold the reference to the socket used by the
Apache module for communicating with Lasso Service.

 1 int sock = -1;

 2 Define which functions in our module will be called by the Apache Web
server for processing HTTP requests.

 2 module MODULE_VAR_EXPORT lasso_module =
 3 {
 4 STANDARD_MODULE_STUFF,
 5 NULL, /* initializer */
 6 NULL, /* dir config creater */
 7 NULL, /* dir merger ensure strictness */

1 9 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 1 9 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

 8 NULL, /* server config */
 9 NULL, /* merge server config */
 10 NULL, /* command table */
 11 handlers, /* handlers */
 12 NULL, /* filename translation */
 13 NULL, /* check_user_id */
 14 NULL, /* check auth */
 15 NULL, /* check access */
 16 NULL, /* type_checker */
 17 NULL, /* fixups */
 18 NULL, /* logger */
 19 NULL, /* header parser */
 20 child_init_handler, /* child_init */
 21 child_term_handler, /* child_exit */
 22 NULL /* post read-request */
 23 };

 3 The Apache API allows the module to define any number of content
handlers. Our module implements a single handler named lasso-handler.

 24 static const handler_rec handlers[] =
 25 {
 26 { "lasso-handler", lasso_handler },
 27 { NULL }
 28 };

 4 Every time the Apache server forwards a new child process, it calls the
child_init_handler() function as specified by lasso_module structure. At this
point, we open a connection to Lasso Service and prepare for processing
the request.

 29 void child_init_handler(server_rec*, pool*)
 30 {
 31 sock = open_connection();
 32 }

 5 In order to open a connection, we need to create a socket of type
SOCK_STREAM. A SOCK_STREAM type provides sequenced, reliable, two-
way connection based byte streams, similar to pipes.

 33 int open_connection()
 34 {
 35 int tries = 0;
 36 go:
 37 int res = 0;
 38 int s = socket(AF_INET, SOCK_STREAM, 0);

 6 Next, specify the host address and port of the computer Lasso Service
is running on. In our sample code, both server addresses (127.0.0.1)
and port (14550) are hard-coded. For an example of how to read these
settings from a file, see the LassoConnectorforApache.c source.

1 9 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 1 9 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

 39 sockaddr_in addr;
 40 char buff[256];
 41 char server[128] = "127.0.0.1";
 42 char port[128] = "14550";
 43 addr.sin_family = AF_INET;
 44 addr.sin_port = htons((short)atoi(port));
 45 addr.sin_addr.s_addr = inet_addr(server);
 46 addr.sin_zero[0] = addr.sin_zero[1] = addr.sin_zero[2] = addr.sin_zero[3] = 0;

 7 Finally, call the connect() method to open a connection to Lasso Service.

 47 res = connect(s, (sockaddr*)&addr, sizeof(sockaddr_in));

 8 If a connection has been established successfully, then return the socket
ID. Otherwise, close the connection before returning.

Note: LassoProtoUtils.cpp includes various utility routines, including two
important methods: send_block() and read_block(). These methods are
used extensively in the sample code for sending/receiving various LCP
messages:

 48 if (res == 0)
 49 {
 50 return s;
 51 }
 52 if (s != -1)
 53 {
 54 close(s);
 55 s = -1;
 56 }
 57 return -1;
 58 }

 9 After processing the request, close the connection. Apache calls this as the
child process is terminated.

 59 void child_term_handler(server_rec*, pool*)
 60 {
 61 close(sock);
 62 sock = -1;
 63 }

 10 Define a user function for handling POST arguments. While most of the
work of decoding and saving uploaded file data on the disk is being
handled by the POSTReader class (defined in the POSTReader.cpp file, and
included with Lasso Professional 7), you still need to provide a simple
function for reading the POST data.

 64 int get_post(int sock, request_rec * r, POSTReader * reader)
 65 {
 66 if (ap_setup_client_block(r, REQUEST_CHUNKED_ERROR) == OK)
 67 {

2 0 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 2 0 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

 68 if (ap_should_client_block(r) == 1)
 69 {
 70 char * buffer = new char[r->remaining+1];
 71 int readLen = 0;
 72 int toRead = r->remaining;
 73 int readSize = r->remaining;
 74 ap_hard_timeout("rpPostKeyword", r);
 75 while ((readLen = ap_get_client_block(r, buffer, readSize)) > 0)
 76 {
 77 buffer[readLen] = '\0';
 78 reader->AddToBuffer(buffer, readLen);
 79 ap_reset_timeout(r);
 80 toRead -= readLen;
 81 readSize = toRead < DEFAULT_BUFFER ? toRead : DEFAULT_BUFFER;
 82 }
 83 ap_kill_timeout(r);
 84 delete [] buffer;
 85 }
 86 }
 87 return 1;
 88 }

 11 The actual work of handling the HTTP request is done in the body of
the lasso_handler() method, as specified by the lasso_module structure. First,
define variables to hold the command block, status code, and any addi-
tional parameters.

 89 int lasso_handler (request_rec *r)
 90 {
 91 int res = 0;
 92 LPCommandBlock block;
 93 char * data = NULL;
 94 int reqOpen = 1;
 95 unsigned int timeout = 300;
 96 int openTries = 0;
 97 int read = 0;

 12 Initialize the POSTReader object, used for retrieving any POST arguments
that may have been submitted as part of the HTTP request:

 98 POSTReader reader(ap_table_get(r->headers_in, "Content-Type"));
 99 get_post(sock, r, &reader);

 13 Make sure the connection is still available, and open a new one, if neces-
sary.

 100 openCon:
 101 if (sock == -1)
 102 {
 103 sock = open_connection(gChildPool, r->server);
 104 }

2 0 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 2 0 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

 105 if (sock == -1)
 106 return SERVER_ERROR;

 14 Process any further messages sent by Lasso Service in a loop, waiting for
the “close request” command (cmdCloseReq), or until no more data is
available for reading.

Note: LassoProtoUtils.cpp includes various utility routines, including two
important methods: send_block() and read_block(). These methods are
used extensively in the sample code for sending/receiving various LCP
messages.

 107 /* start reading command blocks from Lasso */
 108 while (reqOpen == 1 && (read = read_block(sock, &block, &data, &timeout))

== 1)
 109 {
 110 switch(block.fCmd)
 111 {
 112 case cmdGetParam:
 113 {

 15 In addition to the “close request” command, the Lasso connector should
be prepared to handle three different types of commands, including the
request to obtain a specific value of a named server variable or HTTP
request parameter (cmdGetParam).

 Every HTTP request may have a number of properties associated with it,
such as a client IP address, HTTP headers sent by the Web browser, the
URL of the requested file, etc. For a full list of the named parameters
which could be sent by Lasso Service, see the RequestParams.h file.

 114 char * myData = data;
 115 int numParams = 0;
 116 // scan to see how many params
 117 for (unsigned int pos = 0; pos < block.fDataSize;)
 118 {
 119 ++numParams;
 120 pos += sizeof(RequestParamKeyword);
 121 int dSize = *(int*)(data+pos);
 122 pos += (ntohl(dSize)+sizeof(int));
 123 }
 124 block.fCmd = cmdGetParamRep;
 125 block.fDataSize = 0;
 126 block.fResultCode = 0;
 127 struct ptr_size
 128 {
 129 char * data;
 130 int size;
 131 };
 132 ptr_size * rec = (ptr_size*)malloc(numParams*sizeof(ptr_size));

2 0 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 2 0 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

 133 for (int x = 0; x < numParams; ++x)
 134 {
 135 RequestParamKeyword word = ntohl(*(RequestParamKeyword*)myDat

a);
 136 int dLen = ntohl(*(int*)(myData+sizeof(RequestParamKeyword)));
 137 char * pData = NULL;
 138 int dSize = 0;
 139 myData += (sizeof(RequestParamKeyword) + sizeof(int));

 16 Unlike the rest of the named parameters, POST argument data
(rpPost-Keyword parameter) requests require special handling on behalf of
the POSTReader class.

 140 if (word == rpPostKeyword)
 141 {
 142 const std::string * str = reader.GetPostArgs();
 143 if (str != NULL)
 144 {
 145 pData = (char*)malloc(str->size()+1);
 146 dSize = str->size()+1;
 147 memcpy(pData, str->c_str(), str->size());
 148 pData[str->size()] = '\0';
 149 }
 150 }

 17 The rest of the named parameters can be easily handled by a single
function. For a complete code listing of the get_param() function, see the
LassoConnectorforApache.c source.

 151 else
 152 {
 153 int res = get_param(r, word, dLen > 0 ? myData : NULL, &pData,

&dSize);
 154 if (res < 0)
 155 block.fResultCode = res;
 156 }
 157 rec[x].data = pData;
 158 rec[x].size = dSize;
 159 block.fDataSize += (dSize + sizeof(int));
 160 }
 161 /* alloc a buffer for the data portion of the block*/
 162 char * pData = (char*)malloc(block.fDataSize);
 163 char * ppData = pData;
 164 for (int x = 0; x < numParams; ++x)
 165 {
 166 int mSize = htonl(rec[x].size);
 167 memcpy(ppData, &mSize, sizeof(int));
 168 memcpy(ppData+sizeof(int), rec[x].data, rec[x].size);
 169 ppData += (sizeof(int) + rec[x].size);
 170 free(rec[x].data);

2 0 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 2 0 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

 171 }

 18 Once the value of the requested named parameter has been obtained,
send the result back to Lasso Service.

 172 res = send_block(sock, &block, pData);
 173 // dispose rec and each pointer within!
 174 free(rec);
 175 free(pData);
 176 }
 177 break;

 19 Additional commands may include a signal of an unexpected error that
occurred during the use of the protocol (cmdProtoErr), and a request to
push partially-processed data back to the Web browser (cmdPushData).

 178 case cmdPushData:
 179 ap_rwrite(data, block.fDataSize, r);
 180 break;

 20 Continue to process incoming messages until the cmdCloseReq command
is received from Lasso Service, signalling that there is no more data to be
sent to the Web browser.

 181 case cmdCloseReq:
 182 reqOpen = 0;
 183 break;
 184 default:
 185 break;
 186 }

 21 Finally, free up any memory previously allocated by the read_block()
method during reading the message data.

 187 free(data);
 188 data = NULL;
 189 }

 22 If any errors occured during data transmission/reception, attempt to
reconnect with the Lasso Service. Otherwise, inform the server whether
the connector succeeded in handling the HTTP request.

 190 if (read != 1) // some error
 191 {
 192 close(sock);
 193 sock = -1;
 194 if (++openTries < 6)
 195 goto openCon;
 196 return SERVER_ERROR;
 197 }
 198 return OK;
 199 }

2 0 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 2 0 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

Lasso Connector Protocol Reference

LCP Commands
Listed here are all commands used in LCP.

cmdProtoErr

Indicates that an error has occurred in the use of the protocol.

Data Required Four-byte integer indicating the error code. Any additional data will
be a textual description of what went wrong.

Sent By Lasso Service

Reply None

cmdCloseReq

Sent by Lasso Service when there is no more data to be sent to the Web
browser.

Data Required None

Sent By Lasso Service or client.

Reply None

cmdGetParam

Request to return the value of a “named” parameter - server/environment
variable or an HTTP request.

Data Required RequestParamKeyword as defined in RequestParams.h Then a four-
byte integer indicating the size of the data for the argument. Multiple
params may follow.

Sent By Lasso Service

Reply cmdGetParamRep

cmdGetParamRep

Returns the value of a “named” parameter, as requested by cmdGetParam
command.

2 0 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L 2 0 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

Data Required RequestParamKeyword as defined in RequestParams.h, then a
four-byte integer indicating the size of the character data for the
requested param. If multiple params were requested, the data for
each param should follow in the original order.

Sent By client

Reply None

cmdPushData

Push partially processed data to a Web browser.

Data Required The data that should be sent to the web browser.

Sent By LassoService

Reply None

Named Parameters
The following table lists all named parameters used in LCP.

Table 2: Named Parameters

Parameter Description

rpSearchArgKeyword All text in URL after the question mark.

rpUserKeyword Username sent from browser.

rpPasswordKeyword Password sent from browser.

rpAddressKeyword IP address of client browser.

rpPostKeyword HTTP object body (form data, etc.).

rpMethodKeyword GET or POST, depending on <form method>.

rpServerName IP address of server on which the Web server is
running.

rpServerPort IP port this hit came to (80 is common, 443 for SSL).

rpScriptName Relative path from server root to this Lasso format file.

rpContentType MIME header sent from client browser.

rpContentLength The length in bytes of the POST data sent from <form
POST>.

rpReferrerKeyword URL of referring page.

rpUserAgentKeyword Browser name and type.

rpClientIPAddress IP address of client browser.

rpFullRequestKeyword All MIME headers, uninterpreted.

2 0 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 7 – L A S S O C O N N E C T O R P R O T O C O L

8
Chapter 8

Lasso Java API

This chapter documents Lasso Java API (LJAPI) which can be used to
develop new Lasso data source connectors, LDML tags, and data types.

 • Overview introduces the API and describes the types of extensions that
can be built.

 • What’s New describes what’s new in LJAPI 7.

 • LJAPI 7 vs. LCAPI 7 compares and contrasts LJAPI 7 with LCAPI 7.

 • Requirements includes platform-specific development environment
details.

 • Getting Started is a quick-start guide to building the LJAPI samples
included with the Extending Lasso 7 Guide.

 • Debugging includes platform-specific information about how to debug
your projects.

 • Substitution Tag Operation introduces the theory of operation behind
creating substitution tags using LJAPI.

 • Substitution Tag Module Tutorial describes authoring and building the
sample LJAPI substitution tag.

 • Data Source Operation introduces the theory of operation behind
creating data source connectors using LJAPI.

 • Data Source Connector Tutorial describes authoring and building the
sample LJAPI data source connector.

 • LJAPI Interface Reference includes details of every Java interface used
in LJAPI.

 • LJAPI Class Reference includes details of every Java class used in LJAPI.

2 0 7

E X T E N D I N G L A S S O 7 G U I D E

Overview
LJAPI lets you write Java code to add new LDML tags, data source connec-
tors, and data types to Lasso Professional 7. LJAPI is similar to LCAPI, but
is tailored for the Java language.

It is generally recommended that data source connectors be developed
using LCAPI instead of LJAPI, since they will offer easier installation
compared to connectors built using LJAPI. However, as more database
products appear on the market, many of them include support for Java
to the extent that some are entirely Java-based. In this case, creating data
source modules using LJAPI could provide advantages over LCAPI data
sources in terms of development speed and efficiency, and in some cases
could be the only available option to a developer.

In general, writing tags in LCAPI offers advantages over LJAPI and custom
LDML tags in system speed and performance. However, tags must be
compiled separately for Windows 2000/XP and Mac OS X in order to
support each platform. Most importantly, while the client-side Java falls
short of its original “write once, run everywhere” promise, it has become
increasingly popular in the server application field where a graphical user
interface is not needed and Java is implemented on the server side. In fact,
certain aspects of Java, such as file and stream operations, could perform
on par with or even outperform similar server components written in C/
C++.

Finally, one of the important reasons for developing LJAPI modules is an
enormous class library included with each Java VM install, covering almost
every single programming need, from text processing to 2D/3D imaging to
various network protocol implementations.

Custom tags written in LJAPI instantly support each platform. This chapter
provides a walk-through for building an example substitution tag in LJAPI.
Source code for the ZipCountTag module, as well as the code for the substi-
tution tag, data source connector, and data type examples are included in
the Lasso Professional 7/Documentation/4-ExtendingLasso/LJAPI folder on the hard
drive.

What’s New
Lasso Professional 7 introduces a complete rewrite of the Lasso Java
Application Programming Interface (LJAPI). This new implementation
provides many advantages over the former API, including a streamlined
interface, increased speed, and feature parity with LCAPI 7.

2 0 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 0 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

Note: Older LJAPI modules written for Lasso Professional 5 will no longer
work under Lasso Professional 7.

The most important change in LJAPI 7 is that it is now built upon LCAPI 7.
Both API’s share the same functionality and provide a single programming
interface, making it easier for developers who wish to learn both APIs.

In addition to all of the features previously available in LCAPI 6 such as
facilities for creating substitution tags and data source modules, LJAPI 7
also includes all new features in LCAPI 7. These features include:

 • Asynchronous tags that run in their own thread.

 • Container tags that operate like standard container tags.

 • Data types which can have tag members, data members and callbacks.

LJAPI 7 also provides the ability to manipulate native LDML or other
LCAPI/LJAPI data types by accessing their data members or running their
member tags. For instance, developers can build arrays or maps that can
be used from LDML format files using new LJAPI 7 functions. LJAPI 7 also
allows any data type to be returned from an LJAPI tag, including binary
data and complex data types such as arrays and maps.

LJAPI 7 provides new functions that allow tag parameters to be retrieved
while preserving the parameter data type, and allows page variables of any
type to be set and retrieved. LJAPI 7 also includes functions that aid in
logging critical errors and debugging messages, and functions that query
Lasso security for access permissions.

LJAPI 7 vs. LCAPI 7
Developers who have experience creating LCAPI modules will find them-
selves familiar with the new Lasso Java API. Similarly, Java developers who
learn to use LJAPI 7 will find it easy to write LCAPI modules once they are
ready to make a transition to a different language.

The following sections outlines a few basic differences between LCAPI 7
and LJAPI 7.

LJAPI 7 is Object-Oriented
The majority of Lasso API functions must be aware of the current Lasso
state in order to operate correctly. In order to solve the problem resulting
from the non-OO nature of the C-based Lasso API, LCAPI introduced the
token concept. When Lasso calls one of the methods implemented by
an LCAPI module, it passes an opaque parameter of type lasso_request_t,
which encapsulates the information about the current state of the request.

2 0 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 0 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

The module then makes calls to Lasso while passing the token in the first
parameter to every API function.

In LJAPI 7, the same state information is stored in an instance of the
LassoCall Java class. All LJAPI 7 functions are implemented as members of
the LassoCall class, which eliminates the need to pass a token parameter
with each call.

This results in one of the most notable differences between LJAPI and
LCAPI, in that LJAPI methods usually take one parameter less that their
native LCAPI counterparts.

LJAPI Uses Shorter Function Names
In LCAPI, function names begin with the lasso_ prefix, reflecting the name
space in which they reside. However, the corresponding LJAPI methods
are implemented as members of LassoCall class. For this reason, the lasso_
prefix has been removed from all Java method names.

The following shows the lasso_getTagName function in LCAPI:

lasso_getTagName(lasso_request_t token, auto_lasso_value_t &name);

The following shows the equivalent getTagName method in LJAPI:

getTagName(LassoValue name);

Tokenless LCAPI Functions are Static Methods in
LJAPI
There are few LCAPI functions that do not take the token state param-
eter. These functions are implemented in LJAPI as static methods of the
LassoCall class:

The following shows the lasso_registerConstant function in LCAPI:

osError lasso_registerConstant(const char * name, lasso_type_t val);

The following shows the equivalent registerConstant method in LJAPI:

int LassoCall.registerConstant(String name, LassoTypeRef val);

LJAPI Does Not Use Function Pointers
Some LCAPI functions use a function pointer parameter of type
lasso_tag_func. Since function pointers do not exist in Java, the corre-
sponding LJAPI methods instead accept a pair of string parameters that
specify the class and method name.

The following shows the lasso_typeAllocTag function in LCAPI:

2 1 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 1 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

osError lasso_typeAllocTag (lasso_request_t token, lasso_type_t * outTag, lasso_
tag_func nativeTagFunction);

The following shows the equivalent typeAllocTag method in LJAPI:

int typeAllocTag (LassoTypeRef outTag, String className, String methodName);

Requirements
In order to write your own LDML substitution tags, data source connectors,
or custom data types in Java, you will need the following:

Windows
 • Microsoft Windows 2000, Microsoft Windows XP Professional, or better.

 • Java 2 SDK 1.4 or higher.

 • Windows Lasso Professional 7 or higher.

Mac OS
 • Mac OS X with Java 2 SDK installed (included).

 • Mac OS X Lasso Professional 7 or higher.

Getting Started
This section provides a walk-through for building sample LJAPI tag
modules in Windows 2000/XP and Mac OS X.

To build a sample LJAPI tag module using Apache Ant:

Apache Ant is a de-facto standard Java-based build tool, part of the Apache
open-source initiative.

In order to build the sample code, you will need to install complete Ant
package, downloadable from the following location:

http://ant.apache.org/

If you do not wish to install Apache Ant at this time, you can skip to the
next section for instructions on building the code examples with the javac
compiler tool.

Note: All LJAPI examples have been tested with the most recent stable
version of the Ant tool (v1.5.2) available at the time of the Lasso Professional
7 release.

2 1 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 1 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

To build all included code examples:

 1 Launch the command prompt (Windows 2000/XP), or open the
Terminal application (Mac OS X)

 2 Locate the following folder in the hard drive:

Lasso Professional 7/Documentation/4-ExtendingLasso/LJAPI/Sample Code

 3 Make this folder your current working directory.

 Windows:

 cd "C:\Program Files\Blue World Communications\Lasso Professional 7\
Documentation\4-ExtendingLasso\LJAPI\Sample Code"

 Mac OS X:

 cd "/Applications/Lasso Professional 7/Documentation/4-ExtendingLasso/LJAPI/
Sample Code"

 4 Invoke Ant tool by entering the “ant” command at the command
prompt, optionally followed by the target (sub-project) name:

ant <target-name>

 Compiled LJAPI modules will be placed in the Modules (output) folder
located inside the Sample Code directory.

 5 To install sample LJAPI modules using the Ant tool, enter the following
command at the command prompt:

ant install

 Sample LJAPI modules can also be installed manually, by dragging
one or more Java class/jar files from the Modules (output) folder to the
LassoModules folder.

 6 Restart Lasso Professional.

Please note that, when launched without an optional target name param-
eter (step 4), Ant will execute the default target defined in the “build.xml”
descriptor file. This target has been pre-configured to compile all sample
LJAPI modules. Individual modules can be also built separately by speci-
fying one of the following target names on the command line: zipcount, zip,
pdf, nntp, mysql, xml or docs.

Two special targets (clean and install) can be used for deleting the contents
of the Modules (output) directory, and copying LJAPI modules to the
LassoModules folder, respectively.

For further details, please see the contents of the build.xml descriptor file.

Alternately, you can also build the ZipCountTag module using the <javac>
command-line tool included with Java SDK from Sun Microsystems.

2 1 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 1 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

To build ZipCountTag module using the <javac> command-line tool:

 1 Launch the Windows 2000/XP command prompt.

 2 Make the following folder your current directory.

C:\Program Files\Blue World Communications\Lasso Professional 7\
Documentation\4-ExtendingLasso\LJAPI\Sample Code\Substitution Tags\ZipCountTag

 3 Enter the path of the Java compiler tool javac, followed by the -classpath
option keyword and the path to the LJAPI.jar file (contains all Java classes
used by LJAPI modules), followed by the ZipCountTag module source file
path:

javac -classpath ../../../../../../LassoModules/LJAPI.jar ZipCountTag.java

 If Java SDK has been installed in the jdk1.4 folder, your command line
might look like this:

C:\jdk1.4\bin\javac -classpath ..\LJAPI.jar ZipCountTag.java

 4 After building, a ZipCountTag.class file will be created inside your
ZipCountTag project folder.

 5 Open the ZipCountTag folder and drag ZipCountTag.class into the
Lasso Professional 7\LassoModules folder on the hard drive.

 6 Stop and then restart Lasso Service.

 7 The new tag [Zip_Count] is now part of the LDML language.

 8 Drag the sample Lasso format file called ZipCountTag.lasso and the
LJAPITest.zip test file into your Web server root.

 9 In a Web browser, view http://localhost/ZipCountTag.lasso to see the new LDML
tags in action.

To build a sample LJAPI tag module in Mac OS X:

 1 Open a Terminal window.

 2 Change the current folder to the Lasso Professional 7/Documentation folder
using the following command:

cd /Applications/Lasso\ Professional\ 7/Documentation/4-ExtendingLasso/LJAPI/
Sample\ Code/Substitution\ Tags/ZipCountTag

 3 Build the sample project using the provided makefile. This requires that
you be logged in as the root user.

make

 Alternatively, you can build the module by manually invoking the Java
compiler:

javac -classpath ../../../../../../LJAPI.jar ZipCountTag.java

2 1 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 1 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 4 After building, a Java class file named ZipCountTag.class will be created
in the current folder. This is the LJAPI module you’ll install into the
LassoModules folder.

 5 Copy the newly-created module to the Lasso modules folder using the
following command:

cp ZipCountTag.class /Applications/Lasso\ Professional\ 7/LassoModules

 6 Quit Lasso Service if it’s running, so that the next time it starts up, it will
load the new module you just built (you’ll need to know a root pass-
word to use sudo).

cd /Applications/Lasso\ Professional\ 7/Tools/
sudo ./stoplassoservice.command

 7 Start the Lasso Service back up, so it will load the new module.

sudo ./startlassoservice.command

 The new [Zip_Count] tag is now part of the LDML language.

 8 Copy the sample Lasso format file called
ZipCountTag.lasso and the LJAPITest.zip test file from your
Lasso Professional 7/Documentation/4-ExtendingLasso/LJAPI/Tags/ZipCountTag
folder into your Web server document root.

 9 Use a Web browser to view http://localhost/ZipCountTag.lasso to see the new
LDML tags in action.

Debugging
You can set breakpoints in your LJAPI class files and perform source-level
debugging for your own code. In order to set this up, add path information
to your project so it knows from where to load executables. For this section,
we will use the provided substitution tag project as the example.

To set breakpoints in your LJAPI code:

 1 Lasso Professional 7 allows you to specify Java Virtual Machine options
used for launching JVM upon Lasso startup. These options are stored in
the lasso_internal.global_prefs table as java_vm_options in the store_key field.
To enable remote debugging on port 8000, add the following two
options to the data column in the lasso_internal.global_pref table:

-Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n

 2 After restarting Lasso Professional 7, launch JDB with the following
option:

jdb -attach 8000

2 1 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 1 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 3 Once attached to the JVM, you can set the breakpoints, single-step
through your code, catch exceptions, etc. Please note that you can store
multiple JVM options in the same column. To monitor the GC activity,
add -verbose:gc option, or use -verbose:jni to print JNI messages to the stan-
dard output.

 For more information on the options available for your platform and
JVM, please consult the JVM vendor documentation. For a list of non-
standard options available for your JVM, review the Xusage.txt file:

 Mac OS X:

/System/Library/Frameworks/JavaVM.framework/Home/lib/Xusage.txt

 Windows:

 <path-to-jvm.dll>/Xusage.txt

Substitution Tag Operation
An LJAPI module is essentially a regular Java class file. When Lasso
Professional 7 first starts up, it looks for module files (Windows DLLs or
Mac OS X DYLIBS) in its LassoModules folder. As it encounters and loads
an LJAPI 7 module, it launches the JVM and proceeds to scan the folder
for other LJAPI modules. Upon finding a Java class file, Lasso attempts to
determine if it is derived from the com.blueworld.lassopro.JavaModule class. If it
is, then Lasso loads the class while performing necessary instantiation and
calls the registerLassoModule() function that is implemented in that class:

public void registerLassoModule()

At this point, the module must call the following method as many times as
needed, once for each tag implemented by the module:

void registerTagModule(String moduleName,
 String tagName,
 String methodName,
 int flags,
 String description);

After a tag module is registered with Lasso Professional 7, it can provide
information about the name of the tag and the name of the Java method
that is implementing that tag. It also can provide a short description, and
any special flags describing unique features implemented by that tag.

All registered information is later used for dispatching the task of executing
a particular tag found in a .lasso format file to an appropriate LJAPI module,
or executing a data source action.

2 1 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 1 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

For example, the following code tells Lasso to call the Java class called
ZipCountTag whenever the LDML [Zip_Count] is encountered inside a .lasso
format file. The first parameter of the registerTagModule method is the
module name, the second is the tag name, and the third one is the name
of the function implementing the tag. The last two parameters are the tag
type flag and a short description:

public void registerLassoModule()
 {
 registerTagModule("ZipCountTag", "zip_count", "myZipCountFunc",
 FLAG_SUBSTITUTION, "Count items in a zip file");
 }

Below is the LDML needed in a Lasso format file in order to get the custom
tag to execute:

<html>
 <body>
 Count of items in the LjapiTest.zip file:
 [Zip_Count:'LjapiTest.zip']
 <!-- This should display "2" when page executes -->
 </body>
</html>

This will produce the following:

2

Substitution Tag Tutorial
The following section provides a walk-through of building an example tag
to show how LJAPI features are used. This code will be most similar to the
sample ZipCountTag LJAPI project. In order to build this project, copy the
ZipCountTag project folder and edit the project files inside it.

The module relies on a Java class library to do most of the work, particu-
larly the java.util.zip package which provides a variety of functions for
manipulating the contents of Zip files—standard compressed archives
widely used on the Internet.

The [Zip_Count] tag implemented in the ZipCountTag LJAPI module simply
displays the number of files and directories stored in a Zip file when called
from an LDML format file.

Example sample tag LDML syntax:

[Zip_Count: -Zipfile='LJAPITest.zip', -FilesOnly]

Notice the required convention of placing a dash in front of all named
parameters in order to make them easier to spot in the LDML code, and

2 1 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 1 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

prevent ambiguities in the LDML parser. Notice the tag takes one string
parameter named -Zipfile, and an optional keyword parameter named

-FilesOnly. In general, LDML does not care about the order in which you
pass parameters, so plan to make this tag as flexible as possible by not
assuming anything about the order of parameters. The following variations
should work exactly the same.

Example of sample tag with different ordered parameters:

[Zip_Count: -Zipfile='LJAPITest.zip', -FilesOnly]

[Zip_Count: -FilesOnly, -Zipfile='LJAPITest.zip']

Substitution Tag Module Code
Shown below is the code for the substitution tag module. Line numbers
are provided to the left of each line of code, and are referenced in the
Substitution Tag Module Walk-Through section.

Note: The line numbers shown refer to the line numbers of the code in the
actual file being created, not as shown in this page. Some single lines of code
may carry into two or more lines as shown on this page.

Substitution Tag Module Code

 1 import com.blueworld.lassopro.*;
 2 import java.io.*;
 3 import java.util.*;
 4 import java.util.zip.*;
 5 public class ZipCountTag extends LassoTagModule
 6 {
 7 public void registerLassoModule()
 8 {
 9 registerTagModule(“Zip”, “zip_count”, “myZipCountFunc”,
 10 FLAG_SUBSTITUTION, “Count items in a zip file”);
 11 }
 12
 13 public int myZipCountFunc(LassoCall lasso, int action)
 14 {
 15 int err = ERR_NOERR;
 16 try {
 17 IntValue count = new IntValue();
 18 err = lasso.getTagParamCount(count);
 19 if (err == ERR_NOERR && count.intValue() > 0)
 20 {
 21 String zipName = null;
 22 boolean filesOnly = false;
 23 LassoValue param1 = new LassoValue();

2 1 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 1 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 24 LassoValue param2 = new LassoValue();
 25 err = lasso.findTagParam(“-zipfile”, param1);
 26 if (err != ERR_NOERR || param1.name() == null)
 27 lasso.getTagParam(0, param1);
 28 if (param1.name() == null || param1.name().length() == 0)
 29 return LassoErrors.InvalidParameter;
 30 if (count.intValue() > 1 &&
 31 lasso.getTagParam(1, param2) == ERR_NOERR)
 32 filesOnly = param2.equalsIgnoreCase(“-filesonly”);
 33 String filePath = lasso.fullyQualifyPath(param1.name());
 34 filePath = lasso.resolvePath(filePath);
 35 filePath = lasso.getPlatformSpecificPath(filePath);
 36 ZipFile zip = new ZipFile(filePath);
 37 Enumeration enum = zip.entries();
 38 ZipEntry entry = null;
 39 int zipcount = 0;
 40 while (enum.hasMoreElements())
 41 {
 42 entry = (ZipEntry)enum.nextElement();
 43 if (!filesOnly || !entry.isDirectory())
 44 ++zipcount;
 45 }
 46 err = lasso.outputTagData(Integer.toString(zipcount));
 47 zip.close();
 48 }
 49 }
 50 catch (java.io.Exception e)
 51 {
 52 lasso.setResultMessage(e.getMessage());
 53 return LassoErrors.FileNotFound;
 54 }
 55 return err;
 56 }
 57 }

Substitution Tag Module Walk-Through
This section provides a step-by-step walk-through for building the substitu-
tion tag module.

To write a sample LJAPI tag module:

 1 First, import com.blueworld.lassopro.* classes as shown in line 1.

 1 import com.blueworld.lassopro.*;
 2 import java.io.*;
 3 import java.util.*;
 4 import java.util.zip.*;

2 1 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 1 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 2 Define your class to be a subclass of the blueworld.lasso.LassoSubstitutionTag
class.

 5 public class ZipCountTag extends LassoTagModule

 3 Define the registerLassoModule method.

 7 public void registerLassoModule() {

 Every Lasso module must implement the registerLassoModule() method.
This method will be called by Lasso at startup, giving your module a
chance to register its tags.

 4 Register the tags implemented by your module.

 9 registerTagModule(“Zip”, “zip_count”, “myZipCountFunc”,
 10 FLAG_SUBSTITUTION, “Count items in a zip file”);

 Call this method as many times as there are tags implemented in your
module. This method takes five parameters: the module name, the
name of LDML tag, the name of the Java method implemented by your
module (to be called when the corresponding LDML tag is found on the
page), any additional tag feature flags, and a brief tag description.

 5 Define the tag formatting method with the same name as indicated in the
third parameter of the corresponding registerTagModule call.

 13 public int myZipCountFunc(LassoCall lasso, int action)

 This is the method that does all the work. Every tag registered by your
module can have its own formatting method. Its purpose is to perform
an action based on the parameters passed to the tag and/or current
request properties. Most substitution tags would output the data,
although some may perform other actions such as setting page variables,
manipulating files, etc.

 When Lasso encounters one of the tags registered by your module, it
creates new module instance and calls the corresponding method,
passing the LassoCall object which then can be used by the module for
calling back into Lasso.

 6 Define the variable to hold the result code returned by various LassoCall
methods.

 15 int err = ERR_NOERR;

 7 Our [Zip_Count] LDML tag takes one required and one optional param-
eter. We need to make sure at least one parameter (filename) is present,
otherwise we won’t be able to continue.

 17 IntValue count = new IntValue();
 18 err = lasso.getTagParamCount(count);
 19 if (err == ERR_NOERR && count.intValue() > 0)

 8 Define the storage for the zip file name, optional -FilesOnly parameter, and
LassoValue object to be used with various LassoCall methods.

2 1 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 1 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 21 String zipName = null;
 22 boolean filesOnly = false;
 23 LassoValue param = new LassoValue();

 9 Our tag should be flexible enough to accept both named and unnamed
versions of the required parameter. First, try to search for the parameter
by a name.

 25 err = lasso.findTagParam(“-zipfile”, param1);

 10 If this fails, assume the first unnamed tag parameter to hold the file path
name. Call getTagParam() with the index 0 (tag parameter numbering is
zero-based).

 26 if (err != ERR_NOERR || param1.name() == null)
 27 err = lasso.getTagParam(0, param1);

 11 Next, make sure we’ve got a valid value. If the filename parameter
contains an empty string, immediately return from our method, passing
InvalidParameter result code back to Lasso.

 28 if (err != ERR_NOERR || param1.name().length() == 0)
 29 return LassoErrors.InvalidParameter;

 12 Our tag also accepts an optional boolean parameter -FilesOnly, indicating
that directories must be ignored while counting zip file items. If more
than one parameter was supplied to our tag, try determining if it was the
optional -FilesOnly parameter.

 30 if (count.intValue() > 1 &&
 31 lasso.getTagParam(1, param2) == ERR_NOERR)
 32 filesOnly = param2.equalsIgnoreCase(“-filesonly”);

 13 The path to the zip file is relative to the server root. In order to find out
the actual location of the file, you can use a number of LassoCall class
methods suited for converting a file path name into a fully qualified
platform-specific path. fullyQualifyPath() turns a relative path into a from-
the-server-root path. resolvePath() converts a from-the-root path into a full
internal path. Finally, getPlatformSpecificPath() will convert an internal path
name into a platform-specific path name.

 33 String filePath = lasso.fullyQualifyPath(param1.name());
 34 filePath = lasso.resolvePath(filePath);
 35 filePath = lasso.getPlatformSpecificPath(filePath);

 14 Now attempt to instantiate a ZipFile object using a platform-specific path
name. Any exceptions thrown by the object constructor will be caught by
the try/catch block wrapping our method’s body.

 36 ZipFile zip = new ZipFile(filePath);

 15 Prepare to enumerate items in the zip file.

 37 Enumeration enum = zip.entries();

 16 Define the storage for holding the zip item count.

2 2 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 2 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 38 ZipEntry entry = null;
 39 int zipcount = 0;

 17 Iterate through the zip archive items, incrementing the counter for all
items matching our criteria.

 40 while (enum.hasMoreElements())
 41 {
 42 entry = (ZipEntry)enum.nextElement();
 43 if (!filesOnly || !entry.isDirectory())
 44 ++zipcount;
 45 }

 18 Output the resulting zip file item count.

 46 err = lasso.outputTagData(Integer.toString(zipcount));

 19 Close the zip file.

 47 zip.close();

 20 Make sure that any possible exceptions are handled correctly in your
code. In this particular case, we simply pass the message retrieved from
the Exception object back to Lasso, and return the FileNotFound error code.
For a complete listing of error codes, see the variables defined in the
LassoErrors class.

 50 catch (Exception e)
 51 {
 52 lasso.setResultMessage(e.getMessage());
 53 return LassoErrors.FileNotFound;
 54 }

Data Source Connector Operation
When Lasso Professional 7 starts up, it looks for module files (Windows
DLLs or Mac OS X DYLIBS) in the LassoModules folder. As Lasso encounters
each module, it executes the module’s registerLassoModule() function once
and only once. It is the job of the LJAPI developer to write code to register
each new data source (or custom tag) methods in this registerLassoModule()
function. Both substitution tags and data sources may be registered at the
same time, and the code for them can reside in the same module. The
only difference between registering a data source and a substitution tag is
whether registerTagModule() or registerDSModule() is called.

Data sources are typically more complex than substitution tags because
Lasso Service calls them with many different actions during the course
of various database operations. Whereas a substitution tag only needs to
know how to format itself, a data source needs to enumerate its tables,
search through records, add new records, delete records, and more. Even so,

2 2 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 2 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

this added complexity is easily handled with a single switch() statement, as
you will see in the Data Source Connector Tutorial section of this chapter.

Data Source Connectors and Lasso Administration
Once a custom data source connector module is registered by Lasso, it
will appear in the Setup > Data Sources > Connectors section of Lasso
Administration. If a connector appears here, then it has been installed
correctly.

The administrator adds the data source connection information to the
Setup > Data Sources > Hosts section of Lasso Administration, which
sets the parameters by which Lasso connects to the data source via the
connector. This information is stored in the Lasso_Internal Lasso MySQL
database, where the connector can retrieve and use the data via function
calls.

Figure 1: Custom Data Source Host Screen

Setup Build Browse Monitor Support

Global Settings Data Sources Tags Groups Users

Connectors Hosts Databases Tables Fields Search

Host Listing

Connector Custom Data Source Connector

Name Status Links

Custom_Hostname Enabled List Databases

Custom_Hostname2 Enabled List Databases

Showing 2 hosts from 1 to 2 out of 2.

1 Jump

Add Host... Refresh

Host Detail

Name Custom_Hostname

Connection URL www.example.com:port

Connection Parameters

Status Enabled

Default Username u s e r n a m e

Default Password ••••••

Update Delete

List Databases...

Lasso Professional 6 • Unlimited Users • 06/12/2002 11:03:08 • Current User: admin Logout

© 1996-2002 Blue World Communications, Inc.

The data that the administrator can submit in the Setup > Data Sources >
Hosts section of Lasso Administration includes the following:

 • Name – The administrator-defined name of the data source host.

 • Connection URL – The URL string required for Lasso to connect to a
data source via the connector. This typically includes the IP address of
the machine hosting the data source.

2 2 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 2 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 • Connection Parameters – Additional parameters passed with the
Connection URL. This can include the TCP/IP port number of the data
source.

 • Status – Allows the administrator to enable or disable the connector in
Lasso Professional 7.

 • Default Username – The data source username required for Lasso to
gain access to the data source.

 • Default Password – The data source password required for Lasso to
gain access to the data source.

The Connection URL, Connection Parameters, Default Username, and
Default Password values are passed to the data source via data source func-
tion methods in the com.blueworld.lassopro.LassoCall class, which are described
in the LJAPI Class Reference section of chapter.

Data Source Connector Tutorial
The following section provides a walk-through of an example data source
to show how some of the LJAPI features are used. This code will be most
similar to the sample NNTPDataSource project, which is provided with Lasso
Professional 7 in the following folder.

Lasso Professional 7/Documentation/4-ExtendingLasso/LJAPI/
DataSourceConnectors/Nntp_ds

The example data source connector bridges a news (NNTP) server and
Lasso Professional 7. Network News Transfer Protocol (NNTP) is used to
read and post articles on Usenet news servers. This specific example has
been tested with the Microsoft NNTP Service 5.0, and it provides a good
start for any developer desiring to build a data source connector module
supporting a large variety of other NNTP servers.

While an NNTP server is not exactly an RDBMS, there are some advantages
to implementing the NNTP client as a data source connector. The hier-
archy of a news storage is somewhat similar to that of a traditional RDBMS.
News articles (rows) are organized in groups (tables), which in turn are
parts of distributions (databases). However, due to a sheer number of news
groups available on an average news server (2000-50000+), treating groups
as database tables would put a big load on the internal Lasso security
mechanism, which is required to keep track of permissions for every regis-
tered database table. Therefore, the hierarchy has been adopted to mini-
mize the stress put on Lasso security.

The NNTP connector adds a single News database containing two static
tables: Groups and Articles. Performing a search on the Group table returns

2 2 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 2 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

a list of groups available on the server. Similarly, executing a query on the
Articles table retrieves a range of articles from a specific newsgroup.

Updating groups or articles is not supported by the NNTP protocol, so
only search and insert data source actions are implemented by this
connector. SQL actions are also not supported, although it is possible
to build a simple parser for translating SQL statements into commands
understood by NNTP servers.

Data Source Connector Code
Below is the code for the data source module. Line numbers are provided
to the left of each line of code, and are referenced in the Data Source
Connector Walk-Through section.

Data Source Connector Code

 1 import com.blueworld.lassopro.*;
 2 import java.net.*;
 3 import java.io.*;
 4 import java.util.*;
 5 public class NNTP_DS extends LassoDSModule
 6 {
 7 Socket sock;
 8 PrintStream printer;
 9 BufferedReader reader;
 10 String host = null;
 11 int port = 0;
 12 String user = null, pass = null;
 13 String hostInfo = “”;
 14 Vector headers = new Vector(10);
 15 int refsIdx = -1;
 16 int xrefIdx = -1;
 17 int bytesIdx = -1;
 18 boolean useXpat = false;
 19 String groupFilter = “”;
 20 String group = “”;
 21 String article = “”;
 22 int groupCount = -1;
 23 int articleCount = -1;
 24
 25 public void registerLassoModule () {
 26 registerDSModule(“NNTP”, “dsFunc”, 0, “Lasso Connector for NNTP”,
 “Simple Usenet client”);
 27 }
 28 public int dsFunc (LassoCall lasso, int cmd, LassoValue value) {
 29 int err = ERR_NOERR;
 30 switch (cmd) {

2 2 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 2 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 31 case ACTION_INIT:
 32 err = doInit(lasso);
 33 break;
 34 case ACTION_TERM:
 35 err = doTerm(lasso);
 36 break;
 37 case ACTION_EXISTS:
 38 if (!value.data().equalsIgnoreCase(“News”))
 39 err = LassoErrors.WebNoSuchObject;
 40 break;
 41 case ACTION_DB_NAMES:
 42 err = doDBNames(lasso);
 43 break;
 44 case ACTION_TABLE_NAMES:
 45 err = doTableNames(lasso, value.data());
 46 break;
 47 case ACTION_INFO:
 48 err = doInfo(lasso, true);
 49 break;
 50 case ACTION_SEARCH:
 51 err = doSearch(lasso);
 52 break;
 53 }
 54 return err;
 55 }
 56 int doInit(LassoCall lasso) {
 57 return ERR_NOERR;
 58 }
 59 int doTerm(LassoCall lasso) {
 60 close();
 61 return ERR_NOERR;
 62 }
 63 int doDBNames(LassoCall lasso) {
 64 return lasso.addDataSourceResult(“News”);
 65 }
 66 int doTableNames(LassoCall lasso, String db) {
 67 if (!db.equalsIgnoreCase(“News”))
 68 return -1;
 69 lasso.addDataSourceResult(“Groups”);
 70 lasso.addDataSourceResult(“Articles”);
 71 return ERR_NOERR;
 72 }
 73 int doInfo(LassoCall lasso, boolean listAllCols) {
 74 int err = ERR_NOERR;
 75 LassoValue tbl = new LassoValue();
 76 err = lasso.getTableName(tbl);
 77 if (err != ERR_NOERR || tbl.data().length() == 0)
 78 return LassoErrors.InvalidParameter;

2 2 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 2 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 79 if (!connect(lasso))
 80 return LassoErrors.Network;
 81 if (tbl.data().equalsIgnoreCase(“Groups”)) {
 82 lasso.addColumnInfo(“Group”, 0,
 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
 83 lasso.addColumnInfo(“Last”, 0,
 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
 84 lasso.addColumnInfo(“First”, 0,
 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
 85 lasso.addColumnInfo(“AllowPost”, 0,
 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
 86 } else if (tbl.data().equalsIgnoreCase(“Articles”)) {
 87 if (!this.headers.isEmpty()) {
 88 String str;
 89 int type, count = headers.size();
 90 lasso.addColumnInfo(“Number”, 0,
 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
 91 for (int i = 0; i < count; ++i) {
 92 str = (String)this.headers.elementAt(i);
 93 if (str.equalsIgnoreCase(“Lines”) ||
 str.equalsIgnoreCase(“Bytes”))
 94 type = LassoValue.TYPE_INT;
 95 else if (str.equalsIgnoreCase(“Date”))
 96 type = LassoValue.TYPE_DATETIME;
 97 else
 98 type = LassoValue.TYPE_CHAR;
 99 err = lasso.addColumnInfo((String)headers.elementAt(i), 0,
 type, PROTECTION_READ_ONLY);
 100 }
 101 if (listAllCols) {
 102 lasso.addColumnInfo(“Headers”, 0,
 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
 103 lasso.addColumnInfo(“Body”, 0,
 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
 104 }
 105 }
 106 }
 107 return err;
 108 }
 109 int doSearch(LassoCall lasso) {
 110 int err = ERR_NOERR;
 111 int skip = 0;
 112 int max = 50;
 113 int totalcount = 0;
 114 String filter = “”, reply = “”;
 115 LassoValue tbl = new LassoValue();
 116 LassoValue val = new LassoValue();
 117 IntValue ival = new IntValue();

2 2 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 2 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 118 if (lasso.getSkipRows(ival) == ERR_NOERR)
 119 skip = ival.intValue();
 120 if (lasso.getMaxRows(ival) == ERR_NOERR)
 121 max = ival.intValue();
 122 lasso.getTableName(tbl);
 123 lasso.getInputColumnCount(ival);
 124 if (!connect(lasso))
 125 return LassoErrors.Network;
 126 if ((err = doInfo(lasso, max == 1)) != ERR_NOERR)
 127 return err;
 128 try {
 129 if (tbl.data().equalsIgnoreCase(“GROUPS”)) {
 130 if (lasso.findInputColumn(“group”, val) == ERR_NOERR) {
 131 if (val.type() == LassoOperators.OP_ENDS_WITH)
 132 filter = ‘*’ + val.data();
 133 else if (val.type() == LassoOperators.OP_CONTAINS)
 134 filter = ‘*’ + val.data() + ‘*’;
 135 else if (val.type() == LassoOperators.OP_EQUALS)
 136 filter = val.data();
 137 else
 138 filter = val.data() + ‘*’;
 139 }
 140 this.printer.print(“LIST ACTIVE “ + filter + “\r\n”);
 141 reply=reader.readLine();
 142 if (!reply.startsWith(“2”))
 143 return setError(lasso, reply);
 144 if (!this.groupFilter.equalsIgnoreCase(filter)) {
 145 this.groupFilter = filter;
 146 this.groupCount = -1;
 147 }
 148 err = addGroups(lasso, skip, max);
 149 } else if (tbl.data().equalsIgnoreCase(“ARTICLES”)) {
 150 if (lasso.findInputColumn(“-group”, val) == ERR_NOERR ||
 151 lasso.findInputColumn(“group”, val) == ERR_NOERR) {
 152 if (val.data().length() > 0) {
 153 if (!val.data().equalsIgnoreCase(this.group))
 154 this.articleCount = -1;
 155 this.group = val.data();
 156 }
 157 }
 158 if (this.group == null || this.group.length() < 1) {
 159 lasso.setResultMessage(“Missing group parameter.”);
 160 return LassoErrors.InvalidParameter;
 161 }
 162 String id = null;
 163 ival.setInt(0);
 164 if (lasso.getRowID(ival) == ERR_NOERR && ival.intValue() != -1)
 165 id = Integer.toString(ival.intValue());

2 2 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 2 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 166 else if (lasso.getPrimaryKeyColumn(val) == ERR_NOERR &&
 167 (val.name().equalsIgnoreCase(“message-id”) ||
 168 val.name().equalsIgnoreCase(“number”)))
 169 filter = val.data();
 170 else if (lasso.findInputColumn(“message-id”, val) == ERR_NOERR ||
 171 lasso.findInputColumn(“number”, val) == ERR_NOERR)
 172 filter = val.data();
 173 if (this.articleCount == -1) {
 174 err = selectGroup(lasso);
 175 if (err != ERR_NOERR)
 176 return err;
 177 }
 178 if (max == 1 && (filter == null || filter.length() < 1))
 179 id = getRange(lasso, skip, 1);
 180 if (filter.startsWith(“<”) || filter.indexOf(‘-’) == -1)
 181 id = filter;
 182 if (id != null && id.length() > 1) { // detail
 183 this.printer.print(“ARTICLE “ + id + “\r\n”);
 184 reply=reader.readLine();
 185 if (!reply.startsWith(“2”))
 186 return setError(lasso, reply);
 187 int idx=0, i=0, bytes=0;
 188 String str;
 189 String[] data = new String[headers.size()+3];
 190 data[0] = reply.substring(4, reply.indexOf(‘ ‘, 4));
 191 data[data.length-1] = “”; // body
 192 data[data.length-2] = “”; // headers
 193 while(!(reply=reader.readLine()).startsWith(“.”)) {
 194 bytes += reply.length() + 2;
 195 i = reply.indexOf(“: “);
 196 if (i != -1) { // header
 197 str = reply.substring(0,i);
 198 idx = this.headers.indexOf(str);
 199 if (idx != -1) // known header
 200 data[idx+1] = reply.substring(i+2);
 201 else
 202 data[data.length-2] += reply + ‘\r’;
 203 } else { // body
 204 StringBuffer buf = new StringBuffer();
 205 while (!(reply=reader.readLine()).startsWith(“.”)) {
 206 bytes += reply.length() + 2;
 207 buf.append(reply).append(‘\r’);
 208 }
 209 data[data.length-1] = buf.toString();
 210 data[this.bytesIdx] = Integer.toString(bytes + 2);
 211 break;
 212 }
 213 }

2 2 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 2 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 214 if (data[0].equals(“0”) && this.refsIdx != -1) {
 215 idx = data[this.xrefIdx].lastIndexOf(group);
 216 if (idx != -1) {
 217 str = data[this.xrefIdx].substring(idx + group.length() + 1);
 218 if ((idx=str.indexOf(‘ ‘)) != -1)
 219 str = str.substring(0, idx);
 220 data[0] = str;
 221 }
 222 }
 223 err = lasso.addResultRow(data);
 224 } else { // GET LIST
 225 if (filter == null || filter.length() == 0)
 226 filter = getRange(lasso, skip, max);
 227 this.printer.print(“XOVER “ + filter + “\r\n”);
 228 reply=reader.readLine();
 229 if (!reply.startsWith(“2”))
 230 return setError(lasso, reply);
 231 while(err == ERR_NOERR && !(reply=reader.readLine()).startsWith(“.”))
 232 err = lasso.addResultRow(split(reply, “\t”));
 233 }
 234 lasso.setNumRowsFound(this.articleCount);
 235 }
 236 } catch (Exception e) {
 237 System.err.println(e.toString());
 238 lasso.setResultMessage(e.getMessage());
 239 err = LassoErrors.Network;
 240 try { this.sock.close(); }
 241 catch (Exception e2) {}
 242 this.sock = null;
 243 }
 244 return err;
 245 }
 246 int setError(LassoCall lasso, String reply) {
 247 int err = -1;
 248 try {
 249 err = Integer.parseInt(reply.substring(0, 3));
 250 lasso.setResultMessage(reply.substring(4));
 251 } catch (Exception e) {};
 252 lasso.setResultCode(err);
 253 return err;
 254 }
 255 String[] split (String str, String ch) {
 256 int i = 0;
 257 int numcols = headers.size() + 1;
 258 String cols[] = new String[numcols];
 259 StringTokenizer tok = new StringTokenizer(str, ch);
 260 int count = tok.countTokens();
 261 while (tok.hasMoreTokens()) {

2 2 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 2 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 262 if (i == this.refsIdx && numcols > count)
 263 cols[i++] = “”; // empty References field
 264 cols[i++] = tok.nextToken();
 265 }
 266 return cols;
 267 }
 268 boolean connect(LassoCall lasso) {
 269 if (getHostInfo(lasso) != ERR_NOERR)
 270 return false;
 271 try
 272 {
 273 String reply;
 274 if (this.sock != null) {
 275 this.printer.print(“MODE READER\r\n”); // probe the connnection
 276 reply = reader.readLine();
 277 if (!reply.startsWith(“2”)) {
 278 this.sock.close();
 279 this.sock = null;
 280 }
 281 }
 282 if (this.sock == null) {
 283 this.sock=new Socket(this.host,this.port);
 284 this.reader=new BufferedReader(new InputStreamReader(this.sock.getInputStrea

m()), 2500);
 285 this.printer=new PrintStream(new BufferedOutputStream(this.sock.getOutputStrea

m(),2500),true);
 286 this.hostInfo = this.reader.readLine();
 287 login();
 288 this.printer.print(“MODE READER\r\n”);
 289 reader.readLine();
 290 if (this.headers.isEmpty()) {
 291 printer.print(“LIST OVERVIEW.FMT\r\n”);
 292 reply = reader.readLine();
 293 if (reply.startsWith(“2”)) {
 294 int idx, i = 1;
 295 while(!(reply=reader.readLine()).startsWith(“.”)) {
 296 idx = reply.indexOf(‘:’);
 297 if (idx != -1)
 298 reply = reply.substring(0, idx);
 299 this.headers.addElement(reply);
 300 if (reply.equalsIgnoreCase(“References”))
 301 this.refsIdx = i;
 302 else if (reply.equalsIgnoreCase(“Bytes”))
 303 this.bytesIdx = i;
 304 else if (reply.equalsIgnoreCase(“Xref”))
 305 this.xrefIdx = i;
 306 ++i;
 307 }

2 3 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 3 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 308 }
 309 }
 310 }
 311 } catch (Exception e) {
 312 lasso.setResultMessage(e.getMessage());
 313 this.sock = null;
 314 return false;
 315 }
 316 return true;
 317 }
 318 void close() {
 319 this.host = null;
 320 this.headers.clear();
 321 this.groupCount = this.articleCount = -1;
 322 this.refsIdx = this.xrefIdx = this.bytesIdx = -1;
 323 try
 324 {
 325 this.printer.print(“QUIT\r\n”);
 326 this.reader.close();
 327 this.printer.close();
 328 this.sock.close();
 329 this.sock = null;
 330 } catch (Exception e) {}
 331 }
 332 boolean login()
 333 {
 334 if (user != null && user.length() > 0) {
 335 try
 336 {
 337 this.printer.print(“AUTHINFO USER “ + this.user + “\r\n”);
 338 this.printer.print(“AUTHINFO PASS “ + this.pass + “\r\n”);
 339 return (reply.startsWith(“281”));
 340 } catch (Exception e) {}
 341 }
 342 return false;
 343 }
 344 int getHostInfo(LassoCall lasso) {
 345 int err = ERR_NOERR;
 346 LassoValue hostPort = new LassoValue();
 347 LassoValue userPass = new LassoValue();
 348 err = lasso.getDataHost(hostPort, userPass);
 349 if (err != ERR_NOERR ||
 350 hostPort.name() == null ||
 351 hostPort.name().length() == 0)
 352 return err;
 353 if (!hostPort.name().equalsIgnoreCase(this.host))
 354 close();
 355 this.host = hostPort.name();

2 3 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 3 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 356 this.user = userPass.name();
 357 this.pass = userPass.data();
 358 try {
 359 this.port = Integer.parseInt(hostPort.data());
 360 } catch (Exception e) {}
 361
 362 if (this.port == 0)
 363 this.port = 119; // default NNTP port
 364 return ERR_NOERR;
 365 }
 366 int addGroups(LassoCall lasso, int skip, int max) {
 367 int err = ERR_NOERR;
 368 int count = 0;
 369 boolean getFirst = (max == 1 || this.group == null || this.group.length() < 1);
 370 String reply = “”;
 371 try {
 372 while ((skip-- > 0) && !(reply=reader.readLine()).startsWith(“.”))
 373 count++;
 374 if (!reply.startsWith(“.”)) {
 375 String row[];
 376 while (err == ERR_NOERR && !(reply=reader.readLine()).startsWith(“.”) && (max--

> 0)) {
 377 count++;
 378 row = split(reply, “ “);
 379 if (getFirst) {
 380 this.group = row[0];
 381 err = lasso.addResultRow(row);
 382 getFirst = false;
 383 } else
 384 err = lasso.addResultRow(row);
 385 }
 386 if (this.groupCount != -1) {
 387 count = this.groupCount;
 388 this.sock.close();
 389 this.sock = null;
 390 } else if (!reply.startsWith(“.”)) {
 391 while (!(reader.readLine()).startsWith(“.”))
 392 count++;
 393 this.groupCount = count;
 394 }
 395 }
 396 } catch (Exception e) { System.err.println(e.toString()); }
 397 err = lasso.setNumRowsFound(count);
 398 return err;
 399 }
 400 int selectGroup(LassoCall lasso) throws java.io.IOException {
 401 this.printer.print(“GROUP “ + this.group + “\r\n”);
 402 String reply=reader.readLine();

2 3 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 3 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 403 if (!reply.startsWith(“2”))
 404 return setError(lasso, reply);
 405 else
 406 return ERR_NOERR;
 407 }
 408 String getRange(LassoCall lasso, int skip, int max) {
 409 this.printer.print(“LISTGROUP “ + this.group + “\r\n”);
 410 StringBuffer result = new StringBuffer();
 411 int count = 0;
 412 try {
 413 String reply=reader.readLine();
 414 if (reply.startsWith(“2”)) {
 415 String last = “”;
 416 while (!(reply=reader.readLine()).startsWith(“.”) && (skip-- > 0))
 417 count++;
 418 if (!reply.startsWith(“.”)) {
 419 result.append(reply);
 420 if (max != 1)
 421 result.append(“-”);
 422 while (!(reply=reader.readLine()).startsWith(“.”) && (--max > 0)) {
 423 count++;
 424 last = reply;
 425 }
 426 if (this.articleCount > -1) {
 427 this.printer.println(“QUIT\r\n”);
 428 this.sock.close();
 429 this.sock = null;
 430 count = this.articleCount;
 431 if (connect(lasso))
 432 selectGroup(lasso);
 433 } else if (!reply.startsWith(“.”)) {
 434 while (!(reader.readLine()).startsWith(“.”))
 435 count++;
 436 result.append(last);
 437 this.articleCount = count;
 438 }
 439 }
 440 }
 441 } catch (Exception e) {} ;
 442 return result.toString();
 443 }
 444 }

Data Source Connector Walk-Through
This section provides a step-by-step walk-through for building the
described data source connector.

2 3 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 3 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

To build a sample LJAPI Data Source Connector:

 1 First, import com.blueworld.lassopro.* classes as shown in line 1.

 1 import com.blueworld.lassopro.*;
 2 import java.net.*;
 3 import java.io.*;
 4 import java.util.*;

 2 Define your module to be a subclass of the com.blueworld.lassopro.LassoDSM
odule class:

 6 public class NNTP_DS extends LassoDSModule {

 Define the storage for global variables, which are objects used to
communicate with an NNTP server, authentication and server info, etc.

 7 Socket sock;
 8 PrintStream printer;
 9 BufferedReader reader;
 ...

 3 Define the registerLassoModule method.

 17 public void registerLassoModule() {

 Every Lasso module must implement the registerLassoModule() method.
This method will be called by Lasso at startup, giving your module a
chance to register its data source(s).

 4 Define your main data source method. This function gets called with
various actions as Lasso Professional requests information from the data
source. The method name should be identical to the string passed in the
second parameter of the registerLassoModule() method.

 28 public int dsFunc (LassoCall lasso, int cmd, LassoValue value)

 5 Dispatch the action to corresponding Java method implemented in the
module. The switch statement distinguishes between various actions. For
a complete list of action constant values, see the LassoDSModule class
reference.

 30 switch (cmd) {
 31 case ACTION_INIT:
 32 err = doInit(lasso);
 33 break;
 34 case ACTION_TERM:
 35 err = doTerm(lasso);
 break;

 6 Among various actions that can be performed by a data source module
the, ACTION_EXISTS command is sent by Lasso Professional to verify that
a particular database exists on a specific host. If the name of the data-
base being looked up is not known, the module must return a LassoErrors

.WebNoSuchObject error:

2 3 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 3 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 37 case ACTION_EXISTS:
 38 if (!value.data().equalsIgnoreCase(“News”))
 39 err = LassoErrors.WebNoSuchObject;
 40 break;

 7 Return the ERR_NOERR result code upon successful completion of the
task. Returning a non-zero value will cause the Lasso Professional engine
to report a fatal error and stop processing the page.

 54 return err;

 8 After successful registration, every data source module receives the
ACTION_INIT command, which gives it a chance to establish connection
with a data source or perform any other initialization tasks. Our module
simply returns ERR_NOERR result code:

 56 int doInit(LassoCall lasso) {
 57 return ERR_NOERR;
 58 }

 9 Similarly, Lasso sends the ACTION_TERM command to all registered data
source modules during its shutdown sequence. The sample data source
uses this as a signal to close the connection to a NNTP server and
perform additional clean-up tasks:

 59 int doTerm(LassoCall lasso) {
 60 close();
 61 return ERR_NOERR;
 62 }

 10 The ACTION_DB_NAMES command is sent whenever Lasso Professional
needs to get a list of databases which the data source provides access
to. The developer must write code that discovers all the databases the
module knows of, and call LassoCall.addDataSourceResult() once for each
database it encounters:

 65 int doDBNames(LassoCall lasso) {
 66 return lasso.addDataSourceResult(“News”);
 67 }

 11 Whenever a data source module receives the ACTION_TABLE_NAMES
command, it must examine the database name passed in the LassoValue
parameter, and return the names of all tables available in the specified
database:

 68 int doTableNames(LassoCall lasso, String db) {
 69 if (!db.equalsIgnoreCase(“News”))
 70 return -1;
 71 lasso.addDataSourceResult(“Groups”);
 72 lasso.addDataSourceResult(“Articles”);
 73 return ERR_NOERR;
 74 }

2 3 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 3 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 12 Lasso Professional sends the ACTION_INFO command when it needs
to retrieve the information about columns contained in the result
set. Inline tag actions like -FindAll and -Search usually return a result set
containing certain number of rows/records, each consisting of one or
more columns/fields. When data source module receives an ACTION_INFO
command, it must call LassoCall.addColumnInfo() method once for each
column stored in the result set.

 73 int doInfo(LassoCall lasso, boolean listAllCols) {
 74 int err = ERR_NOERR;
 75 LassoValue tbl = new LassoValue();
 76 err = lasso.getTableName(tbl);
 77 if (err != ERR_NOERR || tbl.data().length() == 0)
 78 return LassoErrors.InvalidParameter;
 79 if (!connect(lasso))
 80 return LassoErrors.Network;
 81 if (tbl.data().equalsIgnoreCase(“Groups”)) {
 82 lasso.addColumnInfo(“Group”, 0,
 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
 83 lasso.addColumnInfo(“Last”, 0,
 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
 84 lasso.addColumnInfo(“First”, 0,
 LassoValue.TYPE_INT, PROTECTION_READ_ONLY);
 85 lasso.addColumnInfo(“AllowPost”, 0,
 LassoValue.TYPE_CHAR, PROTECTION_READ_ONLY);
 86 } ...

 13 The ACTION_SEARCH command is sent whenever Lasso Professional
needs to perform the search action on a data source.

 109 int doSearch(LassoCall lasso) {

 14 All of the information about the current search parameters (database
and table names, search arguments, sort arguments, etc.) can be retrieved
by calling various LJAPI methods such as LassoCall.getDataSourceName()
and LassoCall.getTableName(). Similarly, one can call getSkipRows() and
getMaxRows() methods to retrieve the -SkipRecords and -MaxRecords inline
parameter values. For a complete list of available methods, see LassoCall
class reference.

 117 IntValue ival = new IntValue();
 118 if (lasso.getSkipRows(ival) == ERR_NOERR)
 119 skip = ival.intValue();
 120 if (lasso.getMaxRows(ival) == ERR_NOERR)
 121 max = ival.intValue();
 122 lasso.getTableName(tbl);
 123 lasso.getInputColumnCount(ival);

 15 The module needs to perform different actions depending on the search
table name.

2 3 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 3 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 129 if (tbl.data().equalsIgnoreCase(“GROUPS”)) {

 16 Some NNTP servers allow retrieval of newsgroup listings filtered by a
matching pattern. The module builds the pattern string based on the
value of the inline search operator (beginsWith, endsWith, etc.).

 130 if (lasso.findInputColumn(“group”, val) == ERR_NOERR) {
 131 if (val.type() == LassoOperators.OP_ENDS_WITH)
 132 filter = ‘*’ + val.data();
 133 else if (val.type() == LassoOperators.OP_CONTAINS)
 134 filter = ‘*’ + val.data() + ‘*’;
 135 else if (val.type() == LassoOperators.OP_EQUALS)
 136 filter = val.data();
 137 else
 138 filter = val.data() + ‘*’;
 139 }

 17 In case the search is being performed on the ARTICLES table, we need to
find out the name of a newsgroup before we can proceed any further.

 149 } else if (tbl.data().equalsIgnoreCase(“ARTICLES”)) {
 150 if (lasso.findInputColumn(“-group”, val) == ERR_NOERR ||
 151 lasso.findInputColumn(“group”, val) == ERR_NOERR) {

 18 Next, we check if an article number or message ID has been included in
the search criteria, either as a primary keyfield, record ID, or as a named
search field.

 164 if (lasso.getRowID(ival) == ERR_NOERR && ival.intValue() != -1)
 165 id = Integer.toString(ival.intValue());
 166 else if (lasso.getPrimaryKeyColumn(val) == ERR_NOERR &&
 167 (val.name().equalsIgnoreCase(“message-id”) ||
 168 val.name().equalsIgnoreCase(“number”)))
 169 filter = val.data();
 170 else if (lasso.findInputColumn(“message-id”, val) == ERR_NOERR ||
 171 lasso.findInputColumn(“number”, val) == ERR_NOERR)
 172 filter = val.data();

 19 If none of the above was found, yet the -MaxRecords inline parameter
appears to limit the query results to a single row, we can try finding the
desired article ID based on the current -SkipRecords value.

 178 if (max == 1 && (filter == null || filter.length() < 1))
 179 id = getRange(lasso, skip, 1);

 20 If the article has been identified, proceed with retrieving the message in
its entirety.

 182 if (id != null && id.length() > 1) { // detail
 183 this.printer.print(“ARTICLE “ + id + “\r\n”);
 184 reply=reader.readLine();

 21 Otherwise, select the next group of news articles and retrieve their
headers.

2 3 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 3 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 225 if (filter == null || filter.length() == 0)
 226 filter = getRange(lasso, skip, max);
 227 this.printer.print(“XOVER “ + filter + “\r\n”);
 228 reply=reader.readLine();
 229 if (!reply.startsWith(“2”))
 230 return setError(lasso, reply);

 22 The LassoCall.addResultRow() method is used to return the results of a data
source action. It should be called as many times as there are records in
the result set, once for each record.

 LassoCall.addResultRow() method takes a single String array parameter.
Each array element corresponds to a record column/field contained in
the result set. The total number of array elements must be equal to the
number of times LassoCall.addColumnInfo() method was called for this data
source action. Since news article headers are transmitted in the form of a
tab-delimited string, we use our custom split() method to convert the data
to a String array, suitable for passing to addResultRow() method:

 231 while(err == ERR_NOERR && !(reply=reader.readLine()).startsWith(“.”))
 232 err = lasso.addResultRow(split(reply, “\t”));

 23 Finally, implement a number of convenience methods, including the
setError() routine used for standard error handling:

 246 int setError(LassoCall lasso, String reply) {
 247 int err = -1;
 248 try {
 249 err = Integer.parseInt(reply.substring(0, 3));
 250 lasso.setResultMessage(reply.substring(4));
 251 } catch (Exception e) {};
 252 lasso.setResultCode(err);
 253 return err;
 254 }

Data Type Operation
Among other new features, Lasso Professional 7 Java API introduces the
ability to create custom data types in Java. Creating a new data type in
LJAPI 7 is similar to creating a substitution tag. When Lasso Professional
7 starts up, it scans the LassoModules folder for module files (Windows
DLLs or Mac OS X DYLIBS). As it encounters each module, it executes the
registerLassoModule() function for that module. The developer may register
new LJAPI data types implemented by the module inside this function.

Custom data types are analogous to objects used in many other program-
ming languages. They can have properties (fields) and member tags
(methods).

2 3 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 3 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

Data Type Tutorial
The following section provides a walk-through of building an example
custom type to show how LJAPI features are used. This code will be most
similar to the sample ZipType LJAPI project, so in order to build this code,
copy the ZipType project folder and edit the project files inside it.

The module relies on a Java class library to do most of the work, particu-
larly the java.util.zip package which provides variety of functions for manipu-
lating the contents of ZIP files—standard compressed archives widely used
on the Internet.

The resulting type will be a “zip” file with the ability to read data from a
zip file given a path. The following member tags will be implemented:

Table 1: Type initializer and Member Tags

Name Description

[Zip:’Pathname’] Type initializer. Creates new instance of a custom type.

[Zip->File] Return the name of this Zip file.

[Zip->Count] Return the count of entries in this file.

[Zip->Size] Synonym for [Zip->Count].

[Zip->Enumerate] Enumerates zip entries, allowing to iterate through
stored items via consecutive calls to [Zip->Next].

[Zip->Next] Advance to the next entry, returning True if more items
are available.

[Zip->Position] Current iterator position, i.e. the index.

The rest of the member tags are item accessors, operating on the entries
stored in a zip file:

2 3 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 3 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

Table 2: Accessors

Name Description

[Zip->Name] Returns the name of an indexed entry.

[Zip->Get] Synonym for [Zip->Name].

[Zip->Comment] Zip entry comment.

[Zip->Date] Returns the entry creation date.

[Zip->Crc] Checksum, or 0xffffffff if not available.

[Zip->Method] Compression method: DEFLATED or STORED.

[Zip->Extra] Returns any extra data stored with the entry.

[Zip->GetData] Returns uncompressed entry data.

[Zip->CSize] Returns the size of the compressed data.

[Zip->USize] Returns the size of uncompressed data.

[Zip->IsDir] Returns True if the entry is a directory.

All zip entry accessor tags, except for [Zip->GetData], can take either one or
zero parameters. An integer parameter can specify the index (position)
of the entry in a zip file, while a string parameter could be used to locate
an entry by its name. When no parameters are provided, a corresponding
action is performed on the “current” item, whose index can be obtained
via the [Zip->Position] member tag.

Example sample tag LDML syntax:

The following shows an example of using a Zip custom type.

[Var:'zip' = zip:'/archive.zip']
[$zip->Count]
[$zip->Method]
[$zip->CSize]
[$zip->USize]
[While: $zip->Next]
 [$zip->CRC]
[/While]

Custom Data Type Module Code
Shown below is the code for the custom type tag module. Line numbers
are provided to the left of each line of code, and are referenced in the
Custom Type Tag Module Walk-Through section.

Note: The line numbers shown refer to the line numbers of the code in the
actual file being created, not as shown in this page. Some single lines of code
may carry into two or more lines as shown on this page.

2 4 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 4 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

Custom Data Type Module Code

 1 import com.blueworld.lassopro.*;
 2 import java.util.*;
 3 import java.util.zip.*;
 4 import java.io.*;
 5 import java.text.DateFormat;
 6 public class ZipType extends LassoTagModule
 7 {
 8 static final DateFormat df =
 9 DateFormat.getDateTimeInstance(DateFormat.SHORT, DateFormat.MEDIUM);
 10 static final String[] members = {
 11 “File”,”Size”,”Count”,”Enumerate”,”Position”,”Next”,
 12 “GetData”,”Get”,”Name”,”Comment”,”Date”,”Crc”,
 13 “Method”, “Extra”, “CSize”, “USize”, “IsDir” };
 14 ZipFile zip = null;
 15 Enumeration enum = null;
 16 ZipEntry entry = null;
 17 int index = 0;
 18 public void registerLassoModule()
 19 {
 20 registerTagModule(“ZipType”, “zip”, “format”,
 21 FLAG_SUBSTITUTION | FLAG_INITIALIZER, “zip custom type tag”);
 22 }
 23 public int format(LassoCall lasso, int action)
 24 {
 25 int err = ERR_NOERR;
 26 LassoValue param = new LassoValue();
 27 String path name = null;
 28 if (lasso.getTagParam(0, param) != ERR_NOERR ||
 29 param.name().length() < 1)
 30 {
 31 lasso.setResultMessage("[Zip] invalid file path name parameter");
 32 return LassoErrors.InvalidParameter;
 33 }
 34 try
 35 {
 36 IntValue count = new IntValue();
 37 err = lasso.getTagParamCount(count);
 38 if (err == ERR_NOERR && count.intValue() > 0)
 39 {
 40 String filePath = lasso.fullyQualifyPath(param.name());
 41 filePath = lasso.resolvePath(filePath);
 42 filePath = lasso.getPlatformSpecificPath(filePath);
 43 this.zip = new ZipFile(filePath);
 44 LassoTypeRef self = new LassoTypeRef();
 45 if ((err = lasso.typeAllocCustom(self, “zip”)) != ERR_NOERR)
 46 {
 47 lasso.setResultMessage("[Zip] couldn’t create new zip type instance.");

2 4 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 4 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 48 return err;
 49 }
 50 LassoTypeRef ref = new LassoTypeRef();
 51 String className = this.getClass().getName();
 52 for (int i = 0; i < this.members.length; i++)
 53 {
 54 if ((err=lasso.typeAllocTag(ref, className, “memberFunc”)) != ERR_NOERR ||
 55 (err=lasso.typeAddMember(self, members[i], ref)) != ERR_NOERR)
 56 {
 57 lasso.setResultMessage("[Zip] error adding member: “ + members[i]);
 58 return err;
 59 }
 60 }
 61 if (lasso.typeAllocTag(ref, className, “convertFunc”) == ERR_NOERR)
 62 lasso.typeAddMember(self, “onConvert”, ref);
 63 if (lasso.typeAllocTag(ref, className, “destroyFunc”) == ERR_NOERR)
 64 lasso.typeAddMember(self, “onDestroy”, ref);
 65 if ((err = lasso.typeSetCustomJavaObject(self, this)) != ERR_NOERR)
 66 {
 67 lasso.setResultMessage("[Zip] couldn’t attach java object to a custom type");
 68 return err;
 69 }
 70 err = lasso.returnTagValue(self);
 71 }
 72 }
 73 catch (Exception e)
 74 {
 75 System.err.println(e.toString());
 76 lasso.setResultMessage(e.getMessage());
 77 return LassoErrors.FileNotFound;
 78 }
 79 return err;
 80 }
 81 public int destroyFunc(LassoCall lasso, int action)
 82 {
 83 if (this.zip != null)
 84 {
 85 try { this.zip.close(); }
 86 catch (IOException e) {}
 87 this.zip = null;
 88 }
 89 return ERR_NOERR;
 90 }
 91 public int convertFunc(LassoCall lasso, int action)
 92 {
 93 LassoValue param = new LassoValue();
 94 if (lasso.getTagParam(0, param) == ERR_NOERR &&
 95 param.name().equalsIgnoreCase(“string”))

2 4 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 4 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 96 {
 97 lasso.outputTagData(“zip:(“ + this.zip.getName() + “)”);
 98 }
 99
 100 return ERR_NOERR;
 101 }
 102 public int memberFunc(LassoCall lasso, int action)
 103 {
 104 LassoValue tag = new LassoValue();
 105 LassoTypeRef out = new LassoTypeRef();
 106 int err = lasso.getTagName(tag);
 107 if (err != ERR_NOERR || tag.data().length() < 1)
 108 return LassoErrors.InvalidParameter;
 109 if (tag.data().equalsIgnoreCase(“file”))
 110 return lasso.outputTagData(zip.getName());
 111 else if (tag.data().equalsIgnoreCase(“size”) ||
 112 tag.data().equalsIgnoreCase(“count”))
 113 {
 114 lasso.typeAllocInteger(out, zip.size());
 115 return lasso.returnTagValue(out);
 116 }
 117 LassoValue param = new LassoValue();
 118 ZipEntry item = this.entry;
 119 if (lasso.getTagParam(0, param) == ERR_NOERR)
 120 {
 121 if (param.type() == LassoValue.TYPE_INT)
 122 {
 123 try {
 124 int idx = Integer.parseInt(param.name());
 125 if (idx < 1 || idx > zip.size())
 126 {
 127 lasso.setResultMessage(“[Zip] index out of range: “ + idx);
 128 return LassoErrors.InvalidParameter;
 129 }
 130 else if (idx != index)
 131 {
 132 index = idx;
 133 Enumeration enum2 = zip.entries();
 134 while (enum2.hasMoreElements() && idx-- > 0)
 135 item = (ZipEntry)enum2.nextElement();
 136 entry = item;
 137 }
 138 } catch (NumberFormatException npe) {}
 139 }
 140 else if (param.type() == LassoValue.TYPE_CHAR)
 141 item = zip.getEntry(param.name());
 142 }
 143 String result = null;

2 4 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 4 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 144 if (tag.data().equalsIgnoreCase(“name”) ||
 145 tag.data().equalsIgnoreCase(“get”))
 146 result = item.getName();
 147 else if (tag.data().equalsIgnoreCase(“comment”))
 148 result = item.getComment();
 149 else if (tag.data().equalsIgnoreCase(“crc”))
 150 result = Long.toHexString(item.getCrc());
 151 else if (tag.data().equalsIgnoreCase(“method”))
 152 result = (item.getMethod() == ZipEntry.DEFLATED ? “DEFLATED” : “STORED”);
 153 if (result != null)
 154 return lasso.outputTagData(result);
 155 if (tag.data().equalsIgnoreCase(“usize”))
 156 lasso.typeAllocInteger(out, item.getSize());
 157 else if (tag.data().equalsIgnoreCase(“csize”))
 158 lasso.typeAllocInteger(out, item.getCompressedSize());
 159 else if (tag.data().equalsIgnoreCase(“date”))
 160 lasso.typeAllocString(out, df.format(new Date(item.getTime())));
 161 else if (tag.data().equalsIgnoreCase(“isDir”))
 162 lasso.typeAllocBoolean(out, entry.isDirectory());
 163 else if (tag.data().equalsIgnoreCase(“position”))
 164 lasso.typeAllocInteger(out, index);
 165 else if (tag.data().equalsIgnoreCase(“enumerate”))
 166 {
 167 enum = zip.entries();
 168 index = 0;
 169 }
 170 else if (tag.data().equalsIgnoreCase(“getdata”))
 171 {
 172 int max = 0, skip = 0;
 173
 174 if (lasso.findTagParam(“-skip”, param) == ERR_NOERR)
 175 skip = Integer.parseInt(param.data());
 176 if (lasso.findTagParam(“-max”, param) == ERR_NOERR)
 177 max = Integer.parseInt(param.data());
 178 int count = 0;
 179 int toRead = 1024;
 180 if (max == 0 || max > item.getSize())
 181 max = (int)item.getSize() - skip;
 182 else if (max < 1024)
 183 toRead = max;
 184 try {
 185 InputStream is = zip.getInputStream(item);
 186 is.skip(skip);
 187 byte b[] = new byte[toRead];
 188 while ((count=is.read(b, 0, toRead)) > -1 && max > 0)
 189 {
 190 max -= count;
 191 if (count > 0)

2 4 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 4 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 192 lasso.outputTagData(new String(b, 0, count));
 193 }
 194 is.close();
 195 } catch (IOException ioe) {}
 196 }
 197 else if (tag.data().equalsIgnoreCase(“next”))
 198 {
 199 boolean reset = (enum == null);
 200 if (enum != null && !enum.hasMoreElements())
 201 enum = null;
 202 else if (reset)
 203 enum = zip.entries();
 204 boolean hasMore = (enum != null && enum.hasMoreElements());
 205 lasso.typeAllocBoolean(out, hasMore);
 206 if (hasMore)
 207 {
 208 entry = (ZipEntry)enum.nextElement();
 209 if (reset)
 210 index = 1;
 211 else
 212 index++;
 213 }
 214 }
 215 if (!out.isNull())
 216 return lasso.returnTagValue(out);
 217 return err;
 218 }

Custom Data Type Module Walk-Through
This section provides a step-by-step walk-through for building the custom
type tag module.

To write a sample LJAPI tag module:

 1 First, import com.blueworld.lassopro.* classes as shown in line 1.

 1 import com.blueworld.lassopro.*;
 2 import java.util.*;
 3 import java.util.zip.*;
 4 import java.io.*;
 5 import java.text.DateFormat;

 2 Define the class to be a subclass of the com.blueworld.lassopro.LassoTagModule
class.

 6 public class ZipType extends LassoTagModule

 3 Store the names of member tags implemented by our custom type in a
String array variable.

2 4 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 4 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 10 static final String[] members = {
 11 “File”,”Size”,”Count”,”Enumerate”,”Position”,”Next”,
 12 “GetData”,”Get”,”Name”,”Comment”,”Date”,”Crc”,
 13 “Method”, “Extra”, “CSize”, “USize”, “IsDir” };

 4 Register the custom type initializer method, passing FLAG_INITIALIZER
flag in the fourth parameter of the registerLassoModule method.

 18 public void registerLassoModule()
 19 {
 20 registerTagModule(“ZipType”, “zip”, “format”,
 21 FLAG_SUBSTITUTION | FLAG_INITIALIZER, “zip custom type tag”);
 22 }

 5 Define main tag formatting method with the same name as specified in
the third parameter of previously called registerTagModule method.

 23 public int format(LassoCall lasso, int action)

 6 Examine parameters passed to our type initializer and create new instance
of a java.util.zip.ZipFile object, using resolved file path name.

 40 String filePath = lasso.fullyQualifyPath(param.name());
 41 filePath = lasso.resolvePath(filePath);
 42 filePath = lasso.getPlatformSpecificPath(filePath);
 43 this.zip = new ZipFile(filePath);

 7 Create a new com.blueworld.lassopro.LassoTypeRef variable to store a refer-
ence to the custom type, which is about to be created in the next step.

 44 LassoTypeRef self = new LassoTypeRef();

 8 Allocate new custom type instance, passing the LassoTypeRef variable and
the type name to LassoCall.typeAllocCustom method.

 45 if ((err = lasso.typeAllocCustom(self, “zip”)) != ERR_NOERR)
 46 {
 47 lasso.setResultMessage(“[Zip] couldn’t create new zip type instance.”);
 48 return err;
 49 }

 9 Add member tags to the newly-allocated custom type. In our example, all
member tags will be handled by the same Java method; however, LJAPI
allows each member tag to have its own formatting method.

 52 for (int i = 0; i < this.members.length; i++)
 53 {
 54 if ((err=lasso.typeAllocTag(ref, className, “memberFunc”)) != ERR_NOERR ||
 55 (err=lasso.typeAddMember(self, members[i], ref)) != ERR_NOERR)
 56 {
 57 lasso.setResultMessage(“[Zip] error adding member: “ + members[i]);
 58 return err;
 59 }
 60 }

2 4 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 4 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 Note that adding the member tags to a custom type is a two-step process.
First, an unnamed tag object is created and placed in a LassoTypeRef
variable. In order to be successful, the second and third parameters in
the LassoCall.typeAllocTag method must specify a valid class and method
names used by Lasso for locating a formatting method in a Java class.
Member tag methods have the same signature as a type initializer and
regular substitution tag methods, and although not required they are
most likely to be implemented in the same class with the main type
initializer method.

 Secondly, LassoCall.typeAddMember is used to add a reference to a newly-
created tag (third parameter) to a custom type (first parameter), with the
second parameter being a tag name.

 10 Add all necessary callback methods, such as onConvert and onDestroy.

 61 if (lasso.typeAllocTag(ref, className, “convertFunc”) == ERR_NOERR)
 62 lasso.typeAddMember(self, “onConvert”, ref);
 63 if (lasso.typeAllocTag(ref, className, “destroyFunc”) == ERR_NOERR)
 64 lasso.typeAddMember(self, “onDestroy”, ref);

 Callback methods are being triggered by the events that happen to a
custom type in the course of its life. For example, when a type goes out
of scope, its onDestroy tag method is called. When a custom type needs
to be converted to a different data type such as string or integer, its
onConvert method is invoked.

 Callbacks are added to the custom types in a similar fashion as the
other members, with only constraint being their tag names, which must
conform to established convention for naming callback tags. For a full
list of intrinsic member tag names, see the Lasso 7 Language Guide.

 11 Attach this module instance to a custom type.

 65 if ((err = lasso.typeSetCustomJavaObject(self, this)) != ERR_NOERR)
 66 {
 67 lasso.setResultMessage(“[Zip] couldn’t attach java object to a custom type”);
 68 return err;
 69 }

 LassoCall.typeSetCustomJavaObject can be used to associate any private data
with an instance of a custom type. Any Java object can be attached to a
custom type and later retrieved with a call to a complimentary LassoCall.t
ypeGetCustomJavaObject method. In the situation were associated object is
an instance of the LassoTagModule subclass, Lasso will also try to invoke
formatting methods on this object instead of creating a new instance (as
it does for all substitution tag modules). Aside from producing much
smaller overhead, this allows direct access to all instance (e.g. private)
variables from any Java method implemented in that module.

 12 Finally, return newly-generated custom type tag instance back to Lasso.

2 4 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 4 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 70 err = lasso.returnTagValue(self);

 13 Implement formatting methods for onDestroy and onConvert callbacks.

 81 public int destroyFunc(LassoCall lasso, int action)
 82 {
 83 if (zip != null)
 84 {
 85 try { zip.close(); }
 86 catch (IOException e) {}
 87 zip = null;
 88 }
 89 return ERR_NOERR;
 90 }

 14 In the case of onConvert callback, the first parameter passed to our
method is the name of the type to which our custom Zip type should be
converted to. If the desired type is a string, return the human-readable
representation of the type, which consists of a type name and a zip file
path name.

 91 public int convertFunc(LassoCall lasso, int action)
 92 {
 93 LassoValue param = new LassoValue();
 94 if (lasso.getTagParam(0, param) == ERR_NOERR &&
 95 param.name().equalsIgnoreCase(“string”))
 96 {
 97 lasso.outputTagData(“zip:(“ + this.zip.getName() + “)”);
 98 }
 99
 100 return ERR_NOERR;
 101 }

 15 Define our main member tag method memberFunc, that will take care of
formatting over a dozen member tags. If tag name is File, return the full
path name to the zip file.

 109 if (tag.data().equalsIgnoreCase(“File”))
 110 return lasso.outputTagData(zip.getName());

 16 If the member tag name is Count or Size, return an integer Zip entry
count value.

 111 else if (tag.data().equalsIgnoreCase(“size”) ||
 112 tag.data().equalsIgnoreCase(“count”))
 113 {
 114 lasso.typeAllocInteger(out, zip.size());
 115 return lasso.returnTagValue(out);
 116 }

 17 Tags that output plain text can be processed first.

 143 String result = null;
 144 if (tag.data().equalsIgnoreCase(“name”) ||

2 4 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 4 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 145 tag.data().equalsIgnoreCase(“get”))
 146 result = item.getName();
 147 else if (tag.data().equalsIgnoreCase(“comment”))
 148 result = item.getComment();
 149 else if (tag.data().equalsIgnoreCase(“crc”))
 150 result = Long.toHexString(item.getCrc());
 151 else if (tag.data().equalsIgnoreCase(“method”))
 152 result = (item.getMethod() == ZipEntry.DEFLATED ? “DEFLATED” : “STORED”);
 153 if (result != null)
 154 return lasso.outputTagData(result);

 18 Tags that return data types, such as integers or booleans, should allocate
corresponding values using various LassoCall.typeAlloc... methods before
passing them back to Lasso.

 155 if (tag.data().equalsIgnoreCase(“usize”))
 156 lasso.typeAllocInteger(out, item.getSize());
 157 else if (tag.data().equalsIgnoreCase(“csize”))
 158 lasso.typeAllocInteger(out, item.getCompressedSize());
 159 else if (tag.data().equalsIgnoreCase(“date”))
 160 lasso.typeAllocString(out, df.format(new Date(item.getTime())));
 161 else if (tag.data().equalsIgnoreCase(“isDir”))
 162 lasso.typeAllocBoolean(out, entry.isDirectory());
 163 else if (tag.data().equalsIgnoreCase(“position”))
 164 lasso.typeAllocInteger(out, index);

 19 The Enumerate member restarts a previously used enumeration. Unless
it is called in a middle of iterating through the Zip entries, this tag has
the same effect as calling Next for the very first time, or immediately after
advancing past the very last enumerated item in a Zip file.

 165 else if (tag.data().equalsIgnoreCase(“enumerate”))
 166 {
 167 enum = zip.entries();
 168 index = 0;
 169 }

 20 The GetData member tag reads uncompressed data from one of the zipped
items. This tag accepts two optional parameters, -Skip and -Max, which
are used to specify starting offset and maximum number of bytes to be
read from the Zip archive entry.

 170 else if (tag.data().equalsIgnoreCase(“getdata”))
 171 {
 172 int max = 0;
 173 int skip = 0;
 174 if (lasso.findTagParam(“-skip”, param) == ERR_NOERR)
 175 skip = Integer.parseInt(param.data());
 176 if (lasso.findTagParam(“-max”, param) == ERR_NOERR)
 177 max = Integer.parseInt(param.data());
 178 int count = 0;

2 4 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 4 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 179 int toRead = 1024;
 180 if (max == 0 || max > item.getSize())
 181 max = (int)item.getSize() - skip;
 182 else if (max < 1024)
 183 toRead = max;
 184 try {
 185 InputStream is = zip.getInputStream(item);
 186 is.skip(skip);
 187 byte b[] = new byte[toRead];
 188 while ((count=is.read(b, 0, toRead)) > -1 && max > 0)
 189 {
 190 max -= count;
 191 if (count > 0)
 192 lasso.outputTagData(new String(b, 0, count));
 193 }
 194 is.close();
 195 } catch (IOException ioe) {}
 196 }

 21 The last member tag Next iterates through Zip archive entries, placing the
internally maintained pointer at the next selected item. This tag provides
fast sequential access to items stored in the Zip archive, and should be
used in concert with various accessor tags implemented in this module.
When the end of the file is reached and no more items are available,
the tag returns False and restarts the iteration, positioning the internal
pointer immediately before the first Zip item.

 197 else if (tag.data().equalsIgnoreCase(“next”))
 198 {
 199 boolean reset = (enum == null);
 200 if (enum != null && !enum.hasMoreElements())
 201 enum = null;
 202 else if (reset)
 203 enum = zip.entries();
 204 boolean hasMore = (enum != null && enum.hasMoreElements());
 205 lasso.typeAllocBoolean(out, hasMore);
 206 if (hasMore)
 207 {
 208 entry = (ZipEntry)enum.nextElement();
 209 if (reset)
 210 index = 1;
 211 else
 212 index++;
 213 }
 214 }

 22 Finally, if any of the previous operations produced a valid result, pass the
resulting value back to Lasso, returning an ERR_NOERR error code to flag
a successful member tag execution.

2 5 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 5 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 215 if (!out.isNull())
 216 return lasso.returnTagValue(out);
 217 return err;

LJAPI Interface Reference
This section provides a listing of all Java interfaces available for use in
LJAPI 7. All variables, constructors, and methods for each interface are
organized by category under each interface name.

com.blueworld.lassopro.LassoJavaModule
This is the base interface implemented by both substitution tag and data
source LJAPI modules. Upon Lasso Service startup, the registerLassoModule
method is called for every Java module located inside the LassoModules
folder. Each module returns information about their name, implemented
tags or data sources, method names, etc.

Data source modules are instantiated only once and then used repeatedly
to perform various data source actions. Tag modules are instantiated every
time Lasso resolves a tag implemented by a LassoTagModule.

Methods

registerLassoModule()

This method must be defined in all LJAPI modules. Lasso calls this once at
startup to allow a module to register its tags or data sources.

public void registerLassoModule ();

Variables

ERR_NOERR

On success, every method must return ERR_NOERR result code.

public static final int ERR_NOERR

LJAPI Class Reference
This section lists all the Java classes available for use in LJAPI 7. All vari-
ables, constructors, and methods for each interface are organized alpha-
betically under each interface name, unless specified otherwise.

2 5 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 5 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

com.blueworld.lassopro.FloatValue
Wrapper class for a primitive float or double type. Used for returning decimal
values from the LassoCall.typeGetDecimal method.

Constructors
public FloatValue()
public FloatValue(float value)
public FloatValue(double value)

Methods

doubleValue()

Returns the value of a FloatValue object as a double.

public double doubleValue()

floatValue()

Returns the value of a FloatValue object as a float.

public float floatValue()

toString()

Converts an object to a string. Overrides toString() method in class Object.

public String toString()

com.blueworld.lassopro.IntValue
Wrapper for primitive integer types. Used for returning values from
LassoCall methods, which in C would require passing the pointer-type
parameters: int*, long* and LP_TypeDesc*. In addition, this class provides
methods for converting a 4-byte int (LP_TypeDesc type in LCAPI) to a String
and back.

Constructors
public IntValue()
public IntValue(int value)
public IntValue(long value)

Methods

byteValue()

Returns the value of an IntValue object as a 1-byte integer.

public byte byteValue()

2 5 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 5 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

shortValue()

Returns the value of an IntValue object as a 2-byte integer.

public short shortValue()

intValue()

Returns the value of an IntValue object as a 4-byte integer.

public int intValue()

longValue()

Returns the value of an IntValue object as an 8-byte integer.

public long longValue()

setByte()

Sets the value of an IntValue object to a 1-byte integer.

public void setByte(byte value)

setShort()

Sets the value of an IntValue object to a 2-byte integer.

public void setShort(short value)

setInt()

Sets the value of an IntValue object to a 4-byte integer.

public void setInt(int value)

setLong()

Sets the value of an IntValue object to an 8-byte integer.

public void setLong(long value)

toDescType()

Converts the lower 4 bytes of an IntValue value to a 4-char String.

public String toDescType()

toString()

Converts an object to a string. Overrides toString() method in class Object.

public String toString()

IntToFourCharString()

Static method used for converting an int to a 4-char String.

public static String IntToFourCharString(int value)

com.blueworld.lassopro.LassoCall
Of all Java classes listed in this section, the LassoCall class is of the utmost
importance. All the interaction between an LJAPI module and Lasso

2 5 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 5 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

Professional 7 is achieved by means of invoking various methods imple-
mented in the LassoCall class. These functions can be used to do any of the
following: register your tags or data sources, allocate memory, return error
messages, get tag or parameter information, get client/server environment
information, output text, read/set MIME headers, access LDML variables,
interpret/execute arbitrary LDML tags, store persistent data, check if the
user is an administrator, perform data source functions, and safely access
multiuser/multithreaded resources.

All class methods in this section are listed by their category.

Internal Value Methods

getLassoParam()

Fetches an internal server value such as path to LassoModules folder, name
of the Lasso error log file, etc. For a full list of available parameters, please
see the listing of constants defined in the LassoParams class.

public int getRequestParam(int key, LassoValue outResult);

getRequestParam()

Fetches an HTTP request value such as server port, cookies, root path,
username, etc. For a full list of available parameters, please see the listing
of constants defined in the LassoRequestParams class. Please note that some
of these parameters may not be available on all HTTP servers.

public int getRequestParam(int key, LassoValue outResult);

Error Messages and Result Code Methods

setResultCode()

Sets the result code that can be displayed if the LDML programmer inserts
[Error_CurrentError: -ErrorCode] into the format file after executing a custom
LJAPI tag.

public int setResultCode(int err);

setResultMessage()

Sets the error message that can be displayed if the LDML programmer
inserts [Error_CurrentError: -ErrorMessage] into the format file after executing a
custom LJAPI tag.

public int setResultMessage(String msg);

2 5 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 5 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

Tag and Parameter Info Methods

getTagName()

Fetches the name of the tag that triggered this call (e.g. in the case of
[my_tag: ...] the resulting value would be my_tag). This makes it possible
to design a single tag function which can perform the duties of many
different LDML tags, perhaps ones that all have similar functionality but
different names.

public int getTagName(LassoValue result);

getTagParamCount()

Fetches the number of parameters that were passed to the tag. For instance,
[my_tag: 'hello', -option=1, -hilite=false] will report that three parameters were
passed (unnamed parameters are treated just like any other parameter).

public int getTagParamCount(IntValue result);

getTagParam()

Gets the name and value of a parameter given its index.
Parameters are numbered left-to-right, starting at index 0:
[my_tag: -param0='value0', -param1='value1', -param2=2].

public int getTagParam(int paramIndex, LassoValue result);

getTagParam2()

Get the parameter using the parameter index. This function differs from
getTagParam() in that it preserves the actual type of the parameter instead of
automatically converting it to a string. Keyword/value pairs are returned as
a LASSO_PAIR type.

public int getTagParam2(int paramIndex, LassoTypeRef outValue);

tagParamIsDefined()

Returns ERR_NOERR if the parameter was defined. Otherwise, the param-
eter wasn’t defined.

public int tagParamIsDefined(String paramName);

findTagParam()

Finds and fetches a tag parameter by name. A return value of ERR_NOERR
means the parameter was found successfully.

public int findTagParam(String paramName, LassoValue result);

findTagParam2()

Finds and returns a tag parameter by name while preserving the original
type. A returned value of ERR_NOERR means the parameter was success-
fully found.

public int findTagParam2(String paramName, LassoTypeRef outValue);

2 5 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 5 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

getTagEncoding()

Fetches the encoding method indicated for this tag. This is rarely used,
because Lasso handles encoding and decoding for you.

public int getTagEncoding(IntValue method);

childrenRun()

Used to execute the contents of a container tag. Tags become containers
when the FLAG_CONTAINER flag is used. The result parameter will contain
the combined result data for all tags contained.

public int childrenRun(LassoTypeRef outValue);

runRequest()

Creates and runs a new LJAPI call on the given method (methodName of
the className class). If there is already an active request on the current
thread, the method will be run within the context of that thread. If there is
no active request on the current thread, a new request will be created and
run based on the global context. The tagAction parameter is passed to the
methodName and can be used to signal or pass information to the function.

public static int runRequest(String className,
String methodName,
 int tagAction,
 int unused);

Output Methods

outputTagData()

Outputs any string data to the page. Lasso takes care of encoding, and this
can be called as many times as needed. The second variant of this method
is recommended for writing binary data.

public int outputTagData(String data);

public int outputTagData(byte[] data);

returnTagValue()

Specifies the return value for the tag. Note that only a single returnTagValue
or outputTagData can be used from within a tag. returnTagValue is the prefered
method for returning tag data as it allows data of any type to be returned
(including binary data), while outputTagData is restricted to printable text
data.

public int returnTagValue (LassoTypeRef value);

2 5 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 5 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

Data Type Methods

typeAlloc()

This function will allocate a new type instance. The type is specified by
the typeName parameter. An array of parameters can be passed to the
type initializer. Types created through this function will be automati-
cally destroyed after the LJAPI call has returned. In order to prevent this,
typeDetach should be used.

 public int typeAlloc (String typeName,
 LassoTypeRef[] params,
 LassoTypeRef outType);

typeFree()

Attempts to free a type created using typeAlloc or any other method. The
LassoCall variable may be null if the provided type has been detached using
typeDetach.

public int typeFree (LassoTypeRef inType);

typeDetach()

Prevents the type from being destroyed once the LJAPI call returns. Types
that have been detached must eventually be destroyed using typeFree()
(passing null in the LassoCall variable) or a memory leak will occur.

public int typeDetach(LassoTypeRef toDetach);

typeAllocNull()

This method allows new instances of LASSO_NULL data types to be allo-
cated. Types allocated in this manner will be destroyed once the LJAPI call
is returned.

public int typeAllocNull (LassoTypeRef outNull);

typeAllocString()

This method allows new instances of string data types to be allocated.
Types allocated in this manner will be destroyed once the LJAPI call is
returned.

public int typeAllocString (LassoTypeRef outString, String value);

typeAllocInteger()

This method allows new instances of integer data types to be allocated
(Lasso integers are 8-byte signed INTs). Types allocated in this manner will
be destroyed once the LJAPI call is returned.

public int typeAllocInteger (LassoTypeRef outInteger, long value);

2 5 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 5 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

typeAllocDecimal()

This method allows new instances of decimal data types to be allocated.
Types allocated in this manner will be destroyed once the LJAPI call is
returned.

public int typeAllocDecimal (LassoTypeRef outDecimal, double value);

typeAllocPair()

This method allows new instances of pair data types to be allocated. Types
allocated in this manner will be destroyed once the LJAPI call is returned.

public int typeAllocPair (LassoTypeRef outPair,
 LassoTypeRef inFirst,
 LassoTypeRef inSecond);

typeAllocReference()

This method allows new instances of reference data types to be allocated.
Types allocated in this manner will be destroyed once the LCAPI call is
returned.

public int typeAllocReference (LassoTypeRef outRef,
 LassoTypeRef referenced);

typeAllocTag()

This method allows new instances of tag data types to be allocated.
Types allocated in this manner will be destroyed once the LJAPI call
is returned. Method methodName should have the same signature as
TAG_METHOD_PROTOTYPE() method in the LassoTagModule class.

public int typeAllocTag (LassoTypeRef outTag,
 String className,
 String methodName);

typeAllocArray()

This method allows new instances of array data types to be allocated.
Types allocated in this manner will be destroyed once the LJAPI call is
returned.

public int typeAllocArray (LassoTypeRef outArray,
 LassoTypeRef[] inElements);

typeAllocMap()

This method allows new instances of map data types to be allocated. Types
allocated in this manner will be destroyed once the LJAPI call is returned.

Two versions of the same method are provided: in the first case the count
of elements of the inElements array must be divisible by 2 and contain both
keys and values (odd = key, even = value). In the second case, map keys
and values must be passed in a separate parameters.

2 5 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 5 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

public int typeAllocMap (LassoTypeRef outMap,
 LassoTypeRef[] inElements);
public int typeAllocMap (LassoTypeRef outMap,
 LassoTypeRef[] inKeys,
 LassoTypeRef[] inValues);

typeAllocBoolean()

This method allows new instances of boolean data types to be allocated.
Types allocated in this manner will be destroyed once the LJAPI call is
returned.

public int typeAllocBoolean(LassoTypeRef outBool, boolean inValue);

typeGetBytes()

This method returns the data of a type instance as an array of bytes.

public bytes[] typeGetString(LassoTypeRef type);

typeGetString()

This method gets the data from a previously created string instance. When
setting a value, the type is converted if required.

public int typeGetString(LassoTypeRef type, LassoValue outValue);

typeGetInteger()

This method gets the data from a previously created integer instance. When
setting a value, the type is converted if required.

public int typeGetInteger(LassoTypeRef type, IntValue outValue);

typeGetDecimal()

This method gets the data from a previously created decimal instance.
When setting a value, the type is converted if required.

public int typeGetDecimal(LassoTypeRef type, FloatValue outValue);

typeGetBoolean()

This method gets the data from a previously created boolean instance.
When setting a value, the type is converted if required.

public int typeGetBoolean(LassoTypeRef type, BoolValue outValue);

typeSetBytes()

This method sets the data of a type instance. The type is converted if
required.

public int typeSetBytes(LassoTypeRef type, byte[] value);

typeSetString()

This method sets the value of a previously created string type instance.

public int typeSetString(LassoTypeRef type, String value);

2 5 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 5 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

typeSetInteger()

This method sets the value of a previously created integer instance.

public int typeSetInteger(LassoTypeRef type, long value);

typeSetDecimal()

This method sets the value of a previously created decimal instance.

public int typeSetDecimal(LassoTypeRef type, double value);

typeSetBoolean()

This method sets the value of a previously created boolean instance.

public int typeSetBoolean(LassoTypeRef type, boolean value);

arrayGetSize()

This method gets the size of a previously created array instance.

public int arrayGetSize(LassoTypeRef array, IntValue outLen);

arrayGetElement()

This method gets an array element from a previously created array instance.

public int arrayGetElement(LassoTypeRef array,
 int index,
 LassoTypeRef outElement);

arraySetElement()

This method sets an array element in a previously created array instance.

public int arraySetElement(LassoTypeRef array,
 int index,
 LassoTypeRef element);

arrayRemoveElement()

This method removes an element from a previously created array instance.

public int arrayRemoveElement(LassoTypeRef array, int index);

mapGetSize()

This method gets the size of a previously created map instance.

public int mapGetSize(LassoTypeRef map, IntValue outLen);

mapFindElement()

This method finds an element in a previously created map instance stored
under unique key.

public int mapFindElement(LassoTypeRef map,
 LassoTypeRef key,
 LassoTypeRef outElement);

2 6 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 6 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

mapGetElement()

This method gets an element from a previously created map instance using
the element index.

public int mapGetElement(LassoTypeRef map,
 int index,
 LassoTypeRef outPair);

mapSetElement()

This function sets an element in a previously created map instance. If no
elements were previously stored under the specified key, the element will
be added to the map, otherwise the old element will be replaced by a new
value.

 public int mapSetElement(LassoTypeRef map,
 LassoTypeRef key,
 LassoTypeRef value);

mapRemoveElement()

This method removes an element from a previously created map instance.

public int mapRemoveElement(LassoTypeRef map, LassoTypeRef key);

pairGetFirst()

This method gets the first element from a previously created pair instance.

public int pairGetFirst(LassoTypeRef pair, LassoTypeRef outValue);

pairGetSecond()

This method gets the second element from a previously created pair
instance.

public int pairGetSecond(LassoTypeRef pair, LassoTypeRef outValue);

pairSetFirst()

This method sets the first element in a previously created pair instance.

public int pairSetFirst(LassoTypeRef pair, LassoTypeRef first);

pairSetSecond()

This function sets the second element in a previously created pair instance.

public int pairSetSecond(LassoTypeRef pair, LassoTypeRef second);

typeGetMember()

This function is used to retrieve a member from a type instance. Members
are searched by name with tag members searched first. Data members are
searched if no tag member is found with the given name.

2 6 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 6 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

public int typeGetMember(LassoTypeRef fromType,
 String named,
 LassoTypeRef outMember);

typeGetProperties()

This method has two uses. If the targetType parameter is not null, it is used
to get all data and tag members from a given type. They are returned as
a pair of arrays in the outPair value. The first element of each pair is the
map of data members for the type. The second element is the map of tag
members. Each element in the array represents the members of each type
inherited by the targetType.

If the targetType parameter is null, typeGetProperties will return an array
containing the variable maps for the currently active request.

public int typeGetProperties (LassoTypeRef targetType,
 LassoTypeRef outPair);

typeGetName()

Retrieves the name of the target type.

public int typeGetName(LassoTypeRef target, LassoValue outName);

typeRunTag()

Used to to execute a given tag. The tag can be run given a specific name
and parameters, and the return value of the tag can be accessed. If the tag
is a member tag, the instance of which it is a member can be passed using
the final parameter. The params, returnValue, and optionalTarget parameters
may all be null.

A slightly modified version of the same method is provided for conve-
nience puproses. It accepts a single LassoTypeRef parameter instead of a
LassoTypeRef array.

public int typeRunTag (LassoTypeRef tagType,
 String named,
 LassoTypeRef[] params,
 LassoTypeRef returnValue,
 LassoTypeRef optionalTarget);

public int typeRunTag (LassoTypeRef tagType,
 String named,
 LassoTypeRef parameter,
 LassoTypeRef returnValue,
 LassoTypeRef optionalTarget);

typeAssign()

This performs an assignment of one type to another. The result
will be the same as if the following had been executed in LDML:
#left_hand_side = #right_hand_side

2 6 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 6 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

public int typeAssign(LassoTypeRef left_hand_side,
 LassoTypeRef right_hand_side);

typeStealValue()

This function transfers the data from one type to another type. Both types
must be valid and pre-allocated. After the call, victim will still be valid, but
will be of type null.

public int typeStealValue(LassoTypeRef thief, LassoTypeRef victim);

handleExternalConversion()

Converts a Lasso type into single-byte or binary data using the specific
encoding name. The default for all database, column, table names should
be “iso8859-1”.

public byte[] handleExternalConversion(LassoTypeRef inInstance, String inEncoding);

handleInternalConversion()

Converts a single-byte or binary representation of a Lasso type back into an
instance of that type.

public int handleInternalConversion(byte[] inData, String inEncoding, int
inClosestLassoType, LassoTypeRef outType);

typeInheritFrom

This function changes the inheritance structure of a type. Sets inNewParent to
be the new parent of the child. Any parent that child currently has will be
destroyed.

public int typeInheritFrom(LassoTypeRef inChild, LassoTypeRef inNewParent);

Custom Type Methods

typeAllocCustom()

This function is used within module methods that were registered as
being a type initializer (FLAG_INITIALIZER). It initializes a blank custom
type and sets the type’s __type_name__ member to the provided value. The
new type does not yet have a lineage and has no members added to it
besides __type_name__. New data or tag members should be added using
typeAddMember. The new custom type should be the return value of the type
initializer. Any inherited members will be added to the type after the LJAPI
call returns.

Warning: Do not call this unless you are in a type initializer. If you are not in a
type initializer, the result will be a type that will never be fully initialized.

public int typeAllocCustom(LassoTypeRef outCustom, String name);

2 6 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 6 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

typeAddMember()

This is used to add new members to type instances. The member can be
any sort of type including tags or other custom types.

public int typeAddMember(LassoTypeRef to,
 String named,
 LassoTypeRef member);

typeAllocFromProto()

Allocate a new type based on the given type. The given type’s tag members
will be referenced in the new type. No data members are added except for
the typename member. Proto must be a custom type.

public int typeAllocFromProto(LassoTypeRef inProto, LassoTypeRef outType);

typeAllocOneOff()

Allocate a new type with the given name. The type does not have to have
been registered as a type initializer or registered at all. The new type will
have no tag or data members, but those may be added using the appro-
priate LCAPI call at any time. If no parent type is provided (a NULL
pointer or empty string is passed in), type null will be the default. If a
parent type is provided, it must have been a validly registered type initial-
izer. onCreate will be called for the parent and beyond.

public int typeAllocOneOff(String inName, String inParentTypeName, LassoTypeRef
outType);

typeGetCustomJavaObject()

Custom types can have Java objects attached to them. The object can be
retrieved at any point during the instance’s lifetime. typeSetCustomJavaObject
method retrieves the Java object associated with a custom type, or returns
null if no object has been attached to this type.

 public Object typeGetCustomJavaObject(LassoTypeRef type);

typeSetCustomJavaObject()

typeSetCustomJavaObject permits attachment of Java objects to custom types.
Java object is retained until typeFreeCustomJavaObject is called, or the type is
destroyed.

public int typeSetCustomJavaObject(LassoTypeRef type, Object object);

typeFreeCustomJavaObject()

Releases the Java object previously attached to a custom type. Must be
called to free the Java object that is no longer needed, or to detach an old
Java object before attaching a new one to the same custom type.

public int typeFreeCustomJavaObject(LassoTypeRef type);

2 6 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 6 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

Logging Function Methods

log()

Logs a message. The message goes to the prefered destination for the
message level. Messages sent to a file are limited to 2048 bytes in length.
Messages sent to the console are limited to 512 bytes in length. Messages
sent to the database are limited a little less than 2048 bytes since the
total length of the sql statement used to insert the message is limited
to 2048 bytes. The msgLevel parameter must be one of the following:
LOG_LEVEL_CRITICAL, LOG_LEVEL_WARNING, or LOG_LEVEL_DETAIL.

public static int log (int msgLevel, String message);

logSetDestination()

Changes the system-wide log destination preference. You can log messages
to more than one destination at a time by passing several flags in the
destination parameter: FLAG_DEST_CONSOLE, FLAG_DEST_FILE, and/or
FLAG_DEST_DATABASE.

public static int logSetDestination(int msgLevel, int destination);

MIME Header Methods

getResultHeader()

Retrieves current value of the result (HTTP) header. Part of the header that
is returned to browsers is automatically built by Lasso, and can be modi-
fied or added to by LDML tags on the page. This function retrieves the
current set of MIME headers that would be sent back to the browser if page
processing were to stop now.

public int getResultHeader(LassoValue result);

setResultHeader()

Sets the result header, any data will be validated so as to be in the proper
format.

public int setResultHeader(String header);

addResultHeader()

Simply appends the supplied data to the header, any data will be validated
so as to be in the proper format.

public int addResultHeader(String data);

getCookieValue()

Retrieves a cookie value from the passed-in data sent by the client browser.

public int getCookieValue(String named, LassoValue value);

2 6 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 6 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

Page Variable Methods

getVariableCount()

Retrieves the number of array values which the named global variable has.
Returns 1 if the global variable is not an array. Global variables are the
same variables which you create in LDML statements, like [var: 'fred'=1234.56].
These variables last only as long as the current format file is executing;
as soon as the hit gets sent back to the browser, these variables all get
destroyed.

public int getVariableCount(String named, IntValue count);

getVariable()

Retrieves the value of the named global variable. If the global variable is
an array, then the index specifies which array value to retrieve. If the global
variable is not an array, then 0 is the only valid index. Array indices start at
0.

public int getVariable(String named, int index, LassoValue value);

getVariable2()

Retrieves the value of the named global variable while preserving the vari-
able type.

public int getVariable2(String named, LassoTypeRef outValue);

setVariable()

Stores a new value into the named global variable. If the global variable is
an array, then the 0-based index determines which array item to replace.

public int setVariable(String named, String value, int index);

setVariable2()

Stores a new global variable while preserving the type.

public int setVariable2(String named, LassoTypeRef inValue);

removeVariable()

Removes the specified variable (destroys it so it becomes undefined, as
though it had never been created). If the named variable is an array, then
you may pass in an index (0-based) to remove that array element. Once
the array has 0 elements, then calling removeVariable on it will destroy the
array itself.

public int removeVariable(String named, int index);

2 6 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 6 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

LDML Tag Interpreter Methods

formatBuffer()

Formats the supplied buffer and puts the resulting data in the data field of
the LassoValue. The buffer should consist of plain text and bracketed Lasso
tags.

public int formatBuffer(String buffer, LassoValue output);

Persistent Storage Tag Methods

storeHasData()

Returns ERR_NOERR if the data, specified by key, exists. The length of the
stored data can be returned in the outLength parameter if you pass a valid
IntValue object. You may pass null if you don’t want to retrieve the length of
the stored data.

public int storeHasData(String key, IntValue outLength);

storeGetData()

Fetches data that has been stored under the unique identifier key. The data
will be returned in the data field of the LassoValue object.

public int storeGetData(String key, LassoValue outValue);

storePutData()

Adds the data to Lasso’s storage. Key is the unique identifier for the data.

public int storePutData(String key, String data);
public int storePutData(String key, byte[] data);

Administration Methods

isAdministrator()

Returns ERR_NOERR if the current user has administrator privileges. This is
useful for doing module administration that only the administrator should
be able to do.

public int isAdministrator();

Data Source Function Methods

getDSConnection()

This function accesses the current datasource connection.

public Object getDSConnection();

2 6 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 6 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

setDSConnection()

This function sets the current connection for the data source. May recurse
to deliver the ACTION_CLOSE message if there is already a valid connec-
tion set.

public int setDSConnection(Object inConnection);

addDataSourceResult()

Sometimes Lasso Professional will query a data source function to return
information, such as a list of database names or table names which the
data source module controls. The module will call this function once for
each name you add to the list, so if you have three database names you
want to report back to Lasso Professional, you would call this function
three times, once per database name.

public int addDataSourceResult(String data);

getDataSourceName()

Use this function when you want to ask Lasso Professional what database
is being operated on. For instance, if you’re being asked to perform a
search, then you would call this function to retrieve the name of the data-
base which Lasso Professional is asking you to search. It corresponds to
the value of the parameter -Database='blah' passed to inlines. Optionally, you
can use the second (outUseHostDefault) parameter to determine whether the
current database inherits its host default settings.

Note: Even though the name of the method is getDataSourceName, it really
retrieves the database name. This is purely cosmetic, and just happens to be
how the APIs were spelled when they were originally designed.

public int getDataSourceName(LassoValue outName,
 BoolValue outUseHostDefault,
 LassoValue outUsernamePassword);

getDataHost()

Use this function when you want to ask Lasso Professional 7 what data-
base host is being operated on. On return, LassoValue will contain the
name and port of the database host.

public int getDataHost(LassoValue outHost,
 LassoValue outUsernamePassword);

getDataHost2()

Same as getDataHost() but allows the usage of a host schema parameter for
JDBC data sources.

public int getDataHost2(LassoValue outHost,
 LassoValue outSchema,
 LassoValue outUsernamePassword);

2 6 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 6 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

getSchemaName()

Use this function when you want to ask Lasso Professional what schema
is being operated on for a JDBC data source. For instance, if you’re being
asked to perform a search, then you would call this function to retrieve the
name of the schema which Lasso Professional is asking you to use for the
search. It corresponds to the value of the parameter -Schema='blah' passed to
inlines.

public int getSchemaName(LassoValue outName);

getTableName()

Use this function when you want to ask Lasso Professional what table is
being operated on. For instance, if you’re being asked to perform a search,
then you would call this function to retrieve the name of the table which
Lasso Professional is asking you to search. It corresponds to the value of
the parameter -Layout='blah' or -Table='blah' passed to inlines.

public int getTableName(LassoValue outName);

getSkipRows()

You can ask Lasso Professional to tell you how many records should be
skipped during a search by calling this function. It corresponds to the
value of the -SkipRecords parameter in the inline search which is being
executed at the moment your data source function is being called.

public int getSkipRows(IntValue outRows);

getMaxRows()

You can ask Lasso Professional to tell you the maximum number of
records to be returned during a search by calling this function. It corre-
sponds to the value of the -MaxRecords parameter in the inline search which
is being executed at the moment your data source function is being called.

public int getMaxRows(IntValue outRows);

getPrimaryKeyColumn()

You can ask Lasso Professional to tell you which field is being used as the
primary key. This value corresponds to the -KeyField parameter value used
in the inline.

public int getPrimaryKeyColumn(LassoValue outColumn);

getInputColumnCount()

Tells how many fields were sent as parameters to the inline. For instance,
if an LDML programmer wants to append a new record to a table, and
passes in name, address, city, state, zip with values for each field, then this
function will return the number 5 to indicate that five fields were passed
to the inline. You can then retrieve the values of each of these parameters
by calling getInputColumn by index, once per field. This function is smart

2 6 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 6 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

enough to ignore parameters which are not fields, such as -Database, -Layout,
etc.

public int getInputColumnCount(IntValue outCount);

getInputColumn()

Retrieve the name and value of field data parameters from the inline,
starting at index zero. If five fields were entered into the inline, then you
can retrieve each of their names and values by calling this function five
times, once per field.

[Inline: -Database='MyDatabase', -Table='Main', 'MyFirstField'='Bill',
'MySecondField'='Ted', -Search]

In the above example, calling getInputColumn(0, v) will fill the v variable
with v.name=MyFirstField, v.data=Bill. Notice it is smart enough to ignore well-
known parameters such as -Table, thus only retrieving field information.

public int getInputColumn(int index, LassoValue outColumn);

getSortColumnCount()

Analogous to getInputColumnCount, this method retrieves the number of sort
columns which were specified in the inline code. It basically counts how
many -SortField parameters were passed. You can use this count to tell you
how many times to enumerate through calls to getSortColumn.

public int getSortColumnCount(IntValue outCount);

getSortColumn()

Analogous to lasso_getInputColumn(), this function retrieves the names of
sort parameters, starting at index zero. After calling this, the data field of
outColumn variable will contain a String with the name of the sort field.

public int getSortColumn(int index, LassoValue outColumn);

getRowID()

Retrieves the current specified record ID (datasource-specific).

public int getRowID(IntValue outId);

setRowID()

Sets the record ID of the added record. After your custom LCAPI data
source finishes adding a record to a database, it can call this function to let
the caller know what the unique record ID of the added record was.

In FileMaker, this record ID is a standard feature of all records in its tables.
In MySQL, this value is 0 unless there exists an AUTO_INCREMENT column.
Results are not guaranteed for all database server software.

public int setRowID(int id);

2 7 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 7 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

findInputColumn()

Analogous to getInputColumn, except that it searches by name instead of
index. If you already know the name of a field parameter you’re interested
in, then you can ask for the value of that parameter which was passed into
the inline.

[Inline: -Database='MyDatabase', -Table='Main', 'MyFirstField'='Bill',
'MySecondField'='Ted', -Search]

In the example above, calling findInputColumn(“MySecondField”, outColumn) will
fill the outColumn variable’s data member with v.data=Ted.

public int findInputColumn(String name, LassoValue outColumn);

getLogicalOp()

Call this to retrieve the logical operator (OP_AND, OP_OR) which was
passed to this inline. It corresponds to the value of -LogicalOperator passed
into the inline. This function simply retrieves a single logical operator
parameter. For more complex logical operations, with multiple operators,
you will have to design a convention whereby you name your input fields
in some unique way, and then retrieve those custom logical operators
using the getInputColumn function in a particular order that matches your
convention.

public int getLogicalOp(IntValue outOp);

getReturnColumnCount()

Queries Lasso Professional to return the number of columns (fields) that
are expected to be returned from a search operation. This counts how
many -ReturnField parameters were encountered.

public int getReturnColumnCount(IntValue outCount);

getReturnColumn()

Once you know how many return columns are expected (from
getReturnColumnCount), then you can enumerate through them to get their
fieldnames. Use this information to retrieve field data from your database
table, and populate the result rows when asked to perform a search opera-
tion.

public int getReturnColumn(int index, LassoValue outColumn);

addColumnInfo()

In order to return a row of data from your data source (perhaps as a result
of a search), you must first indicate what the structure of the table columns
is. Call this function for as many table columns as your database has,
providing the fieldname, true/false if nulls are OK in this field, the field
type (numeric, string, date, etc), and field protection (readonly, writeable,
etc).

2 7 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 7 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

 public int addColumnInfo(String name,
 int nullOK,
 int type,
 int protection);

addResultRow()

Call this method once per row of records you want to return (perhaps
from a search operation). You may choose to return an array of Strings, or
construct an array of byte arrays that contain data for each of your fields
(binary data is OK).

public int addResultRow(String[] columns);
public int addResultRow(byte[][] columns);

setNumRowsFound()

Corresponds to [Found_Count] in LDML. Call this when you know how
many records your data source is going to return, and make sure you call
addResultRow this many times in order to populate the rows.

public int setNumRowsFound(int num);

Semaphore Methods
createSem()

Creates a named semaphore sufficient for synchronizing multithreaded
operations, which should be deleted after they are used. The Lasso
Connector for MySQL example creates one of these at initialization time,
and destroys it at terminate time.

public int createSem(String name);

destroySem()

Destroys a named semaphore that was created by the createSem method.

public int destroySem(String name);

acquireSem()

Attempts to acquire a lock on a semaphore, and waits until the owning
thread has released the semaphore before acquiring the lock and
continuing execution.

public int acquireSem(String name);

releaseSem()

Releases a locked semaphore so that other threads waiting for the sema-
phore can continue execution.

public int releaseSem(String name);

2 7 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 7 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

com.blueworld.lassopro.LassoDSModule
Base class for all datasource modules. LassoDSModules are used to manipu-
late data sources. LassoDSModules are looked up by the datasource names
they claim to support. They are instantiated once and used repeatedly by
Lasso.

registerDSModule()

Your code must call this once at startup (from within your
registerLassoModule() method) to register a data source with Lasso
Professional. When Lasso encounters a data source request for moduleName,
it calls the Java method methodName.

 protected void registerDSModule(String datasourceName,
 String methodName,
 int flags,
 String moduleName,
 String description);

DS_METHOD_PROTOTYPE()

A prototype for all datasource action methods registered by
registerDSModule. Since methods are being looked up by name, they
must match exactly the values passed in a methodName parameter of the
registerDSModule call.

 public int DS_METHOD_PROTOTYPE(LassoCall lasso,
 int action,
 LassoValue data);

com.blueworld.lassopro.LassoEncodings
Constants for the various text encoding methods.

ENCODE_BREAK

Static variable in class blueworld.lasso.LassoTagEncodings.

public static final int ENCODE_BREAK

ENCODE_DEFAULT

Static variable in class com.blueworld.lassopro.LassoEncodings.

public static final int ENCODE_DEFAULT

ENCODE_NONE

Static variable in class com.blueworld.lassopro.LassoEncodings.

public static final int ENCODE_NONE

ENCODE_RAW

Static variable in class com.blueworld.lassopro.LassoEncodings.

public static final int ENCODE_RAW

2 7 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 7 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

ENCODE_SMART

Static variable in class com.blueworld.lassopro.LassoEncodings.

public static final int ENCODE_SMART

ENCODE_STRICT_URL

Static variable in class com.blueworld.lassopro.LassoEncodings.

public static final int ENCODE_STRICT_URL

ENCODE_URL

Static variable in class com.blueworld.lassopro.LassoEncodings.

public static final int ENCODE_URL

ENCODE_XML

Static variable in class com.blueworld.lassopro.LassoEncodings.

public static final int ENCODE_XML

com.blueworld.lassopro.LassoErrors
Constants for the various error codes which can be returned by your
module.

NO_ERR

Static variable in class com.blueworld.lassopro.LassoErrors.

public static final int NO_ERR

Assert

Static variable in class com.blueworld.lassopro.LassoErrors.

public static final int Assert

StreamReadError

Could not write to stream.

public static final int StreamReadError

StreamWriteError

Could not read from stream.

public static final int StreamWriteError

Memory

Generic memory error.

public static final int Memory

InvalidMemoryObject

Invalid memory object.

public static final int InvalidMemoryObject

2 7 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 7 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

OutOfMemory

Not enough memory.

public static final int OutOfMemory

OutOfStackSpace

Stack overflow error.

public static final int OutOfStackSpace

CouldNotDisposeMemory

Error disposing an object.

public static final int CouldNotDisposeMemory

File

Generic file error.

public static final int File

FileInvalid

Trying to work with an invalid file.

public static final int FileInvalid

FileInvalidAccessMode

Trying to access a file in a mode that it doesn’t support.

public static final int FileInvalidAccessMode

CouldNotCreateOrOpenFile

Could not create or open the file.

public static final int CouldNotCreateOrOpenFile

CouldNotCloseFile

Could not close the file.

public static final int CouldNotCloseFile

CouldNotDeleteFile

Could not delete the file.

public static final int CouldNotDeleteFile

FileNotFound

File does not exist.

public static final int FileNotFound

FileAlreadyExists

Trying to create a file that already exist.

public static final int FileAlreadyExists

2 7 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 7 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

FileCorrupt

File is corrupted.

public static final int FileCorrupt

VolumeDoesNotExist

Bad volume name.

public static final int VolumeDoesNotExist

DiskFull

No room left on disk.

public static final int DiskFull

DirectoryFull

No more items allowed in the directory.

public static final int DirectoryFull

IOError

I/O error.

public static final int IOError

InvalidPathname

Pathname is invalid.

public static final int InvalidPathname

InvalidFilename

Filename is invalid.

public static final int InvalidFilename

FileLocked

File is locked.

public static final int FileLocked

FileUnlocked

File is unlocked.

public static final int FileUnlocked

FileIsOpen

File is open.

public static final int FileIsOpen

FileIsClosed

File is closed.

public static final int FileIsClosed

2 7 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 7 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

BOF

Beginning of file reached.

public static final int BOF

EOF

End of file reached.

public static final int EOF

CouldNotWriteToFile

Unable to complete a write operation to the file.

public static final int CouldNotWriteToFile

CouldNotReadFromFile

Unable to complete a read operation from the file.

public static final int CouldNotReadFromFile

Resource

Unknown resource error.

public static final int Resource

ResNotFound

Resource not found.

public static final int ResNotFound

Network

Unknown networking error.

public static final int Network

InvalidUsername

The username supplied for the action is not valid.

public static final int InvalidUsername

InvalidPassword

The password supplied for the action is not valid.

public static final int InvalidPassword

InvalidDatabase

The database name supplied is not valid.

public static final int InvalidDatabase

NoPermission

General permissions error.

public static final int NoPermission

2 7 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 7 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

FieldRestriction

The specified action is restricted.

public static final int FieldRestriction

WebAddError

Add record error.

public static final int WebAddError

WebUpdateError

Update record error.

public static final int WebUpdateError

WebDeleteError

Delete record error.

public static final int WebDeleteError

InvalidParameter

An invalid parameter was passed to a function.

public static final int InvalidParameter

Overflow

Allocated memory was too small to hold the results.

public static final int Overflow

NilPointer

A pointer was null when it shouldn’t have been.

public static final int NilPointer

UnknownError

Default when none of the cross-platform errors seem to fit.

public static final int UnknownError

FormattingLoopAborted

A looping tag was aborted; all looping tags must catch this exception.

public static final int FormattingLoopAborted

FormattingSyntaxError

Bad syntax used in a format file; parsing of the file was aborted.

public static final int FormattingSyntaxError

WebRequiredFieldMissing

Value missing for required field for Add.

public static final int WebRequiredFieldMissing

2 7 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 7 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

WebRepeatingRelatedField

Adding repeating related fields isn’t supported.

public static final int WebRepeatingRelatedField

WebNoSuchObject

No records found.

public static final int WebNoSuchObject

WebTimeout

Operation timed out.

public static final int WebTimeout

WebActionNotSupported

Action not supported.

public static final int WebActionNotSupported

WebConnectionInvalid

The specified database was not found.

public static final int WebConnectionInvalid

WebModuleNotFound

The module was not found.

public static final int WebModuleNotFound

HTTPFileNotFound

The file was not found.

public static final int HTTPFileNotFound

DatasourceError

Third-party generic datasource error.

public static final int DatasourceError

com.blueworld.lassopro.LassoOperators
Operator constants used throughout LJAPI.

Variables

OP_AND

Logical operator AND.

public static final int OP_AND

OP_ANY

Used for -Random database action.

2 7 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 7 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

public static final int OP_ANY

OP_BEGINS_WITH

Field search operator BW.

public static final int OP_BEGINS_WITH

OP_CONTAINS

Field search operator CN.

 public static final int OP_CONTAINS

OP_DEFAULT

Same as OP_BEGINS_WITH.

public static final int OP_DEFAULT

OP_ENDS_WITH

Field search operator EW.

public static final int OP_ENDS_WITH

OP_EQUALS

Field search operator EQ.

public static final int OP_EQUALS

OP_GREATER_THAN

Field search operator GT.

public static final int OP_GREATER_THAN

OP_GREATER_THAN_EQUALS

Field search operator GTE.

public static final int OP_GREATER_THAN_EQUALS

OP_IN_FULL_TEXT

Field search operator FT.

public static final int OP_IN_FULL_TEXT

OP_IN_LIST

Static variable in class com.blueworld.lassopro.LassoOperators.

public static final int OP_IN_LIST

OP_IN_REGEXP

Field search operator RX.

public static final int OP_IN_REGEXP

OP_LESS_THAN

Field search operator LT.

public static final int OP_LESS_THAN

2 8 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 8 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

OP_LESS_THAN_EQUALS

Field search operator LTE.

public static final int OP_LESS_THAN_EQUALS

OP_NO

Same as OP_NOT.

public static final int OP_NO

OP_NOT

Logical operator NOT.

public static final int OP_NOT

OP_NOT_BEGINS_WITH

Field search operator NBW.

public static final int OP_NOT_BEGINS_WITH

OP_NOT_CONTAINS

Field search operator NCN.

public static final int OP_NOT_CONTAINS

OP_NOT_ENDS_WITH

Field search operator NEW.

public static final int OP_NOT_ENDS_WITH

OP_NOT_EQUALS

Field search operator NEQ.

public static final int OP_NOT_EQUALS

OP_NOT_IN_LIST

Static variable in class com.blueworld.lassopro.LassoOperators.

public static final int OP_NOT_IN_LIST

OP_NOT_IN_REGEXP

Field search operator NRX.

public static final int OP_NOT_IN_REGEXP

OP_OR

Logical operator OR.

public static final int OP_OR

com.blueworld.lassopro.LassoParams
These constants signify the different parameters which can be retrieved
from the LassoCall.getLassoParam method.

2 8 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 8 1

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

ModulesFolderPath

Path to the LassoModules folder.

public static final int ModulesFolderPath

StartupItemsFolderPath

Path to LassoStartup folder.

public static final int StartupItemsFolderPath

LassoErrorsFilePath

Path to Lasso error log file.

public static final int LassoErrorsFilePath

StorageHost

Location of Lasso MySQL datasource.

public static final int StorageHost

ScriptsRoot

Relative path to scripts root.

public static final int ScriptsRoot

ScriptsSiteRoot

Relative path to site scripts root (most likely includes ScriptsRoot).

public static final int ScriptsSiteRoot

com.blueworld.lassopro.LassoTagModule
Base class for any tag module. Most tag modules output data onto the Web
page, though some tags may perform other actions based on the param-
eters passed to them.

Every LassoTagModule must implement registerLassoModule method, and one
or more methods with the same signature as TAG_METHOD_PROTOTYPE.

Lasso calls registerLassoModule once at startup to give the module a chance
to register its tags. LassoTagModule must then call registerTagModule as many
times as there are tags implemented by this module.

Variables

FLAG_INITIALIZER

Type initializer tags can have their own members.

public static final int FLAG_INITIALIZER

FLAG_SUBSTITUTION

Regular substitution tags.

2 8 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 8 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

public static final int FLAG_SUBSTITUTION

FLAG_ASYNC

Async tags run asynchronously in their own thread.

public static final int FLAG_ASYNC

FLAG_CONTAINER

Container tags have opening and closing. This flag will cause Lasso
Professional to raise an error if the closing tag can’t be found.

public static final int FLAG_CONTAINER

Methods

registerTagModule()

Use this method to register substitution tags implemented by your module.
You should call registerTagModule as many times as there are tags imple-
mented in your module.

moduleName parameter is the name of the module as returned by
[Lasso_TagModuleName] LDML tag. tagName is the name of the custom LDML
tag implemented by this module. One or more OR logical FLAG constants
can be passed in the flags parameter to specify unique tag features. Finally,
a description parameter can be used to provide optional tag info, such as
brief description of the tag usage.

protected void registerTagModule(String moduleName,

 String tagName,
 String methodName,
 int flags,
 String description);

com.blueworld.lassopro.LassoTypeRef
This class is used for creating and manipulating custom Lasso types. Unlike
LassoValue or IntValue objects which store copies of the data, LassoTypeRef is
merely a reference to a native object instance. Native objects exist for a frac-
tion of a second while Lasso is processing a page, therefore the LassoTypeRef
objects should never be stored or reused across multiple module invoca-
tions.

Variables

LASSO_ARRAY

The name of the built-in array type in Lasso Professional 7.

2 8 2

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 8 3

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

public static final String LASSO_ARRAY

LASSO_BOOLEAN

The name of the built-in boolean type in Lasso Professional 7.

public static final String LASSO_BOOLEAN

LASSO_DATE

The name of the built-in date type in Lasso Professional 7.

public static final String LASSO_DATE

LASSO_DECIMAL

The name of the built-in decimal type in Lasso Professional 7.

public static final String LASSO_DECIMAL

LASSO_INTEGER

The name of the built-in integer type in Lasso Professional 7.

public static final String LASSO_INTEGER

LASSO_MAP

The name of the built-in map type in Lasso Professional 7.

public static final String LASSO_MAP

LASSO_NULL

The name of the built-in null type in Lasso Professional 7.

public static final String LASSO_NULL

LASSO_PAIR

The name of the built-in pair type in Lasso Professional 7.

public static final String LASSO_PAIR

LASSO_STRING

The name of the built-in string type in Lasso Professional 7.

public static final String LASSO_STRING

LASSO_TAG

The name of the built-in tag type in Lasso Professional 7.

public static final String LASSO_TAG

Methods

isNull()

Returns true if this object does not refer to a valid type instance, which
most likely would be a result of a failed LassoCall method.

public boolean isNull();

2 8 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 8 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

toString()

Returns string representation of the LassoTypeRef object. Overrides toString
method in the class Object.

public String toString();

com.blueworld.lassopro.LassoValue
Used for retrieving values from various LassoCall methods. Has name and
data member variables of type String. The type member is set to one of
the TYPE constants, reflecting the original type of the value before it was
converted to string.

Variables

TYPE_ARRAY

Array type.

public static final int TYPE_ARRAY

TYPE_BLOB

Binary data.

public static final int TYPE_BLOB

TYPE_BOOLEAN

Boolean type.

public static final int TYPE_BOOLEAN

TYPE_CHAR

String type.

public static final int TYPE_CHAR

TYPE_CODE

Substitution tag code.

public static final int TYPE_CODE

TYPE_CUSTOM

Custom type.

public static final int TYPE_CUSTOM

TYPE_DATETIME

Date type.

public static final int TYPE_DATETIME

TYPE_DECIMAL

Decimal type.

2 8 4

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 8 5

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

public static final int TYPE_DECIMAL

TYPE_INT

Integer type.

public static final int TYPE_INT

TYPE_MAP

Map type.

public static final int TYPE_MAP

TYPE_NULL

Null type.

public static final int TYPE_NULL

TYPE_PAIR

Pair type.

public static final int TYPE_PAIR

TYPE_REFERENCE

Reference type.

public static final int TYPE_REFERENCE

Constructors
public LassoValue();
public LassoValue(int type);
public LassoValue(String data);
public LassoValue(String name, String data);
public LassoValue(String name, String data, int type);

Methods

data()

Returns the String object stored in the data field.

public String data();

name()

Returns the String object stored in the name field.

public String name();

setData()

Sets the value of the data field.

public String setData(String data);

2 8 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 8 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

setName()

Sets the value of the name field.

public String setName(String name);

setType()

Sets the value of the type field.

public int setType(int type);

toString()

Converts this object to String.

public String toString()

type()

Returns the original type of the data retrieved from one of the LassoCall
methods: TYPE_CHAR for strings, TYPE_INT for integers, and so on.

For unnamed tag parameters, the type field is set to the type of the data
stored in the data field. For named tag parameters, it reflects the type of the
value member.

public int type();

com.blueworld.lassopro.RequestParams
These constants signify the different parameters which can be retrieved
from the LassoCall.getRequestParam method.

AddressKeyword

IP address of client browser.

public static final int AddressKeyword

ActionKeyword

Type of HTTP request (GET, POST, etc.).

public static final int ActionKeyword

ClientIPAddress

IP address of client browser.

public static final int ClientIPAddress

ContentLength

The length in bytes of the POST data sent from <form POST>.

public static final int ContentLength

ContentType

MIME header sent from client browser.

2 8 6

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 8 7

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

public static final int ContentType

FullRequestKeyword

All MIME headers, uninterpreted.

public static final int FullRequestKeyword

MethodKeyword

GET or POST, depending on <form method>.

public static final int MethodKeyword

PasswordKeyword

Password sent from browser.

public static final int PasswordKeyword

PostKeyword

HTTP object body (form data, etc.).

public static final int PostKeyword

ReferrerKeyword

URL of referring page.

public static final int ReferrerKeyword

ScriptName

Relative path from server root to a Lasso format file.

public static final int ScriptName

SearchArgKeyword

All text in URL after the question mark.

public static final int SearchArgKeyword

ServerName

IP address or host name of the server on which the Web server is running.

public static final int ServerName

ServerPort

IP port this hit came to (80 is common, 443 for SSL).

public static final int ServerPort

UserAgentKeyword

Browser name and type.

public static final int UserAgentKeyword

UserKeyword

Username sent from browser.

public static final int UserKeyword

2 8 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 8 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

2 8 8

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I 2 8 9

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

2 9 0

E X T E N D I N G L A S S O 7 G U I D E

C H A P T E R 8 – L A S S O J A V A A P I

A
Appendix A

Extending Lasso
Copyright Notice

Copyright © 1996-2002 Blue World Communications, Inc.

This copyright notice applies to all source code, examples and documen-
tation provided in the Extending Lasso 7 Guide provided in the Lasso
Professional 7 software product from Blue World Communications, Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the “Software”),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Blue World
Communications, Inc. shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior
written authorization from Blue World Communications, Inc.

2 9 1

E X T E N D I N G L A S S O 7 G U I D E

Lasso, Lasso Professional, Lasso Studio, Lasso Dynamic Markup Language,
LDML, Lasso Service, Lasso Connector, Lasso Web Data Engine, Blue
World and Blue World Communications are trademarks of Blue World
Communications, Inc.

2 9 2

E X T E N D I N G L A S S O 7 G U I D E

A P P E N D I X A – E X T E N D I N G L A S S O C O P Y R I G H T N O T I C E

SYMBOLS
44
%

Symbol overloading 78
*

Symbol overloading 78
+

Symbol overloading 78
++

Symbol overloading 78
-

Symbol overloading 78
--

Symbol overloading 78
/

Symbol overloading 78
>>

Symbol overloading 77
@ 88

Detaching a reference 87
References 86

{ }
Compound expressions 99

A
Action.Lasso 21
Admin.LassoApp 15
Apache 189
Asynchrnonous Tools
 See Thread Tools
Asynchronous Tags 51
 See also Custom Tags

Accessing variables 52

Calling custom tags 52
Creating background processes 52

B
Background Processes 52
[Bytes->Append] 93
[Bytes->BeginsWith] 93
[Bytes->Contains] 93
[Bytes->EndsWith] 93
[Bytes->ExportString] 94
[Bytes->Find] 93
[Bytes->Get] 93
[Bytes->GetRange] 93
[Bytes->ImportString] 94
[Bytes->RemoveLeading] 93
[Bytes->RemoveTrailing] 93
[Bytes->Replace] 93
[Bytes->SetRange] 93
[Bytes->SetSize] 93
[Bytes->Size] 93
[Bytes->Split] 93
[Bytes->SwapBytes] 94
[Bytes->Trim] 94
[Bytes] 92
Bytes Types 92

C
C/C++ API 119
Callback Tags 68
[Client_PostParams] 55
Compound Expressions 99

Evaluation rules 99
Running compound expressions 100

B
Appendix B

Index

2 9 3

E X T E N D I N G L A S S O 7 G U I D E

Tag data type 96
Connection Parameters 131, 223
Connection URL 131, 222
Container Tags
 See Custom Tags

Defining 46
Encoding 46

Criteria 45
Custom Tags 29

Creating background processes 52
Criteria 45, 56
Defining asynchronous tags 51
Defining container tags 46
Defining process tags 35
Defining substitution tags 35
Encoding 37, 46
Error control 46
Getting a parameter value 42
Inspecting parameters 41
Libraries 58
Local variables 44
Named parameters 38, 42
Naming conventions 30
Optional parameters 38
Overloading 54
Page variables 43
Parameters 38
Parameters array 40
Parameters of the calling tag 42
Possible uses 30
Priority 54
Redefining 54
Referencing LassoApp Files 22
Remote procedure calls 48
Required parameters 38
Returning values 35, 36
Tags 33
Tag data type 96
Unnamed parameters 39, 42
Using global variables 92
Using references 88

Custom Types 61
Assignment tags 80
Automatic type conversions 70
Callback tags 68
Calling custom member tags 68
Comparison tags 75
Contains tag 77
[Define_Type] 63
Defining an onAssign callback 81
Defining an onCompare callback 76
Defining an onConvert callback 70

Defining an onCreate callback 70, 72
Defining an onDestory callback 72
Defining an unknown tag callback 72
Defining a >> callback 77
Defining a Type 63
Defining custom member tags 67
Destructor tags 71
Inheritance 82
Initialization tags 69
Instance variables 64
Libraries 84
Member tags 65
Naming conventions 62
Symbol overloading 73, 78, 81
Tags 62
Tag module code 240
Tag module walk-through 245
Unknown tags 72

D
DatabaseBrowser.LassoApp 15
Data Source Connector Code 224
Data Source Connector Operation 130, 221
Data Source Connector Tutorial 132, 223
Data Source Connector Walk-Through 233
Data Source Host 131, 222
Data Types

Custom member tags 66
Member tags 66

Data Type Operation 238
Data Type Tutorial 139, 239
Debugging, LCAPI 123
[Define_Tag] 33, 62

Asynchronous tags 51
Container tags 46
Criteria 45, 56
Defining custom member tags 67
Parameters 34
Priority 54
RPC 48

[Define_Type] 62
Defining a type 63

Documentation 7

E
Encoding

Container tags 46
Custom tags 37

Events 106
Waiting for a signal 107

Examples

2 9 4

E X T E N D I N G L A S S O 7 G U I D E

A P P E N D I X B – I N D E X 2 9 5

E X T E N D I N G L A S S O 7 G U I D E

A P P E N D I X B – I N D E X

[Ex_Background] 53
[Ex_Bold] 45, 46
[Ex_Concatenate] 43
[Ex_Echo] 41
[Ex_EmailAddress] 35
[Ex_Font] 47
[Ex_Fortune] 49, 50
[Ex_Greeting] 37, 42
[Ex_Link] 47
[Ex_Note] 38, 40
[Ex_Print] 56
[Ex_SendMail] 35, 51
[Ex_Sum] 44
[Ex_TopStories] 50
[Ex_UnnamedParams] 43
[Form_Param] 55

F
[Form_Param]

Redefining 55
Form Tags

Preparing LassoApps 21

G
[Global] 90
[Global_Defined] 90
[Globals] 90
Global Variables 89

Defining at startup 90
Overriding a value 91
Retrieving a value 91
Setting a value 91
Using within custom tags 92

GNU C++ Compiler 121
GroupAdmin.LassoApp 15

I
IIS 189
Image Tags

Preparing LassoApps 21
[Include]

Preparing LassoApps 22
Index 293
Inheritance 82
[Iterate]

Implementing for custom types 65

L
Lasso_Internal Database 130, 222

LassoApp
Removing all LassoApps from the cache 17

[LassoApp_Create]
Building LassoApps 24
Parameters 25

[LassoApp_Link] 18
Preparing <form> Tags 21
Preparing Tags 21
Preparing [Include] Tags 22
Preparing [Library] Tags 22
Preparing [Link_…] Tags 22
Preparing Links 20

LassoApps 13
Admin.LassoApp 15
Administration 16
Auto-Building databases 26
Benefits 13
Building 23
Cache 16
Compiling 23
DatabaseBrowser.LassoApp 15
Database Action Responses 19
Defaults 15
Disabling 16
Enabling 16
GroupAdmin.LassoApp 15
Lasso Administration 16
Lasso Security 27
Lasso Startup 28
Lasso Startup folder 19
LDMLReference.LassoApp 15
Naming conventions 26
Preloading 17
Preparing links 20
Preparing solutions 19
Referencing files within a LassoApp 18
Removing a LassoApp from the cache 17
RPC.LassoApp 15, 48
Run-time errors 26
Serving 17
Source code 9
Startup.LassoApp 16
Tags 15
Tips and techniques 26
Uses 14
Using the [LassoApp_Create] tag 24
Using the LassoApp Builder 23

LassoScript
Compound expressions 99

LassoStartup 53, 56, 58
Lasso Administration 23, 130, 222
Lasso Connector Module Code 194

2 9 4

E X T E N D I N G L A S S O 7 G U I D E

A P P E N D I X B – I N D E X 2 9 5

E X T E N D I N G L A S S O 7 G U I D E

A P P E N D I X B – I N D E X

Lasso Connector Module Walk-Through 198
Lasso Connector Operation 193
Lasso Connector Protocol 189, 192

Getting started 191
Requirements 190

Lasso Connector Protocol Reference 205
Lasso Connector Tutorial 194
Lasso Java API 207

Debugging 214
Getting started 211
Requirements 211

Lasso Security
Databases and tables 28
Groups and tables 28
LassoApps 27
Tags 27

Lasso Startup
Defining global variables 90

Lasso Startup Folder 19
Lasso Web Server Connectors 189, 190
LCAPI 119

Data type reference 185
Frequently asked questions 186
Function reference 147
Getting started 121
Requirements 121
Sample tag module 121
Source code 10

LCAPI 6 vs. LCAPI 5 120
LCAPI vs. LJAPI 120
LCP 189

Source code 11
LCP Commands 205
LCP Named Parameters 206
LDMLReference.LassoApp 15
Libraries 58, 84
[Library]

Preparing LassoApps 22
Link Tags

Preparing LassoApps 22
LJAPI 207

Source code 10
LJAPI 6 vs. LCAPI 6 209
LJAPI Class Reference 251
LJAPI Interface Reference 251
[Local] 33, 44, 62

symbol 44
Instance variables 63, 64

[Local_Defined] 33, 62
[Locals] 33, 62
Local Variables 44

symbol 44

Lock
Controlling access to a resource 103
Thread lock 102

M
Member Tags 65

Built-in 66
Custom 66

Microsoft Visual C++ 121

N
Naming Conventions

Custom tags 30, 62
RPC tags 31

[Null]
Member tags 66

[Null->DetachReference] 66, 88
Detaching a reference 87

[Null->FreezeType] 66
[Null->FreezeValue] 66
[Null->IsA] 66
[Null->onConvert] 69
[Null->onCreate] 69
[Null->onDestroy] 69
[Null->Parent] 66
[Null->Properties] 66
[Null->Properties]

Finding a tag 96
[Null->RefCount] 66
[Null->RefCount] 88
[Null->Serialize] 66
[Null->Type] 66
[Null->Unserialize] 66

P
Page Variables 43
Parameters

Array 40
Inspecting 41
Named 38
Optional 38
Required 38
Unnamed 39, 42

[Params] 33, 62
Parameters array 40

[Params_Up] 33, 40
Parameters from calling tag 42

[Parent] 83
Pipes 107

Processing messages 107

2 9 6

E X T E N D I N G L A S S O 7 G U I D E

A P P E N D I X B – I N D E X 2 9 7

E X T E N D I N G L A S S O 7 G U I D E

A P P E N D I X B – I N D E X

Process Tags
 See Custom Tags

Defining 35
Process Tools
 See Thread Tools

R
Read/Write Lock 104

Controlling access to a resource 105
[Reference] 86, 88

Detaching a reference 87
References 86

Detaching a reference 87
Types 87
Using with custom tags 88

Remote Procedure Calls 48
Naming conventions 31

-ResponseLassoApp 18
[Return] 33

Returning Values 35, 36
RPC.LassoApp 15, 48
[Run_Children] 33

Defining container tags 46

S
[Self] 62, 83
[Self->Parent] 62
Semaphore 103

Controlling access to a resource 104
[Sleep] 53
Source Code 9

LassoApps 9
LCAPI 10
LCP 11
LJAPI 10

Startup.LassoApp 16
Substitution Tags
 See Custom Tags

Defining 35
Module code 217
Module walk-through 218
Operation 125, 215
Tutorial 126, 216

Symbols
symbol 44
Overloading 73, 78, 81

T
[Tag->asAsync] 97
[Tag->asType] 97

[Tag->Description] 97
[Tag->Eval] 97

Evaluating compound expressions 100
[Tag->Run] 97

Parameters 97
Running compound expressions 100

[Tags]
Finding tags 96

Tags
 See Custom Tags
Tag Data Type 96

Member tags 97
Running a tag 97

[TCP_Open] 110
[TCP_Send] 110
[Thread_Event] 106

Member Tags 106
[Thread_Event->Signal] 106
[Thread_Event->SignalAll] 106
[Thread_Event->Wait] 106
[Thread_Lock] 102

Member tags 102
[Thread_Lock->Lock] 102
[Thread_Lock->Unlock] 102
[Thread_Pipe] 106

Member Tags 107
[Thread_Pipe->Get] 107
[Thread_Pipe->Set] 107
[Thread_RWLock] 102

Member tags 105
[Thread_RWLock->ReadLock] 105
[Thread_RWLock->ReadUnlock] 105
[Thread_RWLock->WriteLock] 105
[Thread_RWLock->WriteUnlock] 105
[Thread_Semaphore] 102
[Thread_Semaphore->Decrement] 104
[Thread_Semaphore->Increment] 104
[Thread_Semaphore]

Member tags 104
Thread Tools 101

Communications 106
Controlling access to a resource 103, 104, 105
Events 106
Lock 102
Pipes 107
Processing messages 107
Read/write lock 104
Semaphore 103
Waiting for a signal 107

2 9 6

E X T E N D I N G L A S S O 7 G U I D E

A P P E N D I X B – I N D E X 2 9 7

E X T E N D I N G L A S S O 7 G U I D E

A P P E N D I X B – I N D E X

U
Unknown Tag Callback 72

V
Variables
 See Global Variables; See also Local Variables

Accessing in asynchronous tags 52
Local 44
Page 43

W
WebSTAR 189
Web Serving Folder

Serving LassoApps 18

X
XML-RPC 48

Naming conventions 31

2 9 8

E X T E N D I N G L A S S O 7 G U I D E

A P P E N D I X B – I N D E X

	Contents
	Chapter 1
	Introduction
	Lasso 7 Documentation
	Extending Lasso 7 Guide
	Source Code

	Chapter 2
	LassoApps
	Overview
	Table 1: LassoApp Tags

	Default LassoApps
	Administration
	Serving LassoApps
	Preparing Solutions
	Building LassoApps
	Table 2: [LassoApp_Create] Tag Parameters

	Tips and Techniques

	Chapter 3
	Custom Tags
	Overview
	Custom Tags
	Table 1: Tags For Creating Custom Tags
	Table 2: [Define_Tag] Parameters

	Container Tags
	Web Services, Remote Procedure Calls, and SOAP
	Asynchronous Tags
	Overloading Tags
	Libraries

	Chapter 4
	Custom Types
	Overview
	Table 1: Tags for Creating Custom Data Types

	Custom Types
	Member Tags
	Table 2: Built-In Member Tags

	Callback Tags
	Table 3: Callback Tags

	Symbol Overloading
	Table 4: Overloadable Symbols
	Table 5: Comparison Callback Tags
	Table 6: Symbol Callback Tags
	Table 7: Assignment Callback Tags

	Inheritance
	Libraries

	Chapter 5
	Advanced Programming Topics
	References
	Table 1: Reference Tags and Symbols

	Global Variables
	Table 2: Global Tags

	Bytes Types
	Table 3: Byte Stream Tag
	Table 4: Byte Stream Member Tags

	Tag Data Type
	Table 3: Tag Data Type Member Tags
	Table 4: [Tag->Run] Parameters

	Compound Expressions
	Thread Tools
	Table 4: Thread Tools
	Table 5: [Thread_Lock] Member tags:
	Table 6: [Thread_Semaphore] Member Tags
	Table 7: [Thread_RWLock] Member Tags

	Thread Communication
	Table 8: Thread Communication
	Table 9: [Thread_Event] Member Tags:
	Table 10: [Thread_Pipe] Member Tags:

	Network Communication
	Table 11: [Net] Tags
	Table 12: [Net] Type Member Tags
	Table 13: [Net] TCP Member Tags
	Table 14: [Net] UDP Member Tags

	Post Processing

	Chapter 6
	Lasso C/C++ API 7
	Overview
	What’s Changed
	Requirements
	Getting Started
	Debugging
	Substitution Tag Operation
	Substitution Tag Tutorial
	Data Source Connector Operation
	Figure 1: Custom Data Source Host Screen

	Data Source Connector Tutorial
	Data Type Operation
	Data Type Tutorial
	LCAPI Function Reference
	LCAPI Data Type Reference
	Frequently Asked Questions

	Chapter 7
	Lasso Connector Protocol
	Overview
	Requirements
	Lasso Web Server Connectors
	Getting Started
	Debugging
	Lasso Connector Operation
	Table 1: LPCommandBlock Structure Members

	Lasso Connector Tutorial
	Lasso Connector Protocol Reference
	Table 2: Named Parameters

	Chapter 8
	Lasso Java API
	Overview
	What’s New
	LJAPI 7 vs. LCAPI 7
	Requirements
	Getting Started
	Debugging
	Substitution Tag Operation
	Substitution Tag Tutorial
	Data Source Connector Operation
	Figure 1: Custom Data Source Host Screen

	Data Source Connector Tutorial
	Data Type Operation
	Data Type Tutorial
	Table 1: Type initializer and Member Tags
	Table 2: Accessors

	LJAPI Interface Reference
	LJAPI Class Reference

	Appendix A
	Extending Lasso Copyright Notice

	Appendix B
	Index

